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Abstract. The metapopulation dynamical model with information spreading in SIS epidemic diffusion
model is presented for random walkers for sub-populations to display the effect of awareness. Two-layer
SIS-UA (susceptible-infected-susceptible-unaware-aware) epidemic model is considered to reveal the effect
of information spreading in a graph, where, each node denoted a sub-population. The individuals migrate
by random walk from one node to another node on the graph by themselves or forcefully to escape from
contagious disease. Moreover, the individuals in a node are classified into four states as unaware suscepti-
ble (US), aware susceptible (AS), unaware infected (UI) and aware infected (AI). Meanwhile, to study the
impact of graph topology on individuals in each node (subpopulation), four different graphs: star, cycle,
wheel and complete are considered as representing both homogeneous and heterogeneous connections with
the various number of nodes. The influence of migration for information spreading is displayed to subdue
infected individuals with time steps. Finally, several impressive cases in terms of what attributes of individ-
uals in each subpopulation being allowed (or say, pushed) migration are considered, which is summarized
in the form of a full phase diagram.

1 Introduction

Metapopulation dynamics in ecology implies the migra-
tion of unstable local populations even for human activ-
ities; such as natural disasters and contagious diseases
that make the population into patches. The epidemic
SIS model [1], where S and I meaning a susceptible and
infected individual can be applied to consider showing the
impact of migration from different groups of the pop-
ulation. In metapopulation, each local habitat is said
subpopulation of a species, where, generally speaking,
individual moves from a higher to a lower or a lower
to a higher density patch. Moreover, the habitat patch
area, migration, isolation, colonization, and extinction are
integrated as the result of classic metapopulation dynam-
ics, that can be explained the pattern of individual’s
movement, distribution, choice and the dynamics of the
population in real fragmented landscapes [2]. The present
study focuses on how individual migration affecting dis-
ease and information spreading in a society, which may
help to give qualitative and quantitative knowledge to the
authority for the prevention of epidemic.

In the current work, we consider random migration,
that is to say, each individual can select their destination
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randomly [3]. Random walk bringing migration is a
very fundamental mechanism to many diseases spread-
ing processes on graphs that have been studied by many
researchers [4–11]. In epidemic diffusion on a network,
every subpopulation is considered as a node and a link
between nodes is called path or edge, whereas, disease and
information spreading are occurred concurrently in a node
(subpopulation) [12]. Recently, Nagatani et al. [13] inves-
tigated the metapopulation model for random walkers for
the star, cycle and complete graphs to show where the epi-
demic is identical and the infection rate is unchanged for
any nodes. We mainly concentrate on four different types
of graphs; star, cycle, wheel and complete to introduce
the impact of information in epidemic SIS dynamic for N
nodes in subpopulation migration model.

Incidentally, the effect of awareness with the diffusion
of diseases has a great impact to lessen infection and alert
people to take self-protection or quarantine in a safe place.
Moreover, people perform not only as a medium of disease
spreader but also information propagator in the context of
the dynamical system. A two-layer compartment epidemic
model SIS (susceptible-infected-susceptible) is considered
for unaware and aware (UA) situation to elucidate the
physical and virtual layer in a complex population network
[14–16]. To understand the mechanics of such a complex
dynamical system and draw some appropriate results,
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rather than a theoretical method, the MAS approach is
suitable. In the framework of SIR/V model, Kuga et al.
[17] explored an analytical epidemic vaccination game
theory model with MAS approach that described the
impact of an imperfect vaccination and an intermedi-
ate defense measure. Meanwhile, the epidemic spreading
model has a rich research history including susceptible-
infected (SI) model [18], susceptible-infected-susceptible
(SIS) model [19] and susceptible-infected-recovered (SIR)
model [20]. Furthermore, information spreading “aware-
ness” with disease spreading will help people to take
intermediate protection like wearing a mask, washing
hand and mosquito net to oppress the infection diffusion
by force or self-interest. Many epidemics with information
model studied to display the impact of information on the
social complex network [21–27]. Fukuda et al. [28] explored
two-layer network for infection spreading and information
spreading called physical network and virtual network by
taking a MAS approach, although ‘information spreading’
in her model does not mean the dissemination of some-
how useful information for disease protection but indicates
individuals’ strategy updating; either committing vaccina-
tion or not. Recently, Moinet et al. [29] investigated the
SIR model with awareness effect on Active-Driven tem-
poral networks about the disease transmittance decaying
with the increase of infected neighbors around a focal indi-
vidual for his awareness. Following to reference [13], our
model deals with information spreading, in which aware-
ness can help individuals to migrate from the worst place
to safer one to lessen the contagious diseases and also
present some assumption that can help the authority to
take action to reduce the disease in an area.

In this paper, the rest of the work is prepared as fol-
lows: coupled SIS-UA epidemic for metapopulation model
is explored for four different graphs: star, cycle, wheel
and complete with schematic diagram in Section 2. In
Section 3, the numerical simulation with result and dis-
cussion is done to investigate the impact of awareness by
drawing the 2D full phase diagrams. Finally, in Section 4,
the conclusion of the paper are presented.

2 SIS-UA metapopulation model

The SIS-UA coupled epidemic dynamics with information
spreading is explored by using the compartment model for
the metapopulation. In this model, the metapopulation
is considered into N subpopulations which called nodes,
where individuals migrate freely from subpopulation by
a simple random walk. The link among subpopulation is
presented by graph and the individuals randomly walk
among nodes through links by considering four graphs:
star, cycle, wheel and complete. The individuals in each
subpopulation can be classified into unaware susceptible
(US ), aware susceptible (AS ), unaware infected (UI )
and aware infected (AI ). The mean field dynamics is
assumed to represent inside each subpopulation for SIS
with two-layer unaware and aware situations and the
connection between those two layers visually explained in
Figure 1.

From Figure 1, it can be explicated that, the SIS-UA
metapopulation depicts the effect of awareness for a
random walk from different subpopulations. In a sub-
population, the individuals of unaware susceptible may
become infected at the disease transmission rate β.
The unaware susceptible can be aware of susceptible
at the information transmission rate α. But, the aware
susceptible individuals can reduce risk of infection by
using intermediate defense measure and may also become
infectious at the rate of (1 − η)β, where, η; 0 ≤ η ≤ 1,
is the rate of self-protection from aware susceptible
to aware infected. Both unaware and aware infected
individuals become susceptible individuals at the rate γ.
Meanwhile, the connection between unaware susceptible
to aware susceptible is described as virtual interaction for
the information spreading and the disease spreading is
defined as physical interaction. In order to formulate the
SIS-UA epidemic model for metapopulation migration
model, the mean field approach with two-layer compart-
ment model is applied. The population is divided into N
subpopulations of which population density is denoted
as ρ1, ρ2, ρ3, . . . , ρN . The individuals are moving from
one subpopulation to another at the same migration
rate m. The individuals of each node are classified into
four states as unaware susceptible USk, aware suscep-
tible ASk, unaware infected UIk and aware infected
AIk. As constraint, we presume; ρk(t) = USk(t) +
ASk(t) + UIk(t) + AIk(t) for local and ρtotal (t) =∑
k∈N (USk (t) +ASk (t) + UIk (t) +AIk (t)) = 1 for

global, where, k= 1, 2, 3, . . . N and N is the number
of subpopulations (nodes). In the first case, we consider
only aware infected individuals can migrate from each
subpopulation to other according to what the pioneer
study presumed [13]. With these assumptions, the mean
field approach is given by the set of the following system
of ordinary differential equations for four different graphs:
star, cycle, wheel and complete for N subpopulation.

2.1 Star graph

A graph with one internal node (hub node) and N − 1
leaves connected with hub node is called star graph for
N nodes in Figure 2a (as for example N = 7). In star
graph of N vertices, the number of connection or edges
are N − 1. Every nodes other than hub node have only
one connection and the hub node has N − 1 links. The
SIS-UA epidemic for metapopulation model is as follows,
where we define the migration rate obeying to random
walk as m.

Subpopulation model

dρ1(t)

dt
=

∑
i∈N,i>1

m ρi (t) −mρ1 (t) ,

k = 1 (focal point; central node), (1)

dρk(t)

dt
=

1

N − 1
m ρ1 (t) −mρk (t) ,

k > 1, k = 2, 3, 4, . . . .N. (2)
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Fig. 1. Schematic diagram of (a) the metapopulation model, (b) the subpopulation with four types of individuals, (c) the two
layer epidemic SIS-UA model.

Fig. 2. The metapopulation model of seven nodes (N = 7) for four graphs: (a) star, (b) cycle, (c) wheel and (d) complete. Node
1 is considered as a hub nodes for all graphs.

SIS-UA model

For k = 1 (focal point),

dUS1(t)

dt
= −βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t))

−αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

+γUI1 (t) , (3)

dAS1 (t)

dt
= αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t)))

× (UI1 (t) +AI1 (t)) + γAI1 (t) , (4)

dUI1(t)

dt
= βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t))

−γUI1 (t) , (5)

dAI1(t)

dt
=

 ∑
i∈N,i>1

m AIi (t) −m AI1 (t)


+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t)))

× (UI1 (t) +AI1 (t)) − γAI1 (t) (6)

For k > 1,

dUSk(t)

dt
= −βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

+γUIk (t) , (7)

dASk (t)

dt
= αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) + γAIk (t) , (8)

dUIk(t)

dt
= βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−γUIk (t) , (9)

dAIk(t)

dt
=

(
1

N − 1
m AI1 (t) −mAIk (t)

)
+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) − γAIk (t) , (10)

Ak (t) = ASk (t) +AIk (t) . (11)
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2.2 Cycle graph

A graph with closed chain of all nodes are connected by a
single cycle with binary connection is termed cycle graph
(see Fig. 2b). In cycle graph, every nodes have similar two
links with their neighbor nodes and the number of nodes
and links are same. The dynamics can be depicted by,

Subpopulation model

dρk (t)

dt
=

1

2
m ρ

k−1
(t) +

1

2
mρk+1 (t) −mρk (t) , (12)

SIS-UA model

dUSk(t)

dt
= −βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

+γUIk (t) , (13)

dASk (t)

dt
= αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) + γAIk (t) , (14)

dUIk(t)

dt
= βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−γUIk (t) , (15)

dAIk (t)

dt
=

(
1

2
mAIk−1 (t) +

1

2
mAI

k+1
(t) −mAIk (t)

)
+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) − γAIk (t) , (16)

Ak (t) = ASk (t) +AIk (t) . (17)

Note that, if, k= 1, we should presume; ρ0 (t) = ρN (t),
AI0 (t) = AIN (t), while, if k= N, ρN+1 (t) = ρ1 (t),
AIN+1 (t) = AI1 (t) should be given.

2.3 Wheel graphs

In graph theory, a wheel graph is formed by connecting
a hub node with all nodes like star graph and each node
other than hub node are connecting with their neighbor by
a closed chain same as cycle graph (Fig. 2c). Hub node has
N − 1 link with neighbor and others nodes have three con-
nection with hub and neighbor nodes for N nodes graphs.
The total number of links are 2(N − 1). The SIS-UA
metapopulation model for wheel graph is below.

Subpopulation model

dρ1(t)

dt
=

∑
i∈N,i>1

1

3
m ρi (t) −mρ1 (t) , k = 1. (18)

dρk(t)

dt
=

1

N − 1
m ρ1 (t) +

1

3
mρk−1 (t)

+
1

3
mρk+1 (t) −mρk (t) ,

k > 1, k = 2, 3, 4, . . . .N. (19)

SIS-UA model
For k = 1 (focal point),

dUS1(t)

dt
= −βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t))

−αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

+γUI1 (t) , (20)

dAS1 (t)

dt
= αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t)))

× (UI1 (t) +AI1 (t)) + γAI1 (t) , (21)

dUI1(t)

dt
= βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t))

−γUI1 (t) , (22)

dAI1 (t)

dt
=

 ∑
i∈N,i>1

1

3
m AI

i
(t) −m AI1 (t)


+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t)))

× (UI1 (t) +AI1 (t)) − γAI1 (t) . (23)

For k > 1,

dUSk(t)

dt
= −βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

+γUIk (t) , (24)

dASk(t)

dt
= αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)βASk (t) (UIk (t) +AIk (t))

+γAIk (t) , (25)

dUIk(t)

dt
= βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−γUIk (t) , (26)

dAIk (t)

dt
=

(
1

N − 1
m AI1 (t) −mAIk (t) +

1

3
mAIk+1 (t)

+
1

3
mAIk−1 (t)

)
+ (1 − η)β(ρk (t)

− (UIk (t) +AIk (t))) (UIk (t) +AIk (t))

−γAIk (t) , (27)

Ak (t) = ASk (t) +AIk (t) . (28)

If, k= 2, ρk−1 (t) = ρN (t), AIk−1 (t) = AIN (t) , and,
k= N, ρN+1 (t) = ρ2 (t), AIN+1 (t) = AI2 (t) .

https://epjb.epj.org/
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2.4 Complete graph

A complete graph in the field of graph theory is a graph
where every node relates to each other (see Fig. 2d).
For N nodes complete graph, the number of edges
are N(N−1)/2. The SIS-UA epidemic model for complete
graph is below

Subpopulation model

dρk(t)

dt
=

∑
i∈N,i6=k

1

N − 1
m ρi (t) −mρk (t) , (29)

SIS-UA model

dUSk(t)

dt
= −βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

+γUIk (t) , (30)

dASk(t)

dt
= αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)βASk (t) (UIk (t) +AIk (t))

+γAIk (t) , (31)

dUIk(t)

dt
= βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−γUIk (t) , (32)

dAIk (t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mAIi (t) −mAIk (t)


+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) − γAIk (t) , (33)

Ak(t) = ASk(t) +AIk(t). (34)

Following the above development of equations, to put
it another way, we consider the total six different sce-
narios to understand the effect of awareness and migra-
tion in all possible cases (Appendix). Namely, Case 1
(Eqs. (1)–(34)), we consider only aware infected individu-
als can migrate. In Case 2 (Appendix, Eqs. (A.1)–(A.12)),
aware susceptible and aware infected both can migrate.
In Case 3 (Appendix, Eqs. (A.13)–(A.36)), all people
both aware and unaware for susceptible and infected can
migrate. Defaults case is considered for Case 4, where
no migration occurred (m= 0). In Case 5 (Appendix,
Eqs. (A.37)–(A.42)), only aware susceptible individuals
can migrate. Finally, only unaware infected can migrate
is illustrated in Case 6 (Appendix, Eqs. (A.43)–(A.48)).

Now, we have accomplished to establish all the analyt-
ical frameworks for N nodes, where, k= 1, 2, 3, . . . , N .
k is the number of nodes (subpopulation) and N is the
maximum number of nodes. The number of all aware
individuals is denoted by Ak(t) and all the parameters:
β, η, γ and α are considered positive constants. At the

Fig. 3. Schematic image of the metapopulation SIS-UA model
composed of three nodes (subpopulations). (a) All nodes are
disconnected from each other, (b) only node 1 and node 2 are
connected but node 3 is isolated, (c) node 1 is connected with
node 2 and node 3, but node 2 and node 3 are disconnected.
(d) All nodes are connected with each others.

beginning, we presumed some set of initial values, ρk(0) =
USk(0) ≈ 1, ASk = 0, UIk (0) = 0 and AIk (0) ≈ 0.
Thus, the above set of equations can be solved numerically
by means of the explicit finite difference method.

3 Results and discussion

The metapopulation epidemic model with the impact of
awareness effect can assist individuals to decrease their
threat of being infected in a population. This approach
is an essential mathematical framework used in popu-
lation ecology, environment, and government policy to
explain the epidemic dynamics for different spatial graphs
structure by a highly fragmented location in which the
individuals are organized in isolated discrete patches (sub-
populations). In current work, different cases are explored
to describe the awareness effect with epidemic spreading
in a metapopulation modeling approach to display how
accurately described the migration patterns. Numerical
analysis with depth exploration is inspected to display
how well the proposed framework may be applied in prac-
tice. At first, the effect of infected individuals is depicted
for both aware and unaware situation for node N = 3,
which can be thought specific and fundamental configura-
tion. The full phase diagrams are illustrated to explain the
various cases and default case by considering the possibil-
ity of migrated individuals for the node, N = 7. Finally,
the epidemic model is discussed to extend the number of
node (up to N = 51) by taking four different graphs where
the only aware infected individual can travel.

3.1 Dynamics of three subpopulation (N = 3)

Let us presume that there are three nodes N = 3; nodes
are numbered 1, 2 and 3 shown in Figure 3 by consider-
ing four cases. In the first case; case (a) (Fig. 3a), three
nodes are isolated from each other where the individu-
als in each node never walk to other nodes. In case (b) of
Figure 3b, node 3 is isolated from nodes 1 and 2, only indi-
viduals from nodes 1 and 2 migrate by a random walk. In
Figure 3c, node 1 is connected with both 2 and 3, individ-
uals can go back and forth between node 1 to node 2 and
node 1 to node 3 by random walk, but no link between
node 2 and node 3 in case (c). Finally, in case (d), all
nodes are connected to each other, individuals can move
from any nodes by random walks in Figure 3d.

https://epjb.epj.org/
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Fig. 4. Results for the case (c) (Fig. 3c), plots of infected individuals and island population for each subpopulation are
displayed against times at infection rate β = 1.0 and recovery rate γ = 0.1 for initial values ρ1 (0) = 0.3, ρ2 (0) = ρ3 (0) = 0.35,
∗ρ1 (0) = 0.3, ∗ρ2 (0) = ∗ρ3 (0) = 0.35, I1 (0) = I2 (0) = I3 (0) = ∗I1 (0) = ∗I2(0)=∗I3 (0) = 0.1. The dot lines indicate the
aware situation and plain lines show the unaware condition.

An improved SIS-UA epidemic model with metapopu-
lation migration model between three nodes are modeled
for four different cases in Figure 3. In numerical simulation
for N = 3, the infection rate β = 1.0, recovery rate γ= 0.1
are considered for initial condition; ρ1 (0) = 0.3, ρ2 (0) =
ρ3 (0) = 0.35, AI1 (0) = AI2 (0) = AI3 (0) = 0.1.

Firstly, case (c) is explored to observe the time evolu-
tion of the subpopulation densities and infection densities
(unaware and aware) in each node, where node 1 is
connected with both node 2 and 3, but 2 and 3 are sep-
arated. In Figure 4, the plain lines denote the fraction of
population presuming no information spreading; α= 0.0,
whereas the dot lines (plots) indicate the fractions of
the population for the effect of awareness (α= 0.4). Red,
blue and yellow plain lines indicate the fraction of pop-
ulation in node 1, 2 and 3 (ρ1, ρ2, ρ3) for the unaware
state, whereas, red, blue and yellow dots line indicate the
aware state of a subpopulation (∗ρ1, ∗ρ2, ∗ρ3). Similarly,
green, violate and light blue for both dot and plain lines
show the infected individuals (I1, I2, I3, ∗I1, ∗I2, ∗I3) for
node 1, 2 and 3. Let alone, when we refer to the graph
configuration of the case (c), the time evolution of sub-
population and infected individuals in node 3 is consistent
with node 2, because the initial densities in node 2 and
3 are same. At the steady state, the subpopulation and
infected individuals in each node approach the constant
values. Furthermore, for without awareness, the graph of
the subpopulation and infected individuals depicted in
Figure 4 is validated with Nagatani et al. [13] work. With

this intention, dot lines clearly show the significant effect
of information in metapopulation for the random walk.

In Figure 5, the four cases; depending on graph con-
figuration given in Figure 3, are compared when we are
concerned on respective time-series values at equilibrium.
Here, Figure 3a compares densities of a subpopulation,
and Figure 3b compares infected individuals for both
unaware and aware situation. Again let us confirm this
case (Case 1) allows that only aware infected individuals
can migrate. Based on the connection among nodes, case
(a) has no change of densities from the initial values dis-
cussed above for node 1, 2 and 3 because all the nodes
are isolated from each other. In case (b), shows a very
small change of population in both node 1 and node 2,
due to only one connection between node 1 and 2 exist.
On the other hand, case (c) displays the highest variation
where the population of node 1 (both cases) have maxi-
mum densities and node 2 and 3 have the lowest densities.
In view of the case (c); star graph, being representative of
the heterogeneous graph, the focal node seems to be sup-
plying source of disease. Finally, all subpopulations have
an equal situation at equilibrium in case (d), where all the
nodes are connected with each other allowing heavy traffic
of (aware) infected individuals.

The fraction of infected individuals for four cases are
compared in Figure 5b, here, I1, I2, I3, ∗I1, ∗I2 and
∗I3 denote the infected individuals in each subpopula-
tion at steady state. The sum of infected individuals in
each subpopulation is signified by Iρ = I1 + I2 + I3 for

https://epjb.epj.org/
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Fig. 5. The bar graph depicts (a) the total individuals of each subpopulation for both unaware and aware states (b) the total
infected individuals for both unaware and aware states. Case (a), all subpopulation are isolated, case (b)2, node 1 and node
2 are connected, case (c), node 1 is connected with node 2 and node 3, but node 2 and 3 are disconnected and in case (d) all
nodes are connected with each others are presented for N = 3, β = 1.0 and γ = 0.1.

unaware state and ∗Iρ =∗I1 + ∗I2 + ∗I3 for the aware
situation. It is clear from Figure 5b that, in all cases,
the aware infected individual in each subpopulation is
always smaller than unaware infected people that strongly
support the hypothesis of information spreading in the
epidemic model. Meanwhile, case (c) shows the largest
fraction of aware infected vis-a-vis other three cases,
perhaps because case (c) has extremely heterogeneous
topology amid those. In case (d), at equilibrium, the
impact of awareness can be observed clearly by comparing
both summing bars for the unaware and aware situation,
although the infected individuals in respective nodes are
equal. Based on this assumption, we consider this equilib-
rium condition throughout this work to signify the impact
of awareness in metapopulation epidemic model.

3.2 Dynamics of seven subpopulation (N = 7)

Motivated by the above discussion, we present a thor-
ough analysis on the behavior of infected individuals in
metapopulation models for seven nodes in four differ-
ent types of graph: star, cycle, wheel and complete by
considering six cases are given below.

Case 1. Only aware infected individuals can migrate
(Fig. 6(i-*)).

Case 2. Both aware susceptible and aware infected can
migrate (Fig. 6(ii-*)).

Case 3. Any people both aware and unaware for suscep-
tible and infected can migrate (Fig. 6(iii-*)).

Case 4. No migration is occurring, all nodes are isolated
(Fig. 7(i-*)).

Case 5. Only aware susceptible individuals can migrate
(Fig. 7(ii-*)).

Case 6. Only unaware infected can migrate
(Fig. 7(iii-*)).

Here, aside from the case 4, rest of the cases individual
can migrate based on the subpopulation model, whereas,
respected individuals for each case, those who are com-
mitted to migrate can follow the SIS-UA epidemic model.

It is revealed from Figures 6 and 7, the effect of
awareness is showed in metapopulation epidemic model
for four different graphs of N = 7 (subpopulation) with
respect to the disease transmission rate β and the
information spreading rate α. Moreover, the subpopu-
lation in metapopulation is represented by the star
graphs in Figures 6(*-a) and 7(*-a), the cycle graphs in
Figures 6(*-b) and 7(*-b), the wheel graphs in Figures
6(*-c) and 7(*-c) and the complete graphs in Figures
6(*-d) and 7(*-d). Here, the infected individuals Itotal is
taken as the sum of all infected individuals (both unaware
and aware) accumulated seven nodes at equilibrium.

In general, because an increase of α ensures less size
of infection at a same β irrespective to Cases as well as
subpopulation topology, there have been confirmed the
substantial effect of awareness to lessen the spreading of
infected individuals in a population.

Now, by comparing four graphs: star, cycle, wheel
and complete, a monotonic decreasing tendency in this
order is observed for all Cases except Case 4 (Fig. 7(i-*))
since there are existing extremity nodes in case of a
star graph. It also illustrates from displayed figures that
the network structure of the complete graph can reduce
the threat of infection considerably compare with others
graphs because every node is connected each other, which
ensures a migrant, regardless being infected or not, has
the maximal number of heading subpopulations.

The effect depicted by different graphs in Figure 7(ii-*)
under the setting of Case 5 results from how only aware
susceptible individuals migrating through four topolo-
gies oppresses disease spreading. Expectedly, the higher
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Fig. 6. The 2D full phase diagram for the disease transmission rate and the information spreading rate at equilibrium for Case
1 (i-*), Case 2 (ii-*) and Case 3 (iii-*) are presented for N = 7. The first column display the star graph (*-a), second column,
cycle graph (*-b), third column, wheel column (*-c) and the last column show the complete graph (*-d). Here, the parameters
are considered: γ= 0.1, η= 0.3 and m= 0.2.

information spreading rate α accelerates the migration
process because only aware susceptible can be mobile.
Except for star graph (Fig. 7(ii-a)), other graphs can be
lessened the infection for higher α. This tendency comes
from the following mechanism. Referring to Figure 5,
other topologies than star graph, the hub, and periph-
eral nodes has comparable population densities, whereas,
in star graph, the population density of hub node is much
higher than that of peripherals. This fact ensures that
other topologies than star graph enjoy the advantage of
information effect to oppress disease spreading because
peripherals, as well as hub nodes, have a higher fraction
on aware people. On the other hand, the star graph makes
migrating people, who are aware and susceptible, be con-
centrated in the focal node. Thus relatively, less fraction
of aware people in the peripherals. This inevitably makes
less sensitivity along α be observed.

However, in Figure 7(iii-*) for Case 6, where only
unaware infected can migrate, display exactly opposite
incidence liken with other graphs, the final epidemic size
is higher for larger values of the information spread-
ing rate. Meanwhile, observing to quantitatively compare
from Case 1 to Case 6, we note that the number of infected
individuals in Case 6 with presuming complete graph

where only unaware infected can migrate shows smallest.
Yet, other cases than complete graph are not so significant
to oppress the disease.

Therefore, in a word, awareness can suppress disease
spreading which depend on individual’s choice by taking
protection or migration. Although the mitigation by an
unaware infected individual makes the awareness effect
backed by information spreading be an invisible and little
bit counterproductive as opposed to other cases, interest-
ingly and suggestively, this scheme can reduce the infected
thread most remarkably as long as the complete graph is
presumed. It can imply that some sort of quarantine policy
the government taking or forceful social isolation keeping
inappropriate people away may contain some rationality
to make remaining people safe. But it is only true when
there are a sufficient number of isolated sites, otherwise,
the policy does not work so effectively.

3.3 Dynamics of many subpopulations

To clarify the effect of higher-order nodes (up to N = 51)
in metapopulation SIS-UA epidemic model, Figure 8 dis-
plays the effect of total infected individuals at equilibrium.
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Fig. 7. The 2D full phase diagram for the disease transmission rate and the information spreading rate at equilibrium for
Case 4 (i-*), Case 5 (ii-*) and Case 6 (iii-*) are presented for N = 7. In the first column, the star graph (*-a), second column,
cycle graph (*-b), third column, wheel column (*-c) and the last column, the complete graph (*-d) are presented. Here, the
parameters are considered: γ= 0.1, η= 0.3 and m= 0.2.

In Figure 8, four topologies: star, cycle, wheel and com-
plete are compared for total number of nodes; 1, 3, 5, 7,
11, 21, 21, 31, 41 and 51 display the influence of total
infected individuals when presuming Case 1, where only
aware infected individuals can migrate. Comparing four
lines, it can be concluded that the infection densities at
equilibrium for the complete graph are obviously lower
than others, and more importantly, of which tendency
becomes more evident with the increase of degree. It is
because the number of links each node has increased with
the increase of the number of nodes, which ensures many
alternative headings for aware infected migrants. How-
ever, star and cycle show almost the same densities of
infected individuals for higher nodes due to the connec-
tion for each node is one and two. Wheel graph displays
the superior final epidemic size (say, showing lower den-
sities) to star and cycle but much higher densities than a
complete graph. As long as a sufficient number of nodes
is presumed, the order of performance to oppress the final
epidemic size is the same as the order of the total number
of links. In a nutshell, complete graph, having the maximal
number of links, quantified by N (N – 1), shows the best
performance.

4 Conclusion

In the current paper, the impact of information spreading
on metapopulation epidemic model in a network popula-
tion is theoretically estimated and analyzed. The intention
of present work is to develop a metapopulation migration
model on the star, cycle, wheel and complete graphs on
three, seven and N nodes as a prototype for the complex
network. The mathematical framework based on mean
field approximation with two-layer compartment model
derived from SIS-UA is newly established and carried
out numerical simulations to validate the model. Hence,
four variant models are implemented to investigate the
effect of aware and unaware on metapopulation epidemic
SIS model for six different cases by a random walk.
The effect of awareness, infection, self-protection, migra-
tion and spatial networking structure are shown clearly
for time series graphs and by portraying full phase dia-
gram. Firstly, from the time evaluation graphs, it can be
concluded that the information about the disease before
illness can reduce the number of infected individuals phe-
nomenally by encouraging people to take self-protection
and go save place. Secondly, from the full phase diagram,
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Fig. 8. Line graph of total infected individuals against subpopulation number on star, cycle, wheel and complete graph at
steady state situation are considered, where node (subpopulation) N = 1, 5, 7, 11, 21, 31, 41 and 51.

the complete graph shows a better networking structure
in metapopulation model to reduce diseases. Moreover,
at the point of individual choice, the infected individ-
uals reduced remarkably when only aware infected can
migrate. On the other hand, at the point of authority or
government standpoint, if unaware people are migrated
by forcefully then the spreading of infection can reduce
remarkably. Finally, it is revealed from the study of a
higher node, the complete graph displays the most sig-
nificant tendency to suppress the infected individuals in
an epidemic compare with the star, cycle and wheel graph.
At the point of individual’s choice, the complete graph for
Case 1 shows the significant reduction of disease, but, in
Case 6 displays superior reduction of infected individuals.
Furthermore, as the most important finding here, in the
proposed framework, the effect of awareness on the spread-
ing of infection can reduce the disease diffusion remarkably
for all cases, because the awareness can promote people
to take self-protection or move in a safe place.

In the current work, we presumed constant migration
rate, m to meet with the most fundamental idea of ran-
dom walk the pioneer study took [13]. In practice and
in reality, the driving force letting people evacuate (or, as
the responsible body, government takes quarantine policy)
should be dependent on the current infectious fraction at a
destination site. Such a complex situation obviously con-
taining non-linear effects will be explored in our future
studies.
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23. C. Granell, S. Gómez, A. Arenas, Phys. Rev. Lett. 111,
12870 (2013)

24. W. Wang, Q.H. Liu, S. Cai, M. Tang, A. Lidia, Braunstein,
H.E. Stanley, Sci. Rep. 6, 29259 (2016)

25. S. Funk, E. Gilad, C. Watkins, A. Vincent, A. Jansen,
Proc. Natl. Acad. Sci. 106, 6872 (2009)

26. Q. Wu, X. Fu, M. Small, X.J. Xu, Chaos 22, 013101 (2012)
27. Y. Pan, Z. Yan, Physica A 491, 45 (2018)
28. E. Fukuda, J. Tanimoto, M. Akimoto, Chaos Solitons

Fractals 80, 47 (2015)
29. A. Moinet, R. Pastor-Satorras, A. Barrat, Phys. Rev. E

97, 012313 (2018)

Appendix A

A.1 Case 2

Star graphs: SIS-UA model

For k = 1, (Focal Point)

dAS1(t)

dt
=

 ∑
i∈N,i>1

mASi (t) −mAS1 (t)

+ αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) + γAI1 (t) , (A.1)

dAI1(t)

dt
=

 ∑
i∈N,i>1

mAIi (t) −mAI1 (t)

+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t))

+ αUI1 (t)A1 (t) (1 − γ) − γAI1 (t) , (A.2)

For k > 1,

dASk(t)

dt
=

(
1

N − 1
mAS1 (t) −mASk (t)

)
+αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) − (1 − η)β (ρk (t) − (UIk (t)

+ AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.3)

dAIk(t)

dt
=

(
1

N − 1
mAI1 (t) −mAIk (t)

)
+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t)

+ AIk (t)) + αUIk (t)Ak (t) (1 − γ) − γAIk (t) , (A.4)

Cycle graph: SIS-UA model

dASk(t)

dt
=

(
1

2
mASk−1 (t) +

1

2
mASk+1 (t) −mASk (t)

)
+αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) − (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) + γAIk (t) , (A.5)

dAIk(t)

dt
=

(
1

2
mAIk−1 (t) +

1

2
mAI

k+1
(t) −mAIk (t)

)
+ (1 − η)β (ρk (t) − (UIk (t)+AIk (t))) (UIk (t)+AIk (t))+αUIk (t)Ak (t) (1−γ) − γAIk (t), (A.6)
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Wheel graphs: SIS-UA model

For k = 1, (Focal Point)

dAS1(t)

dt
=

 ∑
i∈N,i>1

1

3
mAS

i
(t) −mAS1 (t)

+ αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) + γAI1 (t) , (A.7)

dAI1(t)

dt
=

 ∑
i∈N,i>1

1

3
mAI

i
(t) −mAI1 (t)

+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t))

+ αUI1 (t)A1 (t) (1 − γ) − γAI1 (t) , (A.8)

For k > 1,

dASk(t)

dt
=

(
1

N − 1
mAS1 (t) −mASk (t) +

1

3
mASk+1 (t) +

1

3
mASk−1 (t)

)
+αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) − (1 − η)β (ρk (t)

− (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.9)

dAIk (t)

dt
=

(
1

N − 1
mAI1 (t) −mAIk (t) +

1

3
mAIk+1 (t) +

1

3
mAIk−1 (t)

)
+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t))

+αUIk (t)Ak (t) (1 − γ) − γAIk (t) , (A.10)

Complete graph: SIS-UA model

dASk(t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mASi (t) −mASk (t)

+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.11)

dAIk (t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mAIi (t) −mAIk (t)

+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t))

+αUIk (t)Ak (t) (1 − γ) − γAIk (t) , (A.12)

A.2 Case 3

Star graphs: SIS-UA model

For k = 1, (Focal Point)

dUS1(t)

dt
=

 ∑
i∈N,i>1

mUSi (t) −mUS1 (t)

+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) − γAI1 (t)

−βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t)) − αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t))) + γUI1 (t) ,

(A.13)
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dAS1 (t)

dt
=

 ∑
i∈N,i>1

mASi (t) −mAS1 (t)

+ αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) + γAI1 (t) , (A.14)

dUI1(t)

dt
=

 ∑
i∈N,i>1

mUIi (t) −mUI1 (t)

+ βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t)) − γUI1 (t) , (A.15)

dAI1(t)

dt
=

 ∑
i∈N,i>1

mAIi (t) −mAI1 (t)

+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) − γAI1 (t) ,

(A.16)
For k > 1,

dUSk(t)

dt
=

(
1

N − 1
mUS1 (t) −mUSk (t)

)
− βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) + γUIk (t) , (A.17)

dASk (t)

dt
=

(
1

N − 1
mAS1 (t) −mASk (t)

)
+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.18)

dUIk(t)

dt
=

(
1

N − 1
mUI1 (t) −mUIk (t)

)
+ βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) , (A.19)

dAIk(t)

dt
=

(
1

N − 1
mAI1 (t) −mAIk (t)

)
+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) − γAIk (t) ,

(A.20)

Cycle graph: SIS-UA model

dUSk(t)

dt
=

(
1

2
mUSk−1 (t) +

1

2
mUS

k+1
(t) −mUSk (t)

)
− βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) + γUIk (t) , (A.21)

dASk (t)

dt
=

(
1

2
mASk−1 (t) +

1

2
mAS

k+1
(t) −mASk (t)

)
+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.22)

dUIk(t)

dt
=

(
1

2
mUIk−1 (t) +

1

2
mUI

k+1
(t) −mUIk (t)

)
+ βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) ,

(A.23)

dAIk (t)

dt
=

(
1

2
mAIk−1 (t) +

1

2
mAI

k+1
(t) −mAIk (t)

)
+ (1 − η)β (ρk (t) (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) − γAIk (t) , (A.24)
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Wheel graphs: SIS-UA model
For k = 1, (Focal Point)

dUS1(t)

dt
=

 ∑
i∈N,i>1

1

3
mUS

i
(t) −mUS1 (t)

− βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t))

−αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t))) + γUI1 (t) , (A.25)

dAS1 (t)

dt
=

 ∑
i∈N,i>1

1

3
mAS

i
(t) −mAS1 (t)

+ αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) + γAI1 (t) , (A.26)

dUI1(t)

dt
=

 ∑
i∈N,i>1

1

3
mAS

i
(t) −mAS1 (t)

+ βUS1 (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t)) − γUI1 (t) , (A.27)

dAI1(t)

dt
=

 ∑
i∈N,i>1

1

3
mAI

i
(t) −mAI1 (t)

+ (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) − γAI1 (t) ,

(A.28)
For k > 1,

dUSk(t)

dt
=

(
1

N − 1
mUS1 (t) −mUSk (t) +

1

3
mUSk+1 (t) +

1

3
mUSk−1 (t)

)
−βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) + γUIk (t) ,

(A.29)

dASk(t)

dt
=

(
1

N − 1
mAS1 (t) −mASk (t) +

1

3
mASk+1 (t) +

1

3
mASk−1 (t)

)
+αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) − (1 − η)βASk (t) (UIk (t) +AIk (t)) + γAIk (t) ,

(A.30)

dUIk(t)

dt
=

(
1

N − 1
mUI1 (t) −mUIk (t) +

1

3
mUIk+1 (t) +

1

3
mUIk−1 (t)

)
+βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) , (A.31)

dAIk (t)

dt
=

(
1

N − 1
mAI1 (t) −mAIk (t) +

1

3
mAIk+1 (t) +

1

3
mAIk−1 (t)

)
+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) − γAIk (t) , (A.32)

Complete graph: SIS-UA model

dUSk(t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mUSi (t) −mUSk (t)

− βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t))

−αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t))) + γUIk (t) , (A.33)
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dASk(t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mASi (t) −mASk (t)

+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)βASk (t) (UIk (t) +AIk (t)) + γAIk (t) , (A.34)

dUIk(t)

dt
=

 ∑
i?N,i?k

1

N − 1
mUIi (t) −mUIk (t)

+ βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) , (A.35)

dAIk (t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mAIi (t) −mAIk (t)

+ (1 − η)β (ρk (t) − (UIk (t) +AIk (t)))

× (UIk (t) +AIk (t)) − γAIk (t) , (A.36)

A.3 Case 5

Star graphs: SIS-UA model

For k = 1, (Focal Point)

dAS1(t)

dt
=

 ∑
i∈N,i>1

mASi (t) −mAS1 (t)

+ αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) + γAI1 (t) , (A.37)

For k > 1,

dASk(t)

dt
=

(
1

N − 1
mAS1 (t) −mASk (t)

)
+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.38)

Cycle graph: SIS-UA model

dASk(t)

dt
=

(
1

2
mASk−1 (t) +

1

2
mAS

k+1
(t) −mASk (t)

)
+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.39)

Wheel graphs: SIS-UA model

For k = 1, (Focal Point)

dAS1(t)

dt
=

 ∑
i∈N,i>1

1

3
mAS

i
(t) −mAS1 (t)

+ αUS1 (t)A1 (t) (1 − β (UI1 (t) +AI1 (t)))

− (1 − η)β (ρ1 (t) − (UI1 (t) +AI1 (t))) (UI1 (t) +AI1 (t)) + γAI1 (t) , (A.40)

For k > 1,

dASk(t)

dt
=

(
1

N − 1
mAS1 (t) −mASk (t) +

1

3
mASk+1 (t) +

1

3
mASk−1 (t)

)
+ αUSk (t)Ak (t)

× (1 − β (UIk (t) +AIk (t))) − (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) ,

(A.41)

Complete graph: SIS-UA model

dASk(t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mASi (t) −mASk (t)

+ αUSk (t)Ak (t) (1 − β (UIk (t) +AIk (t)))

− (1 − η)β (ρk (t) − (UIk (t) +AIk (t))) (UIk (t) +AIk (t)) + γAIk (t) , (A.42)
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A.4 Case 6

Star graphs: SIS-UA model

For k = 1, (Focal Point)

dUI1(t)

dt
=

 ∑
i∈N,i>1

mUIi (t) −mUI1 (t)

+ βUSk (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t)) − γUI1 (t) , (A.43)

For k > 1,

dUIk(t)

dt
=

(
1

N − 1
mUI1 (t) −mUIk (t)

)
+ βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) , (A.44)

Cycle graph: SIS-UA model

dUIk(t)

dt
=

(
1

2
mUIk−1 (t) +

1

2
mUI

k+1
(t) −mUIk (t)

)
+ βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) ,

(A.45)
Wheel graphs: SIS-UA model

For k = 1, (Focal Point)

dUI1(t)

dt
=

 ∑
i∈N,i>1

1

3
mAS

i
(t) −mAS1 (t)

+ βUSk (t) (UI1 (t) +AI1 (t)) (1 − αA1 (t)) − γUI1 (t) , (A.46)

For k > 1,

dUIk(t)

dt
=

(
1

N − 1
mUI1 (t) −mUIk (t) +

1

3
mUIk+1 (t) +

1

3
mUIk−1 (t)

)
+ βUSk (t)

× (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) , (A.47)

Complete graph: SIS-UA model

dUIk(t)

dt
=

 ∑
i∈N,i6=k

1

N − 1
mUIi (t) −mUIk (t)

+ βUSk (t) (UIk (t) +AIk (t)) (1 − αAk (t)) − γUIk (t) , (A.48)
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