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Abstract. In this paper, we are addressing the old problem of long-term nonlinear autocorrelation function
versus short-term linear autocorrelation function. As continuous-time random walk (CTRW) can describe
almost all possible kinds of diffusion, it seems to be an excellent tool to use. To be more precise, for instance,
CTRW can successfully describe the short-term negative autocorrelation of returns in high-frequency finan-
cial data (caused by the bid-ask bounce phenomena). We observe long-term autocorrelation of absolute
values of returns. Can it also be described by the CTRW model? And maybe more importantly, to what
extent can it be explained by the same phenomena? To refer to these questions, we propose a new directed
CTRW model with memory. The canonical CTRW trajectory consists of spatial jumps preceded by waiting
times. In directed CTRW, we consider the case with positive spatial jumps only. We take into account
the memory in the model as each spatial jump depends on the previous one. This model, based on
simple assumptions, allowed us to obtain the general formula covering most popular types of nonlinear
autocorrelation functions.

1 Introduction

In 1956 two physicists Montroll and Weiss, in the context
of dispersive transport diffusion, introduced a new
stochastic process they named continuous-time random
walk (CTRW) [1]. As dynamics of many complex systems
can be described by discrete spatiotemporal events,
i.e., the spatial jump of stochastic process preceded by
waiting time, the formalism of CTRW seems a natural
description. On the other hand, CTRW can be considered
as a way to introduce finite, continuous and fluctuating
interevent times into a random walk. Since its introduc-
tion, the concept of CTRW found many applications and
extensions [2].

The CTRW has initially described a photocurrent relax-
ation in amorphous films [3–7]. A broader spectrum of
other applications and arrangements contains: diffusion
in probabilistic fractal structures (percolations clusters [8]
and fractal diffusion [9]), aging of glasses [10,11], nearly
constant dielectric loss in disordered ionic conductors [12],
cardiological rhythms [13], electron transfer [14], search
models [15], transport in porous media [16], diffusion
of epicenters of earthquake aftershocks [17], subsurface
tracer diffusion [18], hydrogen diffusion in nanostructure
compounds [19] or even human travel [20]. In this work,
we are particularly interested in CTRW models used in
the description of financial markets, mainly financial time
series, where the dependencies and distributions of times
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between transactions and price changes are considered
[21–36].

In the majority of cases, the analyzed CTRW models
focus on the spatial distribution with zero mean or even
symmetric distribution. In other words, the drift term is
usually neglected. The case of drift was studied in [37]
(and references therein). The case of canonical CTRW,
where both spatial and temporal distributions are i.i.d.
and they do not depend on each other, turns out to be
a compelling model, able to describe many cases of nor-
mal or anomalous diffusion. Different types of CTRW are
obtained if the mean waiting time is finite or diverging
(but assuming finite variance of the spatial distribution).
In the first case, we observe a normal diffusion, in the
latter subdiffusion occurs [38]. If the variance of the spa-
tial distribution diverges and waiting time distribution
(WTD) has a finite mean, we obtain the description of
Lévy flights.

The other promising branch of CTRW models is the one
considering memory, i.e., the dependence between succes-
sive jumps. Different types of dependencies were already
studied: the backward or forward correlations between
spatial jump directions [39] in the case of concentrated
lattice gas for the study of the tracer coefficient [40],
even taking into account the dependencies over several
subsequent jumps [41]. Also, models driven by the nega-
tive feedback in consecutive jumps were built, considering
one-step memory [35,42] and later two-step or even
infinite-step memory [34]. Their potential applications
cover the Le Chatelier–Braun principle of contrariness.
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Memory in waiting times also appeared in some CTRW
models [43–48]. Examples of used dependencies are cor-
relations which solely depend on the sign of consecutive
jumps [43], random walk of waiting times [45,46], exponen-
tial and slowly decaying persistent power-law correlations
[47].

Our work is directly motivated by the application of
CTRW in the description of high-frequency financial data.
The universal properties of all financial price time series
are sometimes referred to as stylized facts [49,50]. There
are two well known stylized facts about autocorrela-
tion of price time series. The first one states that the
time-dependent autocorrelation of price increments (or
logarithmic returns) is negative and quickly decays to
zero [43]. A CTRW model with memory [35] successfully
reproduced this fact. The second stylized fact states that
autocorrelation of the absolute value of price increments
(or absolute values of log returns) is a positive slowly
decaying function. Also, the amplitude in the second case
is usually an order of magnitude higher than in the first
case. It is the reminiscence of the so-called volatility clus-
tering phenomenon [51]. It seems natural to ask if the
CTRW model with memory introduced in [35] adapted
to describe absolute values of price changes can success-
fully reproduce the second mentioned stylized fact. We are
answering this question below.

The paper is organized as follows: in Section 2, we
present the motivation behind our work and define and
solve the proper stochastic process. In Section 3, we obtain
velocity autocorrelation function (VAF) and in Section 4
the comparison with empirical data is made. The intraday-
seasonality is taken into account in Section 5. Finally
in Section 6, we conclude with remarks on the results
presented in this paper.

2 Model

The CTRW trajectory process is a step function (a piece-
wise constant function) that can be interpreted as spatial
jumps preceded by waiting times. In canonical CTRW, all
jumps and waiting times are i.i.d. random variables. The
model that successfully described the short term linear
autocorrelation of the stock market returns was based on
the dependence of two consecutive price changes in the
following form

h(rn|rn−1) = (1− ε)h(rn) + εδ(rn + rn−1), (1)

where h(rn|rn−1) is the probability density of the price
change rn under the condition of the previous price change
value rn−1. This assumption was based on the techni-
cal property of the double auction market named bid-ask
bounce. The CTRW formalism allows calculating linear
autocorrelation function analytically. It is worth to men-
tion that by changing the distribution h on the right-hand
side of (1) we can obtain some nonlinear autocorrela-
tion functions, but only in the limited cases of monotonic
nonlinearity. Obtaining the autocorrelation of absolute
values of returns cannot be achieved this way. To do
so, we construct the directed continuous-time random

walk (DCTRW) focused on the absolute values of spa-
tial jumps. This process is defined in such a way that its
linear autocorrelation is exactly the nonlinear autocorre-
lation of absolute values of returns. As in (1) we consider
one-step memory for consecutive jumps and no depen-
dence between waiting times or between waiting times and
jumps. We take modules of price changes Rn = |rn| and
obtain dependence in the form

H(Rn|Rn−1) = (1− ε)H(Rn) + εδ(Rn −Rn−1), (2)

where H(Rn) and H(Rn|Rn−1) are respectively distri-
bution of jump modules and conditional distribution of
jump modules. Parameter ε describes the strength of the
memory, for ε = 0 we obtain the model without memory.
Considering DCTRW of absolute values of price changes,
Dirac delta describes the same consecutive jumps, not the
opposite ones, as it was the case in (1). As in the previous
case, other types of the nonlinearity can be obtained by
changing the distribution H on the right-hand side of (2).
To sum up, our model can be described by the probabil-
ity density functions of nth jump Rn after waiting time
tn conditioned on all previous Ri and ti:

ρ(Rn, tn|Rn−1, tn−1; . . . ;R1, t1) = H(Rn|Rn−1)ψ(t), (3)

where ψ(t) represents the WTD. Results will be presented
for any WTD and in two specific cases.

To make the process stationary, we cannot use the same
WTD for the first jump as well as for other jumps [52,53].
This is because the previous (preinitial) jump might have
occurred at any time before t = 0. Therefore, we should
define

ψ1(t) =

∫∞
0
dt′ψ(t+ t′)∫∞

0
dt′′
∫∞
0
dt′ψ(t′ + t′′)

, (4)

as the WTD before the first jump. Moreover, for simplicity
of notation it is useful to introduce sojourn probabil-
ity Ψ(t) =

∫∞
t
ψ(t′)dt′. Above probabilities can be easily

expressed in the Laplace domain:

ψ̃(s) = L[ψ(t)],

Ψ̃(s) =
1− ψ̃(s)

s
,

ψ̃1(s) =
1− ψ̃(s)

〈t〉 s
,

Ψ̃1(s) =
1− ψ̃1(s)

s
, (5)

where L[·] denotes Laplace transform and
〈t〉 =

∫∞
0
tψ(t)dt < ∞ is expected (mean) waiting

time. On our path to obtaining nonlinear VAF of the
CTRW by calculating the linear VAF of DCTRW we
need a few intermediate quantities. One of these inter-
mediate dynamic quantities describing the stochastic
process is the stochastic, sharp, n-step propagator
Qn(X,Rn; t|ξ), n = 1, 2, . . . This propagator is defined
as the conditional probability density that the price,
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which was initially (at t = 0) in the origin value (X = 0)
reached by preinitial jump ξ, makes its nth jump by Rn
from X − Rn to X exactly at time t. Q̃n(K,Rn; s|ξ)
is sharp propagator in the Fourier–Laplace domain.
The recurrence relation between two successive sharp
stochastic propagators can be written for any form of
H(Rn|Rn−1) and n > 1, as follows:

Q̃n(K,Rn; s|ξ)

= ψ̃(s)eiKRn

∞∫
−∞

dRn−1H(Rn|Rn−1)Q̃n−1(K,Rn−1; s|ξ).

(6)

The first sharp propagator Q1(X,R1; t|ξ) can be calcu-
lated directly from definition

Q1(X,R1; t|ξ) = Q1(X; t|ξ)δ(X −R1)

= ψ1(t)H(X|ξ)δ(X −R1). (7)

The following sharp propagators can be calculated using
equation (6). After integrating over Rn we obtain the
recurrence relation

Q̃n(K; s|ξ)
ψ̃(s)

= (1− ε)H̃(K)Q̃n−1(K; s|ξ)

+ ε

∞∫
0

dRn−1e
iKRn−1Q̃n−1(K,Rn−1; s|ξ).

(8)

The second intermediate quantity is the soft propagator
P (X, t), defined as the conditional probability density that
the price, which was initially (at t = 0) in the origin value
(X = 0) reached by preinitial jump ξ, at time t is equal to
X. We can write the relation between the soft propagator
P (X, t) and the sharp propagator Q(x, t) (in the Fourier–
Laplace domain) as

P̃ (K; s) = Ψ̃1(s) + Ψ̃(s)Q̃(K; s), (9)

Q̃(K; s) =
∞∑
n=1

Q̃n(K; s). (10)

To obtain explicit formula for the right hand side of
equation (10), in case of one-step memory defined by
equation (2), we use the recurrence relation (8). The
precise description of this procedure can be found in
Appendix A. The result can be simply substituted into
equation (9) and hence we obtain the soft propagator in
the following form

P̃ (K; s) =
1

s
− 1− ψ̃(s)

〈t〉 s2

+
[1− ψ̃(s)]2

〈t〉 s2
S(K; s)

1− (1− ε)ψ̃(s)S(K; s)
, (11)

where

S(K; s) =
∞∑
n=1

(ψ̃(s)ε)n−1H̃(nK). (12)

As a result, the soft propagator in the Fourier–Laplace
domain takes a reasonably simple form; however, it still
contains the function S which is given as an infinite sum.
Fortunately, to compute moments of the process and VAF
we need to know the corresponding derivatives of the soft
propagator at point K = 0, which can be determined
explicitly.

The first and the second moment of the process in the
Fourier–Laplace domain are

m̃1(s) = −i∂P̃ (K; s)

∂K

∣∣∣∣
K=0

=
M1

〈t〉 s2
, (13)

m̃2(s) = −∂
2P̃ (K; s)

∂K2

∣∣∣∣
K=0

=
M2 + (1− ε)(2M2

1 −M2)ψ̃(s)− εM2ψ̃
2(s)

〈t〉 s2(1− ψ̃(s))(1− εψ̃(s))

=
M2(1 + εψ̃(s))

〈t〉 s2(1− εψ̃(s))
+

2(1− ε)ψ̃(s)M2
1

〈t〉 s2(1− ψ̃(s))(1− εψ̃(s))
,

(14)

where Mi is the ith moment of jump modules distribution
H(R). The first moment of the directed process in the
time space rises linearly in time m1(t) = M1

〈t〉 t, exactly like

for the process without memory. It is worth to notice that
it does not depend on ε.

3 Nonlinear velocity autocorrelation function
of CTRW

In the general case, the VAF in the time domain is given
by

C(t) =
1

2
m̈2(t)− ṁ2

1(t). (15)

In the case of the DCTRW process considered in this
paper, it takes the form

C(t) =

(
M2 −M2

1

2 〈t〉

)
L−1

[
1 + εψ̃(s)

1− εψ̃(s)

]

+
M2

1

2 〈t〉
L−1

[
1 + ψ̃(s)

1− ψ̃(s)
− 2

〈t〉 s

]
, (16)

where L−1[·] is the inverse Laplace transform. To investi-
gate the behavior of our nonlinear VAF in the limits t→ 0
and t→∞, we have to check the behavior in limits s→∞
and s→ 0 of the expressions inside inverse Laplace trans-
forms. It is known that for s→∞, ψ̃(s) goes to 0, while

for s → 0 the approximation ψ̃(s) ≈ 1 − 〈t〉 s should be
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used. Therefore, in the limit of long times VAF vanishes
and for short times we obtain the variance of the process
C(t) ≈ M2

2〈t〉δ(t). Normalized VAF Cn(t) has Dirac delta at

t = 0 so Cn(t) = 2〈t〉
M2

C(t).
To compare our model with empirical data we use two

specific WTDs: exponential and double-exponential, with
explicit results for both. First one is a simple distribu-
tion and its characteristics match stylized facts of financial
time series. The second one can be fitted to empirical data
with high accuracy and still allows to obtain analytical
VAF from the model. Exponential WTD with the mean
waiting time equals to 〈t〉 is given as

ψ(t) =
1

〈t〉
exp

(
− t

〈t〉

)
, (17)

and double-exponential WTD with partial mean waiting
times equals to τ1 and τ2 and weighting parameter w is
given as

ψ(t) =
w

τ1
exp

(
− t

τ1

)
+

1− w
τ2

exp

(
− t

τ2

)
. (18)

Mean waiting time of double-exponential WTD is 〈t〉 =
wτ1 + (1− w)τ2.

For the exponential WTD, nonlinear VAF is easily
expressed as

Cn(t) = δ(t) +
2ε(1−M)

〈t〉
exp

(
− (1− ε)t
〈t〉

)
, (19)

where

M =
M2

1

M2
∈ (0; 1). (20)

Although exponential WTD does not describe properly
the empirical WTD, one can easily interpret meaning
of the parameters. Firstly, for t > 0 nonlinear VAF is
positive (unlike the negative linear VAF) and decreases
exponentially. Relaxation time increases and the ampli-
tude reduces with longer mean waiting time. Increasing
parameter ε results in higher relaxation time and ampli-
tude, especially for ε = 0 VAF is non-zero only for t = 0. It
is also noticeable that normalized nonlinear VAF depends
only on a ratio between the first moment squared and
the second moment of jumps modules. The amplitude of
nonlinear VAF decreases with the increase of M .

For the double-exponential WTD, which satisfactorily
fits empirical data, normalized VAF is

Cn(t) = δ(t) +A0e
−v0t +A1e

−v1t +A2e
−v2t,

wi = τ−1i ,

v = ww1 + (1− w)w2,

v0 = (1− w)w1 + ww2,

vi =
1

2

[
w1 + w2 − εv − (−1)i

×
√

(w1 + w2 − εv)2 − 4w1w2(1− ε)
]
,

A0 = 2
M

v0
w(1− w)(w1 − w2)2,

Ai = (−1)i
2ε(1−M)

v1 − v2
[w1w2 − vvi],

i ∈ {1, 2}. (21)

There are three exponential functions in this formula,
except Dirac delta, all with positive amplitudes. The
first one is worth mentioning, as it does not depend on
ε. It implicates that for DCTRW processes linear VAF
(equal to nonlinear VAF for CTRW) can be non-zero
even in the case without memory (ε = 0). That effect
does not occur in linear VAF of the original CTRW. In
the limit when two-exponent WTD goes to exponential
WTD (w → 0 or 1) this element vanishes. Two other
exponential functions depend on ε and describe decay-
ing at different rates. Similarly like for exponential WTD,
increasing ε results in higher VAF. In the case of spatial
changes with zero variance (M → 1), these terms are equal
to zero.

4 Empirical results

To compare our model with empirical data, we use
tick-by-tick transaction data from Polish stock market
(Warsaw Stock Exchange) from years 2011–2012. Pre-
sented results are calculated for KGHM (copper mining
company) – one of the most liquid stocks. We extract
waiting times (periods between transactions) and jumps
(price changes) from this data. Comparing the model with
empirical data requires estimating parameters. We obtain
τ1, τ2, w from fitting two-exponential WTD to empirical
histogram using least squares method. We calculate two
first moments of price changes absolute values M1 and
M2 explicitly from the empirical distribution. Parameter
ε is calculated as one-step autocorrelation of price changes
absolute values. Empirical linear VAF and nonlinear VAF
were calculated using the method described in [35]. We
want to remind that linear VAF obtained from the CTRW
model based on (1) (and its modifications in [34,54]) built
using these parameters fits satisfactorily with empirical
data. This result is presented in Figure 1, as linear VAF
of CTRW (dashed line) with good approximation fits the
empirical point (gray dots). The situation is completely
different in the case of nonlinear VAF. As shown in
Figure 1, theoretical approach does not explain observed
nonlinear VAF (solid line, and black dots). Theoretical
nonlinear VAF decays slower than linear VAF, but
empirical nonlinear VAF decays much slower than both
of them. There can be many reasons explaining obtained
disagreement: daily seasonality, long-term jump modules
dependencies and long-term waiting times dependencies
(see Fig. 2). In the next section, we check if taking into
account the first one (daily seasonality) can significantly
improve the quality of the description of data. Taking
into account the two latter cases require new CTRW
models with memory and go beyond the scope of this
article.
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Fig. 1. Empirical, theoretical and linear, nonlinear VAF of
KGHM price changes (one of the most liquid stock at Warsaw
Stock Exchange) in years 2011–2012. Points are empirical
result (gray for linear VAF and black for nonlinear), lines
represent theoretical results (dashed for linear VAF, solid for
nonlinear VAF (23)). As theoretical linear VAF fits the empiri-
cal counterpart, the nonlinear VAF does not fit empirical data.
Fitted values of the parameters are: M = 0.269, ε = 0.258,
τ1 = 3.63, τ2 = 32.57, w = 0.586, p = 14986, q = 2.25 × 108.

Fig. 2. Normalized step autocorrelation function of waiting
times and the modules of price changes for KGHM in years
2011–2012 in the logarithmic coordinates.

5 Nonstationarity

Varying mean inter-trade time during trading session is
a stylized fact observed on stock prices on every market
[50,55,56]. This intraday pattern, often called the “lunch
effect”, is characterized by low volatility and long inter-
trade times in the middle of the day. On the contrary,
activity on the stock market is higher at the beginning
and the end of a trading session. This effect influences

both linear and nonlinear VAF of the process, as described
in [54], where the general formula for the impact of this
phenomenon is given. Following [54] we describe the daily
pattern with the rational function

θ(t) =
1

a[(t− p)2 + q]
, (22)

where θ(t) can be interpreted as varying mean of the
waiting times distribution during a trading session. Now,
we can obtain an explicit expression for normalized VAF
taking the seasonality into account:

Cn(t) =
2∑
j=0

AjJv
− 1

2
j e−vjτmin

[
erf
(√

vjJ0

)
+erf

(√
vjJk

)]
,

J =
1

2(T − t)

√
πX

t
,

J0 =
t

X

(
t

2
− p
)2

,

Jk =
t

X

(
t

2
− (p− T )

)2

,

τmin =
t2

12 + q

X
t,

X =
T 2

3
− pT + p2 + q, (23)

where T is the length of a day, parameters p and q are
fitted to data and come from the rational form of day
seasonality and erf is the error function. Unfortunately
taking nonstationarity into account only slightly improves
the results, making a difference that is within the line
width in Figure 1 (solid line). This result implies that def-
initely it is not the daily volatility pattern that creates the
disagreement between empirical and theoretical nonlinear
VAF.

6 Conclusions

We proposed a methodology of calculating the general
nonlinear VAF within the CTRW model, by creating
specifically suited DCTRW. The nonlinear VAF of the
CTRW can be obtained as linear VAF of the DCTRW. In
the specific case of CTRW created to describe stock price
in time, we solved DCTRW model with one-step memory
in jumps and obtained the analytical equation for prop-
agator, first two moments and VAF (21). The obtained
nonlinear VAF shows interesting properties: it is positive;
it decays exponentially but slower than the linear VAF;
nonlinear VAF can be non-zero even without any memory
(ε = 0) for non-exponential WTD. Next, we considered
nonstationarity in the form of rational function (22) and
obtained analytical nonlinear VAF (23).

The presented simple model turned out to be unable
to describe empirical data (Fig. 1). This result implies
that simple bid-ask bounce phenomenon is not sufficient
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to explain long memory in financial time series and volatil-
ity clustering. Moreover, taking into account the daily
seasonality of the time series does not change this result.

The CTRW framework with memory in price incre-
ments seems to be a perfect tool to describe stock market
price changes, but as our results suggest a different
approach is necessary. In Figure 2, we present empirical
step autocorrelation functions of waiting times and mod-
ules of price changes. Focusing on the correlation of two
consecutive modules of price changes and two consecu-
tive waiting times may suggest that the memory in price
changes is more important and the dependence in wait-
ing times can be neglected. Looking at the whole plot
suggests exactly the opposite, as the autocorrelation in
waiting times decays much slower than the autocorrelation
of modules of price changes. We suggest that taking into
account the long memory in waiting times would improve
the results, but it is still a great challenge and an open
problem.
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Appendix A: Closed-form of the soft
propagator P̃ (K; s)

In this Appendix, we present the details of derivation of
the soft propagator P̃ (K; s) (11). Firstly, we recursively
expand the integral in relation (8) using equations (6) and
(7). We obtain the recurrence relation, expressing each
n-step sharp propagators in terms of all sharp propagators
with all smaller n.

Q̃n(K; s|ξ)

= ψ̃(s)(1− ε)

n−1∑
j=1

[ψ̃(s)ε]j−1H̃(jK)Q̃n−j(K; s|ξ)


+ [ψ̃(s)ε]n−1ψ̃(s)[(1− ε)H̃(nK) + εeniKξ], n ≥ 2.

(A.1)

The one-step propagator can be calculated directly from
its definition

Q̃1(K; s|ξ) = ψ̃1(s)[(1− ε)H̃(K) + εeiKξ]. (A.2)

As the type of recurrence relation is completely different
than in work [35], we present a different method to solve

this equation. Firstly, we do not need to know exactly
each n-step propagator, our goal is to obtain the gen-
eral propagator given by equation (10). By reordering
and grouping the same step sharp propagators in sum-
mation of all Q̃n(K; s|ξ), one can calculate the general
propagator:

Q̃(K; s|ξ) = ψ̃1(s)

[
(1− ε)S(K; s)+ε

∞∑
n=1

[ψ̃(s)ε]n−1eniKξ

]
+ ψ̃(s)(1− ε)S(K; s)Q̃(K; s|ξ), (A.3)

where we introduce S(K; s) =
∑∞
n=1[ψ̃(s)ε]n−1H̃(nK).

This gives us closed-form of the sharp propagator

Q̃(K; s|ξ)

=
ψ̃1(s)(1− ε)S(K; s) + ψ̃1(s)ε

∑∞
n=1[ψ̃(s)ε]n−1eniKξ

1− ψ̃(s)(1− ε)S(K; s)
.

(A.4)

Now, Q̃(K; s) can be calculated by integrating Q̃(K; s|ξ)
over all possible pre-initial jumps ξ, which come from
distribution H(ξ)

Q̃(K; s) =
ψ̃1(s)S(K; s)

1− (1− ε)ψ̃(s)S(K; s)
. (A.5)

From that we can obtain the soft propagator using
equation (9).

Appendix B: Intraday seasonality

In this Appendix, we explain more precisely how daily sea-
sonality can be considered. According to [54], we assume
that real nonstationary process Y (t) can be expressed as
a stationary process X(f(t)) with its own time. τ = f(t)
is a transformation of real time, that ensures considered
equality between processes X and Y . The model proposed
in this work describes stationary process X, we would like
to see what is autocorrelation CY of nonstationary pro-
cess Y knowing the autocorrelation CX of X. In our case,
it means that following relation must hold:

dt

θ(t)
=

τ

〈t〉
. (B.1)

Then, the autocorrelation of Y is given by

CY (t) =

∫ τk

τmin

WCX(τ)dτ +

∫ τ0

τmin

WCX(τ)dτ,

τ0 =

(
t2

3
− pt+ p2 + q

)
t

X
,

τk =

(
t2

3
− (p− T )t+ (p− T )2 + q

)
t

X
,

W = X

(
2t(T − t)

√
X
τ

t
− q − t2

12

)−1
(B.2)

https://epjb.epj.org/
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and the rest of the variables are defined in main text. To
obtain the final result given by equation (23) we have to
calculate integrals above.
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K. Sznajd-Weron (Springer, Berlin, Heidelberg, 1999),
pp. 247–252

20. L. Hufnagel, D. Brockmann, T. Geisel, Nature 439, 462
(2006)

21. E. Scalas, R. Gorenflo, F. Mainardi, Physica A 284, 376
(2000)

22. F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Physica
A 287, 468 (2000)

23. M. Raberto, E. Scalas, F. Mainardi, Physica A 314, 749
(2002)

24. E. Scalas, R. Gorenflo, F. Mainardi, Phys. Rev. E 69,
011107 (2004)

25. E. Scalas, Physica A 362, 225 (2006)
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