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Abstract. We discuss the various mechanisms involved in the spontaneous shrinkage of circular grain
boundaries in two-dimensional colloidal crystals. We provide experimental evidence that these grain bound-
ary loops shrink owing to three intermittent mechanisms proposed for atomic materials, namely purely
curvature-driven migration, coupled grain boundary migration, and grain boundary sliding. Throughout
shrinkage, the product of the radius and misorientation of the grain boundary loop remains higher than
a fundamental limit resulting from the specific dislocation structure of grain boundary loops, except for
the very last stage where the loop character is lost. Despite its complexity, this process can be effectively
described by a single kinetic coefficient, allowing for a simplified description of grain boundary loop kinetics.

1 Introduction

It is well accepted that grain growth is driven by the
migration and annihilation of grain boundaries (GBs) [1].
In absence of an external driving force, the migration of
GBs is generally attributed to capillary forces induced by
their own curvature [2,3]. However, due to the mismatch
of the two adjacent crystals, GBs possess a dislocation
structure that is affected during their migration and anni-
hilation, via dislocation reactions [4–6]. This additional
complexity may lead to other modes of GB motion,
such as grain rotation or coupling between migration and
rotation [7], the relative contributions of which remain
unclear.

In this respect, circular GBs in two-dimensional mate-
rials have attracted a lot of interest since their fixed
curvature provides a natural driving force for their migra-
tion. In the sole presence of capillary forces, the area
enclosed by such a “GB loop” [8] is expected to decrease
at a constant rate, the reduced mobility M∗ [9–11]. The
latter depends on the misorientation between the inner
and outer crystals in a way that is still unclear since both
an increase [5] and a decrease [12] have been reported
in simulations. GB loops are also convenient to study
the reactions between dislocations, since the latter are
forced to annihilate until a single crystal is left, which has
been investigated fairly recently using simulations [5,13].
Experimentally, the creation and shrinkage of GB loops
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have been achieved in graphene under electron irradiation
at high temperatures [14,15]. However, the time resolution
of the shrinkage process remains low and these methods
do not allow for the control of the misorientation.

A promising route to prepare such GB loops is to use
model systems such as colloidal crystals, which can read-
ily be manipulated using external fields, owing to their
inherent softness [16]. Various optical tweezing methods
have been used to induce local melting [17], or create dis-
locations and GBs in a colloidal crystal [18]. It is also
possible to create GB loops using holographic optical
tweezers [18] or “optical blasting” [19], though control-
ling their size and misorientation remains challenging.
The latter is nevertheless necessary to explore the initial
conditions leading to potentially different modes of GB
migration and shrinkage, which can be directly monitored
using simple video-microscopy. An additional advantage
compared to atomic materials is that shrinkage happens
spontaneously at room temperature in these soft colloidal
crystals.

In this article, we study the different shrinkage mecha-
nisms of GB loops with well-defined sizes and misorienta-
tions, created in two-dimensional colloidal crystals using
optical vortices. The spontaneous shrinkage of these GB
loops is subsequently monitored with single particle reso-
lution using video-microscopy. We find that the shrinkage
can be characterised by a reduced mobility as a single
kinetic coefficient, despite being the result of many dif-
ferent processes. In particular, we show the presence of
curvature-driven migration, coupled GB migration, and
grain rotation by GB sliding in this colloidal crystal with
simple hard sphere interactions. Importantly, the product
of the misorientation and the size of the grain boundary
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Fig. 1. (a) Circular grain before (dashed circle) and after (solid circle) pure curvature-driven shrinkage (no grain rotation).
The black solid lines represent rows of the outer crystal after shrinkage. The magenta lines illustrate the orientation of the
circular grain before (dashed lines) and after shrinkage (solid lines). The continuity of crystal rows is broken during the process.
(b) Illustration of coupled GB migration, where the continuity of crystal rows is ensured by grain rotation towards higher
angles (black arrow). The tangential velocity vt and the normal velocity vn are related by vt = 2 tan(θ/2)vn, where θ is the
misorientation. (c) Illustration of GB sliding where shrinkage is accompanied by grain rotation towards lower angles (black
arrow), breaking the continuity of crystal rows.

loop is always larger than or equal to 3σ/π, where σ is
the lattice spacing, except at the final stage where the
loop character is lost. This value is a geometric limit on
the formation and existence of grain boundary loops in
two-dimensional hexagonal crystals [20].

2 Mechanisms of grain boundary loop
shrinkage

We start by revisiting the three main mechanisms that
may come into play during the shrinkage of a GB
loop, namely pure curvature-driven shrinkage, coupled GB
migration, and GB sliding [5,7]. For the sake of clarity,
they are treated independently here, despite the fact that
they can contribute simultaneously or intermittently.

2.1 Curvature-driven shrinkage

In the case of pure curvature-driven shrinkage, i.e. with-
out grain rotation, the normal velocity of the GB vn is
proportional to its curvature κ according to

vn = MnΓκ, (1)

where Mn is the mobility corresponding to normal motion
and Γ is the GB stiffness [7,21]. The driving force for
GB migration is then the capillary pressure given by Γκ
and Mn can be seen as an inverse friction coefficient per
unit length of GB. For a circular GB loop of radius R,
vn = −dR/dt and κ = 1/R so that

dR

dt
= −MnΓ

R
. (2)

Note that Γ in equation (2) denotes the stiffness averaged
along the loop, which for a perfectly circular GB loop
reduces to the interfacial free energy. Assuming that the
product MnΓ is constant during shrinkage, integration of
equation (2) gives the law of parabolic shrinkage

R2(t) = R2(0)− 2M∗t, (3)

where M∗ = MnΓ is the reduced mobility [11]. As a con-
sequence, the area enclosed by the GB loop A = πR2

decreases at constant rate given by [9]

dA

dt
= −2πM∗. (4)

The reduced mobility M∗ can thus be seen as a rate of
shrinkage per unit of solid angle along the GB contour.
The illustration of pure curvature-driven grain shrinkage
in Figure 1a shows that the GB motion in absence of grain
rotation leads to a discontinuity of crystal rows during
shrinkage.

2.2 Coupled grain boundary migration

Coupled GB migration is a migration mode for which the
continuity of the crystal rows is maintained between the
central grain and the outer crystal. This purely geometri-
cal constraint implies that the tangential velocity and the
normal velocity of the GB are proportional

vt = βvn, (5)

where β is the coupling factor [7]. As illustrated in
Figure 1b, the requirement for the continuity of crystal
rows yields

tan

(
θ

2

)
=

vt
2vn

, (6)

which gives the expression for the coupling factor: β =
2 tan(θ/2) [7]. As for a circular grain vn = −dR/dt and
vt = Rdθ/dt, equation (5) can be rewritten as

R
dθ

dt
= −2 tan

(
θ

2

)
dR

dt
. (7)

Integration of equation (7) results in

R(t) sin

(
θ(t)

2

)
= R(0) sin

(
θ(0)

2

)
, (8)

where t = 0 corresponds to the beginning of coupled
migration. Equation (8) means that the quantity
R sin(θ/2) is conserved during coupled migration. Hence,
as R decreases, the grain always rotates towards higher
misorientations (see Fig. 1b). It has been reported that
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Fig. 2. (a) Starting from a colloidal crystal (left), a GB loop is formed by rotating a circular portion of crystal using an optical
vortex (centre). After the laser beam is turned off, the GB loop spontaneously shrinks (right). Scale bar, 20µm. (b) Image
analysis to extract the characteristics of the GB loop. Misorientation θ as obtained from the local crystalline orientation θ6
indicated by the colourbar (left), detection of the GB loop and radius R (centre), and analysis of the dislocations and their
number ND from a Voronoi tesselation (right).

the parabolic law of shrinkage (Eq. (3)) should hold dur-
ing coupled GB migration, but with a reduced mobility
M∗ different from MnΓ [5,7].

2.3 Grain boundary sliding

Grain rotation without the requirement for continuity of
crystal rows is called GB sliding [5,7], see Figure 1c. In
this case, the tangential velocity is given by

vt = −Mt
Γ′

R
, (9)

where Γ′ = dΓ/dθ and Mt is the mobility associated
with tangential motion [5,7]. As for a circular grain
vt = Rdθ/dt, one has

dθ

dt
= −Mt

Γ′

R2
. (10)

Since one expects Γ′ > 0 at low θ at least, the rotation
occurs towards lower angles [5], which clearly differs from
coupled GB migration (see Fig. 1c).

3 Experimental details

The experiment has been introduced in reference [20], so
only the essentials will be recapped here.

3.1 Colloidal system

The colloidal dispersion consists of 2.82µm diame-
ter melamine-formaldehyde spheres (Microparticles), dis-
persed in an aqueous solvent, and contained in a 200µm
thick quartz cell (Hellma Analytics). As their gravitational
height is very small (about 3% of the particle diame-
ter), the particles sediment to the bottom wall of the cell
within a few minutes to form a monolayer with negligible
out-of-plane fluctuations. Within these conditions, it has
been previously shown that this system behaves as two-
dimensional hard spheres [22,23]. When the area fraction
exceeds 0.73, a polycrystalline monolayer is obtained and
the samples are left to coarsen until the crystalline grains
are larger than the field of view, which effectively appears
as covered by a single crystal (see Fig. 2a, left).

3.2 Creation of grain boundary loops using optical
vortices

In order to create artificial GB loops in our two-
dimensional colloidal crystal, we use the holographic
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Fig. 3. (a) Time-evolution of the radius of GB loops with different initial misorientations and similar initial radii R0 =
10.8 ± 0.5σ. (b) Time-evolution of the misorientation for the same data as in (a). (c) Direct test of the scaling of parabolic
shrinkage (black solid line, see text), where tf is the time for complete shrinkage of each GB loop.

tweezing method described in reference [20]. An optical
vortex [24,25] is generated using a spatial light modulator
and is applied to the pristine crystal. The combined trap-
ping force and angular momentum of the vortex induce
the rotation of a circular portion of the crystal as shown
in Figure 2a (centre), at a typical speed of 0.3 ◦/s. When
the desired misorientation is reached, the beam is blocked
to stop the rotation. The obtained grain is then free from
external forces and starts shrinking (see Fig. 2a, right).

3.3 Identification of the grain boundary loop

From microscopy images similar to Figure 2a (right), the
positions of the particles are detected using standard
Matlab routines [26]. We then quantify the local crys-
talline order of a particle j by using the bond-orientational
order parameter [27], ψj6 =

〈
ei6∆θjk

〉
k
, where the aver-

age runs over the nearest neighbours of j defined by a
Delaunay triangulation and ∆θjk are the corresponding
bond angles. Subsequent coarse-graining of the ψ6-field
over two shells of nearest neighbours was found to improve
the quality of the results [28]. The local crystal orientation
is then given by θ6 = arg(ψ6)/6 and is shown in Figure 2b
(left).

From the values of θ6 we can discriminate the parti-
cles belonging to the central circular grain and the outer
crystal. It is then possible to detect the particles belong-
ing the GB loop, respectively at its inner and outer edges
(see Fig. 2b, centre) [29]. Finally, the 5- and 7-coordinated
particles are detected. The dislocations, which are pairs
of 5- and 7-coordinated defects along the GB loop, can
then be directly visualised using a Voronoi tessellation, as
shown in Figure 2b (right).

This information enables us to extract the relevant
quantities to study the GB loop kinetics, illustrated in
Figure 2b:

– the radius of the GB loop in units of σ, R =
√
NG/π,

where NG is the number of particles belonging to the
grain and the inner GB edge;

– the misorientation of the GB loop, θ = min(|θin
6 −

θout
6 |, 60◦ − |θin

6 − θout
6 |), where θin

6 and θout
6 are

respectively the average orientations of the particles

in the central grain and the outer crystal, excluding
the GB particles;

– the number of dislocations along the GB loop, ND,
and their density ρD = ND/(2πR) in units of σ−1.

4 Results and discussion

4.1 Formation of grain boundary loops

In reference [20], we showed that the deformation induced
by the optical vortex is not always followed by the for-
mation of a GB loop. Indeed, the latter depends on the
values of the GB loop radius and misorientation when the
vortex is switched off, R0 and θ0. In particular, GB loops
can be obtained only if

R0θ0 ≥
3

π
σ, (11)

where σ is the lattice spacing. In these conditions, the
crystal is plastically deformed by the vortex, and a GB
loop remains after it is turned off. Conversely, if R0θ0 <
3σ/π, the initial crystal is elastically restored and no GB
loop is formed.

As shown in reference [20], this fundamental limit is
imposed by the specific dislocation structure of GB loops.
In short, the six symmetric directions of the lattice and the
circular shape of the GB impose that the minimal num-
ber of dislocations contained in a circular GB loop is six.
For the GB loop to exist, the dislocation spacing imposed
by the misorientation, D = σ/θ [30], cannot exceed the
available spacing, equal to one sixth of the loop perime-
ter. Setting D ≤ πR/3 thus leads to Rθ ≥ 3σ/π, which is
equation (11). In the remainder of this article, the initial
conditions are set to satisfy equation (11) so that a GB
loop is always formed after the vortex is turned off.

4.2 Reduced mobility

A GB loop that satisfies equation (11) spontaneously
shrinks after the vortex is turned off (t = 0). We quantify
the kinetics of shrinkage by monitoring the time-evolution
of the radius R of GB loops with fixed initial radius
R0 = 10.8 ± 0.5σ, and varying initial misorientations θ0
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in the range [9◦, 30◦]. As shown in Figure 3a, R decreases
monotonically before it sharply drops to zero. Clearly,
shrinkage takes longer upon increasing the initial misori-
entation. The time-evolution of the misorientation θ in
Figure 3b shows that the misorientation is not always con-
stant, but displays periods of increase and decrease during
the shrinkage. This indicates the presence of grain rota-
tion and thus the occurrence of multiple mechanisms of
shrinkage, which we will discuss later.

Despite this complexity in the shrinkage process, the
parabolic law of shrinkage given in equation (3) still
applies [20]. Indeed, the data in Figure 3c show a good
agreement with the master curve, R2/R2

0 = 1 − t/tf ,
where tf = R2

0/(2M
∗) is the time corresponding to the

end of shrinkage. In particular, the loop area decreases
at constant rate 2πM∗ according to equation (4) for
all misorientations. The validity of the parabolic law
means that shrinkage can be characterised by a single
kinetic coefficient, the reduced mobility M∗. However,
it does not necessarily imply that shrinkage is purely
curvature-driven as other mechanisms can also lead to this
behaviour [5,7]. In fact, the variations of θ in Figure 3b
and the fluctuations around the master curve in Figure 3c,
suggest the presence of various mechanisms, which we
describe hereafter.

4.3 Kinetics of small angle grain boundary loops

In order to identify the mechanisms of grain shrinkage
at stake, we first focus on the case of a GB loop with
a relatively small initial misorientation, a “small angle”
GB loop (SAGB loop). For this analysis, we carefully
checked that we only used GB loops with an ideal dis-
location structure, i.e. a null net Burgers vector [20],
throughout the experiment. As a representative example,
we show the time-evolution of the radius R, the number
of dislocations ND, and the misorientation θ, for a SAGB
loop with R0 = 8.9σ and θ0 = 9.6◦ in Figure 4a. While
the grain keeps shrinking (R goes down), the evolution
of θ exhibits three distinct phases: a decrease at early
time (t < 40s, phase I), an increase at intermediate times
(40s < t < 300s, phase II) and another decrease at late
times (t > 130s, phase III). Strikingly, the behaviour of
ND is also characterised by three phases over the same
time periods: it decreases in phase I, remains constant in
phase II, and decreases again in phase III.

4.3.1 Phase I

In this phase, the grain shrinks while rotating to lower
misorientations, which is reminiscent of curvature-driven
shrinkage combined with GB sliding. Since Γ is usually an
increasing function of θ, GB sliding is a way to decrease
the interfacial free energetic cost [7].

4.3.2 Phase II

Figure 4a shows that in this phase the conservation of
the number of dislocations corresponds to grain rota-
tion towards larger misorientations. This seems counter-
intuitive since it may lead to an increase of Γ [7]. To
explain this behaviour, we recall that the number of

dislocations is given by ND = 2πR/D, where D is the
dislocation spacing. Using the expression D = σ/θ [30],
one obtains

ND =
2πRθ

σ
. (12)

When ND is conserved, it follows from equation (12) that

R(t)θ(t) = C, (13)

where C is a constant. As a consequence, when R
decreases in time, θ has to increase because of the con-
servation of the number of dislocations, consistently with
our observations.

It appears that equation (13) is nothing but equa-
tion (8) in the limit of small misorientations for which
sin(θ/2) ' θ/2. This confirms that phase II can be clearly
identified as coupled GB migration. Indeed, the quantity
R sin(θ/2) is constant during this period, as one can see
from Figure 4b. Since the number of dislocations is con-
served during coupled GB migration, shrinkage is achieved
without dislocation reactions, which corresponds to the
preserved continuity of crystal rows. This therefore leads
to an increase of the dislocation density ρD, as evident
from Figure 4b. Indeed, inspection of the two snapshots
in Figure 4c shows that the GB loop is made of six dislo-
cations that are getting closer to each other as θ becomes
larger.

We emphasize that equation (11) is not only expected
to hold at the onset of GB loop formation, but also
throughout shrinkage, as long as the GB loop is circu-
lar. We thus expect R sin(θ/2) ' Rθ/2 to be greater than
3σ/(2π) ' 0.48σ at all times. This is indeed true in phases
I and II (see Fig. 4b), and we note than this lower bound
is even reached during phase II. This is because the GB
loop contains 6 dislocations (see Figs. 4a and 4c), which
is the minimum for a circular GB [20].

4.3.3 Phase III

In this phase R sin(θ/2) goes below the lower bound of
0.48σ and decays to zero. One can also see from Figure 4a
that ND goes below 6. To explain this apparent paradox,
we recall that equation (11) only holds for dislocations
resulting from a purely rotational deformation of a hexag-
onal crystal. This deformation imposes a circular shape
that in turns leads to six or more dislocations, owing
to the hexagonal symmetry of the crystal. As a conse-
quence, the fact that equation (11) is not respected in
phase III means that the present set of dislocations cannot
be obtained directly from a rotational deformation of the
crystal. Instead, it results from the kinetic pathway taken
during shrinkage. These remaining dislocations are anni-
hilated via a series of dislocation recombinations [5,20],
shown in Figure 4d, until the perfect crystal is recovered.
Note that despite the apparent decrease of θ, phase III
should not be confused with GB sliding since the GB loop
character is in fact lost.
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Fig. 4. (a) Time-evolution of the radius of the grain (R), the number of dislocations along the GB (ND), and the misorientation
(θ) for a SAGB loop. The behaviour can be decomposed into the phases I, II, and III. The initial radius and misorientation
are R0 = 8.9σ and θ0 = 9.6◦. (b) Time-evolution of the dislocation density ρD and R sin(θ/2). The horizontal grey dotted line
corresponds to the lower bound given by equation (11). (c) Voronoi tesselations showing the dislocations at the GB loop together
with the orientation maps at the beginning and at the end of coupled migration (phase II). (d) Final stages of shrinkage when
the GB loop character is lost (phase III). The assembly of dislocations is annihilated via dislocation reactions (arrows). The
data correspond to a SAGB loop with R0 = 10.8σ and θ0 = 9◦ (red curve in Fig. 3) for which phases I, II, and III also apply,
with phase III starting around t ' 400 s.

4.4 Kinetics of large angle grain boundaries

We now look at the case of a “large angle” GB loop
(LAGB loop), reported in Figure 5a, where R0 = 10.8σ
and θ0 = 19.5◦. One can see that R decreases monotoni-
cally in this case as well, but shrinkage takes much longer
than for the SAGB loop, mostly due to the higher mis-
orientation (rather than the initial size difference, which
remains relatively small). The grain orientation θ is con-
stant up to t = 500 s (phase I), and then decreases until
shrinkage is complete (phase II1). Overall, ND decreases
and so is R sin(θ/2), as one can see from Figure 5b.

1 Note that the phases I and II for the LAGB loop do not imply
that the same mechanisms as in phases I and II for the SAGB loop

These observations point towards the following mech-
anism for shrinkage: in phase I, pure curvature-driven
shrinkage dominates since θ is constant. In phase II,
shrinkage is accompanied by GB sliding, which reduces Γ.
This can be seen from the snapshots in Figure 5c, where
both the grain size and misorientation have decreased
over time. Note that in phase II, two plateaus are vis-
ible for R sin(θ/2), which correspond to the presence of
phases of coupled GB migration. They last for about 100 s
each, which is consistent with the duration of coupled GB
migration in the case of the SAGB loop.

occur. These numbers are only used as labels for specific time periods
in each case.
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Fig. 5. (a) Time-evolution of the radius of the grain (R), the number of dislocations along the GB (ND), and the misorientation
(θ) for a LAGB loop. The behaviour can be decomposed into two phases I and II. Periods of coupled GB migration are circled
in black. The initial radius and misorientation are R0 = 10.9σ and θ0 = 19.5◦. (b) Time-evolution of the dislocation density ρD
and R sin(θ/2). The horizontal grey dotted line corresponds to the lower bound given by equation (11). (c) Voronoi tesselations
showing the dislocations at the GB loop together with orientation maps at two different times during shrinkage.

Comparing Figures 5b with 4b show that the density of
dislocations ρD is much higher for the LAGB than for the
SAGB loop. This is also obvious by directly comparing
the distribution of dislocations in Figure 5c for the LAGB
loop and Figure 4c for the SAGB loop. Importantly, ρD
is roughly constant during most of the shrinkage of the
LAGB loop. This indicates that the main mechanism to
reduce the loop size is the annihilation of dislocations,
consistent with the overall drop of ND and the loss of
continuity in the crystal rows. However, these dislocation
reactions would be difficult to observe due to the high
density of dislocations.

Consistently with the lower bound on Rθ given by equa-
tion (11), R sin(θ/2) is above 0.48σ throughout shrinkage
as well. Only close to the end of shrinkage does this quan-
tity go below the threshold, after the last phase of coupled
GB migration. This corresponds to the point where the
GB loop character is lost as ND drops below 6, analogous
to phase III of the SAGB loop.

5 Conclusion

In summary, we have shown that three modes of GB
migration proposed in reference [7] for atomic materi-
als hold in colloidal materials as well. In particular, we
have experimentally demonstrated the presence of purely

curvature-driven migration, coupled GB migration, and
GB sliding during the shrinkage of GB loops in a two-
dimensional colloidal crystal with simple hard sphere
interactions. These three mechanisms contribute intermit-
tently to the shrinkage process. The product Rθ is always
above its predicted lower bound of 3σ/π in the case of
GB loops throughout shrinkage. Only towards the end
this is no longer the case, when the GB loop character
is lost.

The variety of mechanisms at play suggest a description
of the GB loop kinetics in terms of the many associ-
ated coefficients, such as Mn, Mt, and Γ, which are all
functions of the GB loop parameters, R and θ. However,
despite this complexity, we have shown that the descrip-
tion can be simplified by using a single kinetic coefficient,
the reduced mobility M∗. In reference [20], we have exper-
imentally demonstrated that M∗ is a function of the sole
product R0θ0, namely M∗ = (A(R0θ0 − 3σ/π))−1 where
A is a constant. The first important consequence is that
the description of GB loop kinetics may be reduced to
finding the material-specific constant A. The second con-
sequence is that the rate of shrinkage (essentially M∗) is
solely determined by the number of dislocations at the
time of GB loop formation, since R0θ0 is proportional to
ND according to equation (12), at least for low θ. The
fact that M∗ is a sole function of R0θ0 has been shown in
the case of coupled GB migration using simulations [12],
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however, our results suggest that this may be a more
general feature of GB loop kinetics.
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