Skip to main content
Log in

Mitigation strategies with feedback against cascading failures

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Because of the complexity and randomness of cascading failures, it is difficult to eliminate cascading failures and establish a robust network. However, we can sacrifice some unnecessary services to ensure the critical services of the network surviving under the attack. To reduce the impact of cascading failures on network robustness, we introduce and investigate a mitigation strategy with feedback against cascading failures. The mitigation strategy considers the flow dynamic, where the traffic exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path length and the shortest path number between them. The simulations show that the mitigation strategy can effectively suppress the propagation of cascade. Particularly, there is an optimal feedback coefficient where the network is robust and the network traffic loss is minimal. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of mitigation, and under different cascading failure models, it can still suppress the propagation of the cascade well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  2. J. Wang, Y.H. Liu, Y. Jiao et al., Eur. Phys. J. B 67, 95 (2009)

    Article  ADS  Google Scholar 

  3. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  4. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Kinney, R. Albert, Eur. Phys. J. B 46, 101 (2005)

    Article  ADS  Google Scholar 

  6. H.R. Liu, M.R. Dong et al., Chin. Phys. B 24, 293 (2015)

    MathSciNet  Google Scholar 

  7. H. Zhao, Z.Y. Gao, Eur. Phys. J. B 57, 95 (2007)

    Article  ADS  Google Scholar 

  8. W.X. Wang, Y.C. Lai, D. Armbruster, Chaos 21, 033112 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. D.T. Jones, D.S. Knopman, J.L. Gunter et al., Brain 139, 547 (2016)

    Article  Google Scholar 

  10. V. Rampurkar, P. Pentayya, H.A. Mangalvedekar et al., IEEE Trans. Smart Grid 7, 1951 (2016)

    Article  Google Scholar 

  11. E.V.D. Vleuten, V. Lagendijk, Energy Policy 38, 2042 (2010)

    Article  Google Scholar 

  12. M.E.J. Newman, Phys. Rev. E 73, 039906(E) (2006)

    Article  ADS  Google Scholar 

  13. J.W. Wang, L.L. Rong, Saf. Sci. 47, 1332 (2009)

    Article  Google Scholar 

  14. J.W. Wang, Physica A 391, 4004 (2012)

    Article  ADS  Google Scholar 

  15. P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004)

    Article  ADS  Google Scholar 

  16. A.E. Motter, Y.C. Lai, Phys. Rev. E 66, 065102 (2002)

    Article  ADS  Google Scholar 

  17. O. Yağan, Phys. Rev. E 1, 062811 (2015)

    Article  ADS  Google Scholar 

  18. P. Li, B.H. Wang, H. Sun et al., Eur. Phys. J. B 62, 101 (2008)

    Article  ADS  Google Scholar 

  19. X.M. Zhao, Z.Y. Gao, Eur. Phys. J. B 59, 85 (2007)

    Article  ADS  Google Scholar 

  20. J.F. Zheng, Z.Y. Gao et al., Chin. Phys. B 18, 4754 (2009)

    Article  ADS  Google Scholar 

  21. Z.Y. Jiang, M.G. Liang, D.C. Guo, Int. J. Mod. Phys. C 22, 1211 (2011)

    Article  ADS  Google Scholar 

  22. X. Ji, B. Wang, D. Liu et al., Physica A 444, 9 (2016)

    Article  ADS  Google Scholar 

  23. S. Biswas, P. Sen, Phys. Rev. Lett. 115, 155501 (2015)

    Article  ADS  Google Scholar 

  24. W.X. Wang, J. Lü, G. Chen et al., Phys. Rev. E 77, 568 (2008)

    Google Scholar 

  25. D.L. Duan, X.Y. Wu, Acta Phys. Sin. 63, 39 (2014)

    Google Scholar 

  26. A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004)

    Article  ADS  Google Scholar 

  27. B. Wang, B.J. Kim, Europhys. Lett. 78, 48001 (2007)

    Article  ADS  Google Scholar 

  28. K. Hu, T. Hu, Y. Tang, Chin. Phys. B 19, 65 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, LR., Yang, Y., Fan, B. et al. Mitigation strategies with feedback against cascading failures. Eur. Phys. J. B 91, 288 (2018). https://doi.org/10.1140/epjb/e2018-90435-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90435-7

Keywords

Navigation