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Abstract. We propose to adopt a non-isothermal and colloid type cluster–cluster aggregation stochastic
model aimed at comprehending the temperature driven and polymer swelling accompanying volume expan-
sion encountered in microgels. The nonequilibrium nature of the process is captured by describing expansion
characteristics with simplified power laws, indicating the scalability of properties with time and temper-
ature. Additionally, molecular dynamics simulations of the presented mechanism for a chosen biopolymer
have been performed. This can be of interest for experimenters working in the field of nonequilibrium phase
transitions, and fairly prospectively, within the area of thermal phonon-involving technology. In these areas,
scanning the system’s temperature, or sometimes tuning similar dissipation-addressing physical factors,
such as pH, appears to be a fairly pivotal examination case.

1 Introduction

Microgels are defined as viscoelastic systems classified as
intermediates between polymer chains, viz coils, and the
so-called macrogels, such as gelatine or yoghurt [1,2]. They
are often chemically prepared as two-component systems
which consist of mixed solute and solvent phases. The sol-
vent molecules interact with solute particles composed of
polymer chains, and their aggregates, incline to behave
similar to network-like structures [1]. Their complicated
interaction map causes difficulty in achieving a thermo-
dynamic equilibrium. Viscoelastic properties of such a
system undergo some structural-geometric changes as a
function of temperature and time. An example of such
a temperature-dependent transformation is a microgel’s
volume expansion. The temperature conditions are able
to influence, in the course of time, the suitability of a sol-
vent for the solute molecules [3]. Good solvent conditions
cause the polymer chains to expand in space due to solvent
molecules’ absorption thus creating coils. At a low temper-
ature an opposite physicochemical scenario prevails. The
solvent molecules interact poorly with the polymer chains,
allowing for greater self-interaction which can result in
globule formation. Thus, the temperature, playing a role
of a control parameter, establishes a passage between coil
and globule by decisively changing the solvent conditions.
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Such a physicochemical scheme is well-described by the
Flory–Stockmayer theory. It is also well envisaged by the
pivotal role played by the Flory–Huggins solute-solvent
interaction energy parameter [4,5].

From statistical-mechanical point of view the micro-
gels are nonergodic, meaning that the corresponding time
and ensemble averages performed on them take on dif-
ferent characteristics. It is also worth to mention that
by adding certain ingredients to those two-component
microgel systems one may change their basic interaction
map, resulting in a modified aggregation propensity, as is
the case with the introduction of specific monovalent or
divalent cations (Na+; Ca2+) or macroions, e.g. proteins
(gelatin), to the system [1].

At the nanoscale level, a crucial task arises when con-
trolling heat dissipation within the competing globule and
coil structural formations. This results from the slightly
interconnected polymer network vibrations, known as
thermal phonons in the field of solid-state physics [6].
Organizing the microgel as a whole in varying thermal-
bath conditions, mainly the tuning of the temperature
step within the time span, emerges as the task of obtain-
ing functional gelling materials of affordable (nonlinear)
viscoelastic properties [6].

The article is organized in a following way. In Section 2,
we try to unravel a model sol-like (typically, non-
isothermal) system by employing a cluster–cluster analogy
of colloid type (close-packed system) [7,8]. We assume here

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2018-90408-x
http://www.springerlink.com
mailto:nkruszewska@utp.edu.pl


Page 2 of 7 Eur. Phys. J. B (2018) 91: 237

low temperature circumstances (system trapped in a low
energy well). Such a system is supposed to conserve its
total volume (or, for d = 2 dimensional space, area [3]),
and may remain nearly inactive as far as its overall spatial
expansion is concerned (in the presented model we con-
nect this global behavior to a polymer in its globular state
which is a fairly local effect). In Section 3, after escaping
from the low-value energetic depot by means of a con-
trollable temperature raise, we are able to accomplish a
spatial expansion of the system, which we wish to assign to
a polymer in its coiled (loosely-packed) state [4]. Section 4
presents a molecular dynamics computer simulations used
to show an importance of temperature in biopolymer’s
volume change. Section 5 provides a concise discussion
of the micro-structural crossover addressed by the under-
lying study. It also presents an outlook of the approach
applied, emphasizing the fact that the analogy addressed
suits, in a qualitative manner, the nonergodic viscoelastic
framework, particularly in the context of bioreactive gels
and/or living-matter.

2 Model of globular clusters at a low
temperature

The theoretical model, which is predisposed to reveal the
thermal-activated microgel volume’s expansion, assumes
that the role of clusters is played by polymer globules
occluded by the solvent molecules, constituting solvent-
involving domains [8]. The model is proposed for a semi-
concentrated polymer solution in which the solute and
solvent (viz water) coexist at a relatively low temperature
T , so the solvent is unable to cause the polymer globules
to become coils. The reason of this is that the solvent
molecules are not able to penetrate the polymer’s interior
and cause a swelling of the chain. At the other side, such
poorly swollen polymers are capable of diffusing under
dynamic structural (fairly restricted) confinement, both
in terms of their mass-center (random walk) motions and
rotational movements. They can also interact with each
other yielding dimers, oligomers, and some aggregates.
They can form a more or less cellular microstructure with
well-separated but poorly hydrated polymer domains. The
microstructure would, to a first approximation, remind a
sol phase since the domains are relatively immobile and
less reactive, due to their weak reactive encounters.

At a given temperature T , a hydrodynamic radius, Rh,
of the globular (sol-like) polymers’ chains is t-dependent,
due to being prone to self-expansion and proportional
to the effective domain-occupation volume v. It can be
written, according to a simple geometric proportionality
relation, as v(t) ∼ Rh3(t). This postpones the form factor,
e.g. the hydrated polymer domain, provided that we con-
fine ourselves to hydrogels as an often invoked and popular
example of microgels [1].

Local pressure differences are a driving force of the
mass transfer between neighboring domains. The transfer
is sometimes accompanied by the corresponding structural
rearrangements of diffusive nature inside each domain
[7]. Such domains resemble tightly built clusters or even
“soft” grains that might have well defined surface-tension

factors. The system (stochastic) dynamics can be
described by the mass current J(v, t) along the “reaction
coordinate” v. The current form can be adopted from a
model of cluster–cluster aggregation and its isothermal
evolution [7,8], and written as

J(v, t) = − ∂

∂v

(
D(v)φ(v, t)

)
, (1)

where φ(v, t) is the probability density of finding a domain
of volume v at time t, and D(v) is a v-dependent
(or, state-dependent) diffusion function. The diffusion
function indicates quantitatively a colloid type cluster
formation [8], thus, it is provided by D(v) = D0v

2/3,
where D0 is introduced to preserve dimensionality. Note
that, because of the simple geometric proportionality
between the domain’s hydrodynamic radius and its vol-
ume, v2/3 ∝ Rh2, D is constructed to be proportional to
the domain surface, sD, i.e. sD ∝ Rh2.

The right-hand side of the equation (1), after differen-
tiation over v, can be expressed by

J(v, t) = −D′(v)φ(v, t)−D(v)
∂

∂v
φ(v, t), (2)

where D′(v) = 2
3D0v

−1/3. Using once again the geomet-
ric proportionality between domain hydrodynamic radius
and volume, we can state that 2v−1/3 ∼ 2

Rh
. The constant

D0

3 again maintains proper physical units. The quantity
2
Rh

stands for twice the mean curvature of the sol-type
shrunken polymer domain of globular propensity. In each
domain, there is some pressure difference, ∆πD, between
external and internal parts of the domain. It follows the
Kelvin–Laplace law, namely

∆πD = σ
2

Rh
, (3)

in which σ ∝ D0 is the surface tension of the domain cir-
cumference. Bear in mind that additionally σ = σ(T ).
Because the stochastic variable Rh is t-dependent, the
pressure ∆πD (see Eq. (3)) changes over time t within
the sol-like but semi-concentrated (i.e. well packed or rel-
atively dense [7]) structure during its swelling. Moreover,
and still within our approximate reasoning offered (see
discussion below Eq. (2)), the ∆πD is certainly involved
in the drift part of current J(v, t) through the Kelvin–
Laplace law (see Eq. (3)) of micro-capillarity. This holds
because the linear size of polymer-solvent domains of
volume v belong to the submicron scale being of the
magnitude of 100 nm [1]. Thus, it can be written that

J(v, t) = −∆πDφ(v, t)−D(v)
∂

∂v
φ(v, t), (4)

when one assumed that σ = D0

3 applies [9]. The continuity

equation for such a system reads ∂
∂tφ(v, t) + ∂

∂vJ(v, t) = 0.
Thereby, equation (4) should be completed by the so-
called normal boundary conditions of absorbing type
φ(v = 0, t) = φ(v =∞, t) = 0, meaning that no grains’
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magnitude prevails during the system’s evolution [8]. The
simplest selection of the initial condition can be a delta
Dirac distribution [7,9].

Three important measures can be read out from such
an approach of the pressure-drifted diffusion dynamics
of the well packed sol-like and weakly reactive system:
n(t),the average number of the domains; V (t), designating
the total system volume; and RD(t), the average radius of
the dehydrated globular domain.

The first two (n(t) and V (t)) can be evaluated from
the first and the second statistical moment given by an
equation

mi(t) =

∫
0

∞
viφ(v, t)dv, (5)

where i = 0, 1, 2, .... Thus, n(t) = m0(t) and V (t) = m1(t).
The solution of φ(v, t) can be obtained using a variable-
separation method, which has already been employed
elsewhere [8]. The third quantity, RD(t), can be estimated
based on a geometrical relation

V (t) ' n(t)RD
3(t). (6)

Hereby, RD
3(t) corresponds to the average volume of a

single domain. The averaging is performed as an integra-
tion over v, where v ∈ [0,∞], cf. equation (5).

The three key dynamic measures obey scaling laws at
their asymptotic regimes for which t� t0 (where t0 is an
initial moment). First, n(t) conforms to a scaling law in
the form of

n(t) ∼ t− 3
4 . (7)

Second, V (t) is expected to be in accordance with a
constancy condition [10], thus it scales trivially with t0,
i.e.

V (t) = V (t0)→ const. (8)

Third, RD(t) scales as

RD(t) ∼ t 1
4 . (9)

Note that all equations above are proper in three dimen-
sional (Euclidean) space. In a d-dimensional space the
scaling goes as RD(t) ∼ t1/(d+1). Let us emphasize that
equation (6) is consistent with the scaling laws provided,
cf. [7,8]. According to equation (8), the total volume V is
a conserved quantity upon such low-energy thermal con-
ditions or because of being trapped in a low-energy well.
Thus, the sol system is foreseen to be conservative and
non-expanding, resembling in this way some stagnant and
weakly reactive cellular network. In the network, however,
nodes (globular domains) are nearly disjoint objects due
to some non-negligible ∆πD–s distributed uniformly over
the all system under study the values of which become
constant.

Let us now come back to the pressure difference, ∆πD,
and look on its distribution over the total volume V . It was

shown (see Eq. (3)) that based on Kelvin–Laplace law, ∆π
is proportional to 2/Rh. Using once again a geometric pro-
portionality between the Rh and v, the pressure difference
can be provide as ∆πD(v) = 2σv−1/3. The equation, after
common mathematical transformation, can be presented
as v = (2σ/∆πD(v))

3
. Based on equations (5) and (8),

an ensemble-averaged specific quantity can be evaluated
〈2σ/∆πD(v)〉3 = m1(t) = V (t) = V (t0). The average,
due to the statistical uniformity of the system, reads
〈2σ/∆πD(v)〉3 ≡ (2σ)

3〈∆πD(v)〉−3 = V (t0) = const. We
recall that the domain’s surface tension σ is assumed to be
independent of t during the evolution. It is in accordance
with the fact that the domain borders are characterized
by mainly T -dependent surface tensions. Thus, one is able
to refer in full to the constancy of 〈∆πD(v)〉 to yield the
following

〈∆πD(v)〉 =
2σ

[V (to)]
1/3

= const. (10)

An internal mechanical stress, assigned to the polymeric
system at the late-stage limit [11], may distribute uni-
formly in very similar way to the ∆πD–s. For example,
for an ideal (equilibrium) cellular network in a 2D space,
envisaged by a honeycomb microstructure, the mechani-
cal stress would distribute over the triple junction crossing
points, nearly at the angle of 2π/3. Nevertheless, in cer-
tain bubbles-containing (or, soap foam-like) analogous
systems, the circumstance could be different [12].

3 Nonconservative model system beyond
the low thermal energy regime, promoting
a formation of microgels

Let us take for granted that some additional energy is put,
in a controlled way, in the system by increasing T gradu-
ally, say, from some T to a T + 〈∆T 〉, wherein 〈∆T 〉 > 0
is an averaged temperature step, to be discussed in next
paragraphs. The solvent (viz. water) molecules, being
more translationally mobile than the polymer chains, will
explore their degrees of freedom and diffuse, perform-
ing random walks at rate determined by the tempera-
ture and structural conditions. The structural conditions,
attributed to non-bulk states of water molecules, e.g. the
bound and the interfacial ones, suggest a departure from
classic Fickian (diffusional) behavior. Such behaviour is of
high practical relevance to drug release in microgels [13].
The addition of ∆T thus instigates increased penetration
of polymer chains, triggering transition of globule struc-
tures into coils. As coils dynamically occupy more space,
this transition manifests an increased volume of the entire
sol-like system. It is possible to show that V (t) would scale
nontrivially as [14],

V (t) ∼ t 1
2 , (11)

equation (11) demonstrates the nonconservative character
of the formation, thus, in such semi-quantitative terms the
thermal expansion of the volume upon increasing T , very
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characteristic of microgelling systems, has been estab-
lished. According to reference [8] the gelling system is
more entropy-productive than its low T counterpart.
It is physically legitimate, since in the current J(v, t),
after engaging the domain-wise thermal expansion, taken
here as a fair analog to the crossover from globule to
coil [1], one precludes the drift term ∆πDφ(v, t) from
being non-negligible as compared to its diffusive counter-
part −D(v) ∂∂vφ(v, t) in the overall current (4). It then
results, due to ∆πD ≈ 0 in the long time (t � to)
domain and on the local scale, in the pressure average
〈∆πD(v)〉 ∼ 2σ

t1/6
, while keeping exclusively one diffusive

term in the subsequent current, i.e.

J(v, t) = −D(v)
∂

∂v
φ(v, t). (12)

Note that, according to the Kelvin–Laplace law,
equation (3), ∆πD ≈ 0, appearing locally, means that first
the surface tension of the domain (σ) has to be lowered
because of very relaxed more solution-than-solute condi-
tions. In addition, the domains would ultimately flatten,
owing to the very small value of the curvature κD, reflect-
ing qualitatively the nature of the microgelling system,
which diffusively expands [1]. In other words, the domains,
viz. coils, are simply much more swollen, thus the surface
tension within the coil/domain and at its shell approach
the same value. Before, i.e. in conservative conditions, the
situation was quite different – the surface tension of the
globule’s core was bigger than at the globule’s shell.

Mutatis mutandis, the number of polymer-solvent
microdomains present in the microgel [10] scales as

n(t) ∼ t− 1
4 (13)

thus decreasing more gradually in time than for the
volume-conservative system.

From the above it follows that the scaling for the
average radius, RD is unchanged, equation (9). The expo-
nent of 1/4 involved in the scaling relation (9) keeps the
signature of (d+ 1) random close packing, a measure char-
acteristic of a d-dimensional geometrical-physical space
upon confinement. Recall that the d–dependent exponent
is νCP(d) = 1/(d+ 1) [10].

It can also be foreseen that for the thermally sensi-
tive and volume expanding model microgels, i.e. in high
T–conditions, one would expect a relationship between
the average temperature step 〈∆T 〉 and the effective time
span of the corresponding volume expansion of the micro-
gel. An argumentation for this relation follows. First, let
us refer to what has been obtained for the average Laplace
pressure in the system, 〈∆πD(v)〉 ∼ 2σ

t1/6
, which is going to

attain very small values when t� to holds. It is due to the
(free) expansion of the system as a whole, provided that no
external load viz cause would perturb it. It is also consis-
tent with the observation that the ideal or smart microgels
ought to be highly swellable and well stretchable. For high
T , which is the case, such a minimally constrained sys-
tem has to obey the ideal-gas state equation. By this
rationale, one would – as a first approximation – write
down 〈∆πD(v)〉V (t) = nR〈∆T 〉, wherein n is the number

of moles of the solution, causing the polymer system to
swell, and R is the gas constant. The product of M(t) =
〈∆πD(v)〉V (t), according to equation (11) scales with t as
M(t) ∼ t1/3, as does 〈∆T 〉 ≡ 〈∆T (t)〉, namely

〈∆T (t)〉 ∼ t 1
3 . (14)

Realize that relation (14) interconnects time (t) and tem-
perature step (〈∆T (t)〉). Therefore, it may be thought
of constituting an analog of time-temperature superpo-
sition (Williams–Landel–Ferry model) characteristic of
glassy polymeric systems, when tuning their dynamic,
thus viscoelastic behavior, toward the glassy tempera-
ture [11]. (There is one precaution to this interference:
the surface tension σ, involved in (3), has to remain
independent of t at this scale of observation.) It seems
natural, since one has to wait for 〈∆T 〉 to be effective
in order to cause a suitable volume expansion. Notice
that relation (14) is nonlinear in time, presumably, point-
ing indirectly to the nonergodicity of the system. Based
upon equation (14), one is able to think of some ontology
of temperature in systems that suffer from interaction-
geometry, here viscoelasticity containing gel-like obstacles,
to attain a (local) thermodynamic-equilibrium state [15].
Memory effects have seen indicated to support such sce-
nario [16]. It also seems possible to manoeuvre by means
of an external pressure and control the involved system
size (toward domain volume, a local-scale effect) [9]. After
achieving small-size domains in the microgel, as is the case
of smart hydrogels, one would get highly responsive elas-
tic, thus functional, material [17]. On the other hand, one
is urged to lose the notion of microcapillarity when the
linear sizes of the domains, Rh (see, beginning of Sect. 2)
become too small, enforcing in practice a zeroth Laplace
pressure effect in equation (3). The system then will land
ultimately on the purely diffusive gas-like and domain-less
limit, becoming unpredictable.

It is worth mentioning that the power-law behavior of
the time-temperature relation (but with different expo-
nent T (t) ∼ t0.15) has also been noticed in other (exper-
imental) studies considering thermomechanical analysis
of polymers, which measured deformation of a mate-
rial contacted by a mechanical probe. Thermomechanical
analysis penetration tests, used to detect relative states
of cure of a thermoset polyester, show that the pene-
tration temperature under a fixed load increases with
cure and can be used as a measure of the degree of
cure of an elastomer compound (cf. Fig. 30 in [18]).
Thermogravimetry, another experimental method suitable
for detecting the amorphous gel-like phase in terms of
time-temperature measurements, is used convincingly for
uncovered membrane structure examination in [18].

Moreover, power laws in oscillating frequency domains
[19], as well as time-temperature relationships of quali-
tatively similar types, have also been presented by [20]
for agar (bio)gels/hydrogels, cf. Figure 5 therein. For a
review, specifically addressing stereocomplex gels with
microcrystalline domains, cf. an SEM photograph on
Figure 20 therein, one is encouraged to consult [21] in
which case (poly)lactides uncover their versatile time-
temperature entailed dynamics of microgel formation.
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4 Numerical realization of the importance
of temperature in biopolymer swelling
In order to check the importance of temperature in
biopolymer swelling, a molecular dynamics simulation
has been performed, using YASARA Structure Software
(Vienna, Austria) environment [22]. Hyaluronic acid (HA)
has been chosen as a simulated object. Studies on this
biopolymer are very rife due to the importance of its role
in biological systems such as e.q. in articular cartilage
(AC), in which lubrication is highly affected by quantity
and quality of the HA chains within synovial fluid [23]. In
AC the temperature can increase as much as 10−15 K as
a result of external load applied to it [24]. Such a tempera-
ture’s change causes alterations in physicochemical condi-
tions of the system. If the change is directional, certain
thermodynamic cross-effects can lead to Ludwig–Soret
type co-effects [25], altering the corresponding piece of
the microgel. These effects can orient the system toward
a particular order, allowing certain microcrystallinity to
emerge. Another interesting microstructural option may
be offered upon invoking the so-called plum-pudding gel
model, containing microgel inclusions, in which Fickian
vs. non-Fickian effects compete readily [13].

The computer simulation of changes in HA conforma-
tion, in a course of time and temperature increase, has
been constructed as follows. Sixteen formed-in-sol HA
chains have been immersed in a water solution. After-
wards, molecular dynamics simulations were performed
under three temperatures (chosen to be around phys-
iological temperatures): 300, 310 and 320 K. All-atom
molecular dynamics simulations were performed using
AMBER03 force field to evaluate interactions between
HA chains [26]. Time steps were set to 2.5 fs and sim-
ulations allowed to run for 10 ns (what gives 4 × 106

simulation steps). All three simulations were performed
at the same conditions: pH = 7.0 and 0.9% NaCl aque-
ous solution. Initial structures have been formed as highly
folded chains (sol form), while with time (10 ns of simula-
tions) they showed up some level of uncoiling (see Fig. 2).
Time evolutions of the radius of gyration, Rg, have been
presented in Figure 1 (note, that the Rg values have been
rescaled by initial radius Rg0, thus presented values show
a relative factor of expansion). All results are averaged
after 20 realizations. When temperature increases, the rate
of Rg’s change also increases, establishing temperature
as an important factor determining shape and cross-
linking properties of HA network. Fitting functions show
that Rg/Rg0 increases in time according to power law
Rg ∝ tα, where for temperatures: 300 K α = 0.802±0.010
(R2 = 0.9972), 310 K α = 0.602± 0.018 (R2 = 0.988) and
320 K α = 0.541± 0.015 (R2 = 0.991). Thus, it can be
clearly seen that in temperature 320 K the HA globules
swell much faster than in 310 K.

5 Summary

In this study, a kinetic-thermodynamic depiction of a
model sol–gel phase change has been unveiled in terms
of a statistical-thermodynamical concept [7–9,14]. To
achieve the goal, a cluster–cluster aggregation framework,

Fig. 1. Radius of gyration as a function of time of a single HA
chain in three temperature values.

describing a drifted and diffusive nature of the system,
has been taken to semi-quantitatively model the temper-
ature dependent, and polymer swelling assisted, expansion
of the gelling (viz. percolation-like) phase. The modeling
has been performed with the aim of revealing some basic
trends of the hybrid microgel formation, uncovered in [1].
Nevertheless, we are aware that there exist reverse pro-
cesses which are not captured by presented model [27,28].

A certain novelty emerges from the moments in our
statistical approach (see Eq. (5)). They appear to lead
to a precise estimation of the average Laplace’s pres-
sure, 〈∆πD〉. This turns out to be a constant value
(Eq. (10)) for the volume-conservative sol-like phase, and
in turn, decreases slowly as function of time (t), namely
〈∆πD(v)〉 ∼ 2σ/t1/6. In reference [1], one may find some
indications about microgelling systems that tend to equi-
librate over a time span of about a few days.

It is useful to estimate the internal mechanical stress’
values, indicative of the microgel and denoted by 〈σM 〉 (an
ensemble average value too), in terms of the homologous
properties in relation to the Laplace’s pressure, ∆πD. To
a first approximation, it is possible to do under the conjec-
ture 〈σM 〉 ∝ ∆πD. If such a general assertion is accepted,
one obtains

〈σM (t)〉 ∼ t− 1
6 , (15)

which produces a slow descent with time t. In a pre-
vious study on colloid-type aggregation [8], it has been
hypothesized that for evaluating 〈σM 〉–s, based upon anal-
ogy with metallic or ceramic polycrystals [9,14], that
one could take 〈σM (t)〉 ∝ 1/[RD(t)]µ, wherein µ ' 1/2
(the so-called Hall–Petch–Griffith characteristic exponent
[9,14], responsible for toughness and/or brittleness of
the material) for t � to when a final microstructure
emerges. In our case, due to the scaling (9), we have
to choose µ = 2/3, in agreement witch the surface-to-
volume exponent, involved in D(v) in the relation (1).
The exponent meets the characteristics of colloid type
systems. The overall mechanical-stress exponent is given
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Fig. 2. Initial (sol) and final (gel) structure of HA network – result of molecular dynamics computer simulation. At the beginning
HA chains were highly folded into globular form. Then, after some time in temperature 310 K, the system starts uncoiling, thus
creating gel-like structure. HA is composed of carbon colored cyan, hydrogen – white, oxygen – red, nitrogen – dark blue.

by µM (d) = d−1
d

1
d+1 , bearing dimensional signature of the

microgel’s close packing (d+ 1). Therefore, for thermally
expanding and swollen microgels, two physical facts must
be equally important: their colloidal surface-to-volume
characteristics as well as the corresponding close packing
conditions [1]. The equation above seems to reflect this
natural association.

The value of µ = 2/3, introduced in D(v) in
equation (1), would also suggest an interpretation of the
field 〈σM (t)〉 propagation through inter-domain spaces
(“grain boundaries”) in terms of phonons wandering ran-
domly along them. This so-called random-walk exponent
should be here taken as µRW = 1/µ. The mean squared
displacement of the phonon bursts, 〈rMS

2(t)〉, gener-
ated when the mechanical stress propagates thorough the
interspaces could then be estimated as

〈rMS
2(t)〉 ∼ t2/µRW , (16)

thus, resulting in a scaling behavior of∼t4/3, meaning that
the phonons penetrate in an accelerated diffusive way to
the underlying interspaces [6]. This suggests the notion
of self-avoiding random walks of the (thermal) phonons,
under the assumption that the interspaces are just quasi
2D surfaces. In this vein, the exponent µRW is a character-
istic exponent of the self-avoiding random walk (abbrev.
by SARW), suggestive of minimally collisional motions of
the phonons in the planar interspaces. Of course, the expo-
nent µSARW = 4/3 according to Flory–Fisher mean-field
theory [29].

For their practical usefulness in nonergodic systems’1,
the scaling law and the interconnections between their
exponents are presented in Table 1. Their interde-
pendence is apparent when looking at how the sta-
tistical moments scale (Eq. (5)), as well as how a

1 Realize that to a certain extent the nonergodicity is quite tac-
itly drawn in terms of time–temperature or t vs. T superposition
(or, equivalence) principle, characteristic of amorphous glassy and
gelling systems [29]; therefore, one anticipates some difference in
the “cumulative” Laplace’s pressure for both systems of interest,
revealing that the nonconservative system suffers from appreciable
difficulties to equilibrate in a reasonable time span (cf. Eq. (15)).
A forefront’s manifestation of nonergodicity in microgelling systems
can be conjectured when based on the nonlinear relation (14).

Table 1. Model-estimated values for the different expo-
nents, characterizing the (non)conservative system capa-
ble of mimicking a crossover (or, a certain immature
phase change) from the globule to coil state, and reversely
[1], characteristic of the volume-expansive (in particular,
weekly interconnected [16]) microgels.

Nonconser RD n V σM
-vative: νRD

= 1
4 νn = 1

4 νV = 1
2 νσM

= 1
6

microgels Eq. (9) Eq. (13) Eq. (11) Eq. (15)

Conservative: RD n V σM
sol-type νRD

= 1
4 νn = 3

4 νV = 0 νσM
= 0

phase Eq. (9) Eq. (7) Eq. (8) Eq. (10)

simple geometrical proportionality relation applies, cf.
equation (6).

Another study demonstrates to a great degree a firm
working analogy between gelling/percolating [29] and
prone-to-aggregation viscoelastic assemblies [2,16], and
justifies some solid efficiency of the random-walk approx-
imation employed.

Our work tries to build scalable and controllable meth-
ods for manipulating the thermal-bath, or temperature-
scanning under time-temperature sensitive conditions.
It is relevant toward obtaining micro-gelling functional
materials when the mechanism of mechanical properties
originates in the nanoscale microstructural arrangement
of the system [6,11].

The scaling law, expressed by equation (14), and all
interrelated asymptotic time-involving and thermody-
namically accessible algebraic relations, such as those
of micro-elastic and non-conservative propensities, cf.
equation (15), can establish a processing avenue for food
gels, such as yoghurts, evolving gradually with in-time
raised temperature (virtually, structure-spoiling) step.
Based on equations (14) and (15), one may entirely
control the process of within-gel slow stress relaxation
(Eq. (15)) upon controlling the temperature increase,
cf. equation (14) such that the product of them, would

https://epjb.epj.org/
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asymptotically approach a (reasonably) minimal value.
This would imply that such a controllable and stepwise
temperature raise can by no means make the internal
mechanical stress field behave uncontrollably, since the
minimal-value argument is assumed to apply further on.
This same argumentation can presumably be addressed
qualitatively to thermoresponsive biopolymers, and in
principle, to living cellular tissue [30]. Put another way,
if the above addressed minimal-value criterion is not
distinctly overridden, there seemingly appears no destruc-
tion, nor even a denaturation of the proteinous smart
(functional), specifically yoghurt-type biomaterial phase,
under certain gradual thermal agitation [1,17].

Let us notice that dynamic and network-involving sce-
narios of microgel types appear inevitably at least from
two areas of the approach employed. First, in the biophys-
ical area of ultralow friction and facilitated lubrication of
articular cartilage(s), see [31], wherein the network-like
constructs of HA respond synergistically to the external
load’s action. Second, when within a cell the (anomalously
bioreactive) metabolic pathway spreads out over its com-
plex viscoelastic interior in intimately networking, and
fairly dynamically organized manners, see [32].

To preview how the theoretical considerations corre-
spond to a model microgel systems, molecular dynamics
simulations have been performed. Presented results show
that a rate of swelling of the hyaluronic-acid globules sig-
nificantly increase together with temperature. Radius of
gyration, in all simulated temperatures, increases in time
according to the power law Rg ∝ tα with α < 1.

The structure-property paradigm in organic-inorganic
nanomaterials and dimethacrylate POSS type networks
has been disclosed via anomalous viscoelastic properties
of time-temperature characteristics in [33] (see Scheme 3
and Figs. 7–9 and Eq. (1) therein).
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