
Eur. Phys. J. B (2018) 91: 186
https://doi.org/10.1140/epjb/e2018-90301-8 THE EUROPEAN

PHYSICAL JOURNAL B
Regular Article

Sum-rules of the response potential in the strongly-interacting
limit of DFT?

Sara Giarrusso, Paola Gori-Giorgi, and Klaas J.H. Giesbertza

Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Sciences, Vrije
Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands

Received 30 April 2018 / Received in final form 11 June 2018
Published online 3 August 2018
c© The Author(s) 2018. This article is published with open access at Springerlink.com

Abstract. The response part of the exchange-correlation potential of Kohn–Sham density functional theory
plays a very important role, for example for the calculation of accurate band gaps and excitation energies.
Here we analyze this part of the potential in the limit of infinite interaction in density functional theory,
showing that in the one-dimensional case it satisfies a very simple sum rule.

1 Introduction

The vast majority of electronic structure calculations is
performed nowadays with Kohn–Sham (KS) density func-
tional theory (DFT), which is, in principle, an exact
reformulation of the many-electron Schrödinger equation.
In practice, KS DFT needs to rely on approximations
for the exchange-correlation (xc) functional Exc[ρ] and
its functional derivative with respect to the density ρ(r),
the xc potential vxc(r). Finding accurate and versatile xc
functionals poses the challenge of transforming a one-body
quantity (the density) into the effects of the many-body
Coulomb interaction beyond mean field. Most approxima-
tions in DFT are based on the results for a uniform and
slowly-varying density, for which it is possible to connect
the density to the many-body interactions. In recent years,
a particular asymptotic case for the exact xc functional,
namely its semiclassical limit for a given fixed density
[1–3], also known as the strictly-correlated electron (SCE)
limit [4–7], has emerged as another case in which it is
possible to see how the density is mathematically trans-
formed into an electronic interaction [8–10]. The study
of this limit has inspired new approximations, based on
the spherically averaged electron density [11–13]. In con-
trast with the more common LDA or GGA models for the
xc hole, these approximations are fully non-local density
functionals.

The investigation of the exact properties and fea-
tures of vxc(r) has always played an important role in
understanding and building approximations [14–30]. In
this work we focus on the xc potential, vxc(r), in the
SCE limit, and particularly on its response part, which
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has recently revealed several interesting features [31].
The response part of the xc potential has been defined
[14,18–20] using the formalism of conditional amplitudes
[32–36], and answers the question: [16,20,37] “How sen-
sitive is the pair-correlation function on average to local
changes in the density?”

This piece of the xc potential has been shown to be criti-
cal for the correct description of virtual KS orbitals’ levels,
needed for the calculation of molecular excitation energies
in TDDFT [38,39], as well as for the proper descrip-
tion of electron localization in a dissociating heteronuclear
molecule [19–22,30,37,40] and for the construction of the
Levy–Zahariev potential [41].

Here we show that, in cases in which the SCE limit can
be solved exactly (one-dimensional and spherically sym-
metric systems), its response potential satisfies a simple
sum rule, see equations (29), (38) and (44).

2 Strictly-correlated electrons formalism
in a nutshell

Consider the λ-dependent Hohenberg–Kohn functional
within the constrained-search definition [42]

Fλ[ρ] = min
Ψ→ρ
〈Ψ |T̂ + λV̂ee|Ψ〉, (1)

where T̂ is the kinetic energy electronic operator, V̂ee is
the electron–electron interaction operator, Ψ → ρ denotes
all the fermionic wavefunctions yielding the density ρ(r),
and λ is a coupling constant. The limit λ → ∞ of (1)
is formally equivalent to a semiclassical limit (~ → 0) at
fixed one-electron density [1–3] and it is given by

Fλ→∞[ρ] = λV SCE
ee [ρ] +O

(√
λ
)
, (2)
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where the SCE functional V SCE
ee [ρ] can be written in terms

of co-motion functions fi(r),

V SCE
ee [ρ] =

1

2

∫
dr ρ(r)

N−1∑
i=1

w(r− fi(r)), (3)

with w(r) ≡ 1/|r| all along the paper. The functions fi(r)
realise the perfect correlation between the N electrons,
providing the positions of N − 1 electrons given the posi-
tion r of the first one [4,5]. They are highly non-local
functionals of the density satisfying the equation

ρ
(
fi(r)

)
dfi(r) = ρ(r) dr (i = 1, . . . , N), (4)

which ensures that the probability of finding one electron
at position r in the volume element dr be the same of
finding electron i at position fi(r) in the volume element
dfi(r). They also satisfy cyclic group relations

f0(r) ≡ r,

f1(r) ≡ f(r),

f2(r) ≡ f
(
f(r)

)
,

...

fN−1(r) ≡ f
(
f(. . . f(r) . . .)

)︸ ︷︷ ︸
N−1 times

,

fN (r) ≡ f
(
f(. . . f(r) . . .)

)︸ ︷︷ ︸
N times

= r.

(5)

The functional derivative of the SCE functional,

vSCE
Hxc (r) =

δV SCE
ee [ρ]
δρ(r) , satisfies the following force equation

∇vSCE
Hxc (r) =

N−1∑
i=1

(∇w)
(
r− fi(r)

)
, (6)

which provides a powerful shortcut to compute vSCE
Hxc (r)

[8–10]. As usual, the functional derivative vSCE
Hxc (r) is

defined up to an arbitrary constant from (6), which
is usually fixed, for finite systems, by the condition
vSCE

Hxc (|r| → 0).

3 Exchange-correlation response potential

The exchange-correlation functional can be written as

Exc[ρ] =
1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)

gxc(r, r′)

|r− r′|
, (7)

where the coupling-constant-averaged pair correlation
function gxc(r, r′)

gxc(r, r′) =

∫ 1

0

dλ gλxc(r, r′), (8)

is obtained by averaging the gλxc(r, r′) obtained from the
minimizing wavefunction Ψλ in (1),

gλxc(r, r′) =
Pλ2 (r, r′)

ρ(r)ρ(r′)
− 1, (9)

with

Pλ2 (r, r′) = N(N − 1)

∫
|Ψλ(r, r′, . . . )|2dr3 · · · drN . (10)

The functional derivative of (7) has then two terms

vxc(r) =
δExc[ρ]

δρ(r)
= vxc,hole(r) + vresp(r), (11)

where

vxc,hole(r) =

∫
dr′ ρ(r′)

gxc(r, r′)

|r− r′|
, (12)

and

vresp(r) =
1

2

∫
dr′
∫

dr′′
ρ(r′)ρ(r′′)

|r′ − r′′|
δgxc(r′, r′′)

δρ(r)
. (13)

A different definition of response potential, which results
from taking the functional derivative of the xc energy
expressed as a sum of kinetic and Coulomb interaction
terms, is also documented in the literature [16,20,40]

vresp(r) = vresp
c,kin(r) + vresp

xc,hole(r), (14)

where vc,kin(r) is a kinetic correlation energy density, such
that

∫
dr vc,kin(r)ρ(r) = T [ρ]−Ts[ρ], and its response part

is defined as

vresp
c,kin(r) =

∫
dr′

δvc,kin(r′)

δρ(r)
ρ(r′) (15)

and where

vresp
xc,hole(r) =

1

2

∫
dr′
∫

dr′′
ρ(r′)ρ(r′′)

|r′ − r′′|
δgxc(r′, r′′)

δρ(r)
, (16)

with gxc = gλ=1
xc . For an extensive overview of the ori-

gin and implications of the two definitions, the reader is
referred to reference [31].

Similarly, we can write the SCE xc energy functional as

ESCE
xc [ρ] =

1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)

g∞xc(r, r′)

|r− r′|
, (17)

where it should be noted that, since the kinetic component
in the strongly-interacting limit is subleading,

g∞xc(r, r′) ∼ 1

λ

∫ λ

0

dλ′ gλ
′

xc(r, r′) λ→∞ (18)
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and the expressions of the SCE xc energy in terms of
coupling-constant averaged or kinetic and Coulomb inter-
action quantities coincide (again, see Ref. [31] for an
in-depth discussion). Thus, the distinction between the
two possible definitions of the response part disappears,
leading to a univocal definition of the response potential
in this limit as

vSCE
resp (r) =

1

2

∫
dr

∫
dr′

ρ(r′)ρ(r′′)

|r′ − r′′|
δg∞xc(r′, r′′)

δρ(r)
. (19)

Finally, in reference [31] it has been shown that
equation (19) can be cast into the much more handy
expression

vSCE
resp (r) = vSCE

Hxc (r)−
N−1∑
i=1

w
(
r− fi(r)

)
. (20)

From this equation it is clear that vSCE
resp inherits the

asymptotic value of vSCE
Hxc .

4 Sum-rule of the SCE response potential

We can use (6) and (20) to derive the following expression
for the gradient of the SCE response potential

∇vSCE
resp (r) =

N−1∑
i=1

(∇w)
(
r− fi(r)

)
−
N−1∑
i=1

(∇w)
(
r− fi(r)

)(
1−∇fi(r)

)
=

N−1∑
i=1

(∇w)
(
r− fi(r)

)
·∇fi(r), (21)

where the dot product is taken over the components of
the co-motion function. To clarify, let us work out the
expression per component in Cartesian coordinates

∂µv
SCE
resp (r) = −

D∑
ν=1

N−1∑
i=1

rν − fi,ν(r)

|r− fi(r)|3
∂µfi,ν(r). (22)

For the case D = 1, the response potential can now
directly be calculated as an integral. In the following sec-
tions we are going to prove the exact behaviour of the
integral of the SCE response potential corresponding to
an N -electron 1D density and the one corresponding to a
spherical two-electron density. These are the two cases in
which the co-motion functions have an analytic expression
in terms of the density [4,5,7,43].

4.1 Sum-rule of the SCE response potential for a 1D
density

The sum-rule of the SCE response function in 1D (for
Coulomb interaction) relates the integral over the response
function to the number of electrons. To illustrate the idea,

we will first consider the simplest situation: a symmetric
2-electron density. Next we release the symmetry con-
straint and then generalise to an arbitrary amount of
particles. But first, we need an explicit expression for the
co-motion functions [4,43].

Let us define the cumulant function, Ne(x), for a 1D
density

Ne(x) =

∫ x

−∞
dy ρ(y). (23)

We see that the cumulant evaluated at infinity yields the
number of electrons, Ne(x → ∞) = N . Since Ne(x) is
obviously a monotone function, its inverse N−1

e (ν) can be
defined on the domain (0, N). We also define the distances,
ai, such that the cumulant evaluated in these points give
an integer number of electrons, Ne(ai) = i.

By requiring that the co-motion functions fulfill (4) for
a 1D density, one finds [4,43]

fi(x) =

{
N−1
e

(
Ne(x) + i

)
for x < āi

N−1
e

(
Ne(x) + i−N

)
for x > āi ,

(24)

where āi = aN−i = N−1
e (N − i). From this explicit form

of the co-motion functions, it is clear that

∫ fi(x)

x

dy ρ(y) = i. (25)

This equation means that the position fi is exactly i elec-
tron(s) to the right. This picture even holds if there are
less than i electrons to the right, by regarding the sys-
tem to be periodic, so that particles disappearing at +∞
reappear at −∞.

4.1.1 Symmetric two-electron density in 1D

In the case of a symmetric 1D density with only two elec-
trons, we see that a1 = 0 and the SCE response potential
can be expressed as

vSCE
resp (x) =


∫ x

−∞
dy

f ′(y)(
y − f(y)

)2 (x ≤ 0)∫ ∞
x

dy
f ′(y)(

y − f(y)
)2 (x ≥ 0),

(26)

where we used that the potential can be obtained by
integrating from either side, as the response potential is
symmetric.

Let us only consider the negative side of the SCE
response potential. By interchanging the order of inte-
gration, we find for the integral over the response
function∫ 0

−∞
dx vSCE

resp (x) = −
∫ 0

−∞
dy

yf ′(y)(
y − f(y)

)2 . (27a)
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We can also make a change of variables u = −f(y), keep-
ing in mind that, due to the property in (5), f−1(x) = f(x)∫ 0

−∞
dx vSCE

resp (x) =

∫ 0

−∞
du

f(u)(
f(u)− u

)2 . (27b)

We can combine these two expressions to write the integral
over the SCE response function as∫ 0

−∞
dx vSCE

resp (x) = −1

2

∫ 0

−∞
du

yf ′(y)− f(y)(
y − f(y)

)2 =
1

2
. (28)

As the SCE response potential is a symmetric function,
we find that the integral over the real line gives∫ ∞

−∞
dx vSCE

resp (x) = 1. (29)

4.1.2 General two-electron density in 1D

In the case of a non-symmetric density we now have almost
the same expression for the SCE response potential as
in (26), except that we need to cut it at a1 = N−1

e (1)
instead of zero

vSCE
resp (x) =


∫ x

−∞
dy

f ′(y)(
y − f(y)

)2 (x ≤ a1)∫ ∞
x

dy
f ′(y)(

y − f(y)
)2 (x ≥ a1),

(30)

where we used again that it does not matter from which
side we do the integration. Though physically reasonable,
we lack the symmetry argument and have provided an
explicit derivation in Appendix A.

Now let us first consider the integral over (−∞, a1).
Again by changing the order of integration, we find∫ a1

−∞
dx vSCE

resp (x) = a1v(a1)−
∫ a1

−∞
dy

yf ′(y)(
y − f(y)

)2 . (31a)

The integral over (a1,∞) yields∫ ∞
a1

dx vSCE
resp (x) =

∫ ∞
a1

dy
yf ′(y)(

y − f(y)
)2 − a1v(a1), (31b)

so the full integral over the response function becomes∫ ∞
−∞

dx vSCE
resp (x) =

(∫ ∞
a1

dy −
∫ a1

−∞
dy

)
yf ′(y)(

y − f(y)
)2 . (32a)

Now making the transformation u = f(y), we obtain the
following alternative expression∫ ∞
−∞

dx vSCE
resp (x) =

(∫ a1

−∞
du −

∫ ∞
a1

du

)
f(u)(

f(u)− u
)2 . (32b)

If we now take the average over (32a) and (32b), we find
again that the full integral yields∫ ∞
−∞

dx vSCE
resp (x) =

1

2

(∫ ∞
a1

dy−
∫ a1

−∞
dy

)
yf ′(y)− f(y)(
y − f(y)

)2 = 1.

(33)

4.1.3 Arbitrary amount of electrons in 1D

As the number of electrons exceeds two, we deal with a
set of co-motion functions. As we do not have f = f−1

anymore, we need to find the inverses of each co-motion
functions in (24). These are

f−1
i (x) =

{
N−1
e

(
Ne(x)− i

)
for x < ai

N−1
e

(
Ne(x)− i+N

)
for x > ai ,

(34)

where we see that, as expected, they are also co-motion
functions, f−1

i = fN−i. Now let us consider the general
SCE response potential in 1D

vSCE
resp (x) =

N−1∑
i=1

(
θ(āi − x)

∫ x

−∞
dy + θ(x− āi)

∫ ∞
x

dy

)
× f ′i(y)(

y − fi(y)
)2 , (35)

where the expression for x > āi is again justified by (A.2)
for each fi.

By interchanging the integration again, the integral over
the SCE response potential can be expressed as

∫ ∞
−∞

dx vSCE
resp (x) =

N−1∑
i=1

(∫ ∞
āi

dy −
∫ āi

−∞
dy

)
yf ′i(y)(

y − fi(y)
)2 .

(36)

Making the variable transformation u = fi(y), we find

∫ ∞
−∞

dx vSCE
resp (x) =

N−1∑
i=1

(∫ ai

−∞
du −

∫ ∞
ai

du

)
f−1
i (u)(

f−1
i (u)− u

)2
=
N−1∑
i=1

(∫ āN−i

−∞
du −

∫ ∞
āN−i

du

)
fN−i(u)(

fN−i(u)− u
)2 .
(37)

As the summation can be done in any order, we can
combine it with the previous expression to find∫ ∞
−∞

dx vSCE
resp (x) =

1

2

N−1∑
i=1

(∫ ∞
āi

dy −
∫ āi

−∞
dy

)
yf ′i(y)− fi(y)(
y − fi(y)

)2
= N − 1, (38)

which proves the interesting property that the integral
over the SCE response potential for an N -electron 1D
density (and Coulomb interaction) gives N − 1.
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4.2 Sum-rule of the SCE response potential for
spherical two-electron densities

In the case of a 3D spherical density, the spherical volume
element now needs to be included in the cumulant

Ne(r) =

∫ r

0

dx 4πx2ρ(x). (39)

Although, an ansatz has been proposed for the radial part
of the co-motion functions for any arbitrary amount of
electrons [5], this ansatz has been proven to be exact only
for N = 2. For N > 2 counterexamples have been found
where these co-motion functions are not truly optimal [44]
but they do still satisfy (6). As we need an explicit form
of the interaction in terms of the radial coordinates, we
will limit ourselves to the two-electron case. The radial
co-motion function can be worked out as [5]

f(r) = N−1
e

(
2−Ne(r)

)
. (40)

The differential equation for the response potential (21)
in the spherical two-electron case is readily worked out as

d

dr
vSCE

resp (r) =
f ′(r)

(r + f(r))2
, (41)

where |r− f(r)| = r+ f(r), since the electrons need to be
situated opposite to each other with respect to the ori-
gin to minimise their repulsion. Using the standard gauge
again, we have

vSCE
resp (s) = −

∫ ∞
s

dr
d

dr
vSCE

resp (r). (42)

We now evaluate the following integral over the response
potential∫ ∞

0

ds vSCE
resp (s) = −

∫ ∞
0

dr
rf ′(r)

(r + f(r))2
. (43a)

Finally, as seen in the 1D case, via the usual transforma-
tion u = f(r), we write equivalently the last expression in
the above equations as∫ ∞

0

ds vSCE
resp (s) =

∫ ∞
0

du
f(u)

(u+ f(u))2
. (43b)

By averaging between the two, one obtains that the
integral over the positive real line of the SCE response
potential for a spherical two-electron density gives∫ ∞

0

dr vSCE
resp (r) =

1

2

∫ ∞
0

du
f(u)− uf ′(u)

(u+ f(u))2
=

1

2
. (44)

5 Concluding remarks

We have analyzed the SCE response potential and shown
that it satisfies a simple sum rule in the one-dimensional
and in the N = 2 spherically symmetric case. This latter
case might be a special one, as it is mathematically equiv-
alent to a 1D case, thus requiring further investigation for

a generalisation to 3D systems. Additional investigations
are also required to see whether simple sum-rules can be
established for the physical interacting system, either with
or without the kinetic part of the response potential.

The response part of the exchange-correlation poten-
tial is exactly the part that is less well approximated
by standard functionals, which usually provide a decent
approximation for the xc hole part of (12). Its exact prop-
erties in the extremely correlated scenario provided by the
SCE potential may help on building new approximations
to this term.
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Appendix A: Proof of equal asymptotics

Here we show explicitly that vSCE
resp (−∞) = vSCE

resp (+∞) for
N = 2. To do this, we will work in the cumulant coor-
dinate. To this purpose let us work out the following
identities

dNe(x) = ρ(x) dx, (A.1a)

dN−1
e (ν)

dν
=

1

ρ
(
N−1
e (ν)

) . (A.1b)

Now we work out the response function at x = +∞ by
performing the full integral

vSCE
resp (∞) =

∫ a1

−∞
dy

f ′(y)(
y − f(y)

)2 − ∫ ∞
a1

dy
f ′(y)(

y − f(y)
)2

=

∫ 1

0

dν
1/ρ

(
N−1

e (ν + 1)
)(

N−1
e (ν)−N−1

e (ν + 1)
)2

−
∫ 2

1

dν
1/ρ

(
N−1

e (ν − 1)
)(

N−1
e (ν)−N−1

e (ν − 1)
)2

=

∫ 1

0

dν
1(

N−1
e (ν)−N−1

e (ν + 1)
)2

×
(

1

ρ
(
N−1

e (ν + 1)
) − 1

ρ
(
N−1

e (ν)
))

=

[
1

N−1
e (ν)−N−1

e (ν + 1)

]1
0

= 0. (A.2)
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This explicit demonstration trivially generalises to general
N by including a summation over the contributions from
each particle.
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28. A. Beńıtez, C.R. Proetto, Phys. Rev. A 94, 052506
(2016)

29. I.G. Ryabinkin, V. Kohut, R. Cuevas-Saavedra, P.W.
Ayers, V.N. Staroverov, J. Chem. Phys. 145, 037101
(2016)

30. M.J.P. Hodgson, E. Kraisler, A. Schild, E.K.U. Gross, J.
Phys. Chem. Lett. 8, 5974 (2017)

31. S. Giarrusso, S. Vuckovic, P. Gori-Giorgi, Response
potential in the strong-interaction limit of dft: Analy-
sis and comparison with the coupling-constant average,
arXiv:1804.09001 (2018)

32. G. Hunter, Int. J. Quant. Chem. 9, 237 (1975)
33. G. Hunter, Int. J. Quant. Chem. 9, 311 (1975)
34. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745

(1984)
35. A. Abedi, N.T. Maitra, E. KU Gross, Phys. Rev. Lett.

105, 123002 (2010)
36. A. Schild, E. Gross, Phys. rev. lett. 118, 163202 (2017)
37. R. van Leeuwen, O. Gritsenko, E.J. Baerends, Z. Phys. D

33, 229 (1995)
38. R.V. Meer, O. Gritsenko, E. Baerends, J. Chem. Theory

Comput. 10, 4432 (2014)
39. O.V. Gritsenko, L.M. Mentel, E.J. Baerends, J. Chem.

Phys. 144, 204114 (2016)
40. O.V. Gritsenko, E.J. Baerends, Phys. Rev. A 54, 1957

(1996)
41. S. Vuckovic, M. Levy, P. Gori-Giorgi, J. Chem. Phys. 147,

214107 (2017)

42. M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979)

43. M. Colombo, L. De Pascale, S. Di Marino, Canad. J.
Math. 67, 350 (2015)

44. M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, K.J.
Giesbertz, P. Gori-Giorgi, The strictly-correlated electron
functional for spherically symmetric systems revisited.
arXiv:1702.05022 (2017)

https://epjb.epj.org/
https://arxiv.org/pdf/1706.02199
https://arxiv.org/pdf/1706.05676
https://arxiv.org/pdf/1804.09001
https://arxiv.org/pdf/1702.05022

	Sum-rules of the response potential in the strongly-interacting limit of DFT
	1 Introduction
	2 Strictly-correlated electrons formalismin a nutshell
	3 Exchange-correlation response potential
	4 Sum-rule of the SCE response potential
	4.1 Sum-rule of the SCE response potential for a 1D density
	4.1.1 Symmetric two-electron density in 1D
	4.1.2 General two-electron density in 1D
	4.1.3 Arbitrary amount of electrons in 1D

	4.2 Sum-rule of the SCE response potential for spherical two-electron densities

	5 Concluding remarks

	Author contribution statement
	Appendix A Proof of equal asymptotics

	References

