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Abstract. Machine learning has been successfully applied to the prediction of chemical properties of small
organic molecules such as energies or polarizabilities. Compared to these properties, the electronic excitation
energies pose a much more challenging learning problem. Here, we examine the applicability of two existing
machine learning methodologies to the prediction of excitation energies from time-dependent density func-
tional theory. To this end, we systematically study the performance of various 2- and 3-body descriptors
as well as the deep neural network SchNet to predict extensive as well as intensive properties such as the
transition energies from the ground state to the first and second excited state. As perhaps expected current
state-of-the-art machine learning techniques are more suited to predict extensive as opposed to intensive
quantities. We speculate on the need to develop global descriptors that can describe both extensive and
intensive properties on equal footing.

1 Introduction

Studying the valence electronic spectra of small molecules
can yield insights into the properties and discovery of
solar cell materials [1] and organic diodes [2]. Attrac-
tive candidates for computing such properties are time-
dependent DFT or wavefunction-based methods. One
popular method is to use linear response time-dependent
density functional theory (LR-TDDFT) within the adi-
abatic approximation [3]. Although less computationally
expensive than corresponding coupled-cluster approaches,
computing the spectra via LR-TDDFT is still a demand-
ing task, in particular across chemical compound space,
where the properties of a diverse data set of compounds
need to be obtained in a fast and reliable manner.

Recently, machine learning has been successfully
applied to the fast and accurate prediction of molec-
ular properties across chemical compound space [4–10]
and molecular dynamics simulations [11–15] as well as
for studying properties of quantum-mechanical densi-
ties [16,17]. An indispensable ingredient to most machine
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learning models are molecular descriptors, which are con-
structed to provide an invariant, unique and efficient rep-
resentation as input to machine learning models [18–24].
A popular molecular descriptor is the bag-of-bonds (BOB)
model [25], which is an extension of the Coulomb matrix
(CM) approach [4] and groups the pairwise distances
according to pairs of atom types.

In this work, we examine how these novel machine
learning approaches can be transferred to predicting inten-
sive properties, in particular the singlet-singlet transition
energies computed with TDDFT. To trace the source of
possible difficulties back to intensiveness or descriptor, we
choose a set of different types of properties to be predicted
with machine learning. Specifically, we select the atomiza-
tion energy and the isotropic polarizability as extensive
property. In addition, we choose three intensive properties:
the gap between the highest occupied and lowest unoc-
cupied molecular orbital energies (HOMO–LUMO gap),
together with the transition energy of the ground state
(S0) to the lowest two vertical electronic excited states
(S1 and S2), E1 and E2, respectively.

On these selected quantum mechanical properties, we
perform experiments with various types of molecular
descriptors. We examine 2- and 3-body translational and
rotationally invariant molecular descriptors [26] which
are especially suited for this study as they are invari-
ant w.r.t. atom indexing and independent of the size of
the molecule. Thus they can easily be used in combi-
nation with kernel ridge regression and artificial neural
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networks. Furthermore, the used molecular representation
is extensible to large molecules and solids as well as to
incorporate higher-order interaction terms. Additionally,
we examine and compare the performance with the neural
network SchNet [9], which learns a local representation of
the property under investigation.

2 Methods

2.1 Invariant 2-body interaction descriptors F2B

For two atoms of the molecule with the atomic numbers
and coordinates (Z1, rrr1) and (Z2, rrr2), the set of 2-body
descriptors is given by

F2B,Z1,Z2
:=
{
‖rrr1 − rrr2‖−m

}
m=1,...,M

, (1)

where we choose M = 15 for this study. For the whole set
of 2-body descriptors F2B, we concatenate the descriptors
F2B,Z1,Z2

for the set of pairs of atomic numbers (Z1, Z2)
present in the data set. The descriptors F2B are invariant
w.r.t. the translation and rotation of the molecule as well
as the indexing of the atoms.

2.2 Invariant 3-body interaction descriptors F3B

For three atoms of the molecule with the atomic numbers
and coordinates (Z1, rrr1), (Z2, rrr2) and (Z3, rrr3), the set of
3-body descriptors is given by

F3B,Z1,Z2,Z3
:=

{
1

‖rrr12‖m1‖rrr13‖m2‖rrr23‖m3

}
, (2)

where m1,m2,m3 = 1, . . . , P and we choose P = 7 for
this study. In equation 2, all combinations of three atoms
of the molecule are taken into account. In this work,
we use a local variant of F3B,Z1,Z2,Z3

, where we select
3-body interactions, which are formed by two sets of
bonded atoms which have a common atom. We define two
atoms to be bonded, if their euclidean distance is smaller
than the threshold function B(Z1, Z2) := 1.1 · L(Z1, Z2)
and the values for the bond length function L given in
the Appendix A. For the whole set of 3-body descrip-
tors F3B, we concatenate the descriptors F3B,Z1,Z2,Z3 for
the set of 3-tuples of atomic numbers (Z1, Z2, Z3) present
in the data set. Analogously to the 2-body descriptors,
the descriptors F3B are invariant w.r.t. translation and
rotation and atom indexing.

2.3 SchNet

The neural network SchNet [10] is a variant of the earlier
proposed deep tensor neural networks [8] is based on the
principle of learning atom-wise representations directly
from first-principles. Given the atoms of type Z1, . . . , ZN ,

initial atom embeddings x
(0)
Zi
∈ RF , where F is the dimen-

sion of the feature space, depend only on the atom type.

Table 1. Mean absolute errors of predicting the atomiza-
tion energy (U0), isotropic polarizability (α), difference
between the HOMO and LUMO energies (gap) and the
transition energy to the first (E1) and second (E2) elec-
tronic excited singlet state. The properties U0, α and gap
were calculated with DFT at the B3LYP/6-31G(2df,p)
level of theory, the transition energies were calculated with
LR-TDDFT at the PBE0/def2TZVP level of theory. The
energy units are kcal/mol, the polarizability is given in
units Bohr3. Best results are marked bold.

Method U0 α Gap E1 E2

Mean pred. 185.0 6.27 25.4 22.4 18.0
CM 4.8 0.60 7.8 12.7 10.2
BOB 2.3 0.36 4.8 11.5 9.6
F2B 2.9 0.45 5.8 11.6 9.5
F3B 2.9 0.45 5.3 11.3 9.4
F2B + F3B 1.1 0.33 4.6 11.1 9.2
SchNet 1.0 0.22 3.4 11.4 10.0

Then, a series of pairwise interaction refinements

xt+1
i = xt

i +
∑
j 6=i

V t(xt
j , ‖rij‖),

introduces information about the chemical environment
into the embeddings. In SchNet, this is modeled using
continuous-filter convolutions with filter-generating net-
works [9]. Through multiple of these corrections, SchNet
is able to include complex many-body terms in the repre-
sentation. Finally, an output neural network O predicts
atom-wise property contributions, such that the final

prediction is ŷ =
∑N

i=1O(x
(T )
i ) for extensive properties

and ŷ = 1
N

∑N
i=1O(x

(T )
i ) for intensive properties. Dur-

ing training, the initial embedding vectors x
(0)
Zi

as well as
the parameters of the interaction network V and the out-
put network O are optimized. In this work, we use T = 6
interaction refinements and F = 64 feature dimensions.

3 Experiments and discussion

We use the 21 786 molecules from the QM9 benchmark
dataset with up to 8 heavy atoms of type CNOF. QM9
includes relaxed geometries and properties computed
using DFT at the B3LYP/6-31G(2df,p) level of theory
[27]. This data set was previously used to predict devia-
tions from reference second-order approximate coupled-
cluster (CC2) singles and doubles spectra from their
TDDFT counterparts [28]. The singlet–singlet transition
energies from the ground state to the first and second
excited state were calculated at the LR-TDDFT [29] level
employing the hybrid XC functional PBE0 [30,31] with
def2TZVP basis set [32]. Instead of applying the delta
learning approach [28], we attempt to learn the transition
energies directly. We will additionally use the atomization
energy U0, isotropic polarizability α and HOMO–LUMO
gap from QM9 for evaluation.

For all models, we use 10k random molecules for
training and the remaining unseen 11 786 molecules for
computing the prediction errors. The results are listed in
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Table 1. For the CM and BOB descriptors, the Laplace
kernel is known to perform better as compared to the
Gaussian kernel [25]. For the 2- and 3-body descrip-
tors F2B and F3B, the Gaussian kernel achieves smaller
prediction errors.

The mean predictor (mean pred.) is given by the aver-
age value of the property to be predicted. In general, the
mean predictor yields an upper bound of the mean abso-
lute prediction error of the machine learning models under
investigation. While the Coulomb matrix (CM) uniquely
encodes the structure of a given molecule, it performs
worst of the evaluated descriptors. A major reason for this
is that it implies a similarity measure of atom types based
on the Coulomb interaction of the atomic nuclei, which
does not reflect chemistry well. The bag-of-bonds (BOB)
model is an extension to the Coulomb matrix where atom
types are sorted into bags, thereby, avoiding an unsuited
atom similarity. This significantly boosts the performance
compared to the CM for the atomization energy, polariz-
ability and gap. Still, the bags are not invariant to atom
indexing, which allows for multiple possible descriptors of
the same molecule.

The F2B descriptors solve some of the sorting prob-
lems encountered in the CM and BOB representation.
The prediction error of the F2B descriptors is significantly
better than the CM result, while being slightly worse com-
pared to the BOB model. Combining the local 3-body
descriptors F3B with the 2-body descriptors F2B signifi-
cantly increases the predictive performance of the atom-
ization energy, polarizability and the HOMO–LUMO gap
(62%, 27% and 21% improvement, respectively). For the
transition energies E1 and E2, only a minor performance
gain is observed by including the local 3-body descrip-
tors F3B. SchNet slightly improves upon the descriptors
F2B + F3B for the prediction of the atomization energy,
polarizability and gap, indicating that these properties
can be well-represented by atom-wise contributions.

Figure 1 shows percentiles of the residuals when using
various descriptors to predict the transition energy E1. For
the transition energies, the 2- and 3-body descriptors do
not improve upon the performance of the baseline meth-
ods BOB and CM as much as for the extensive properties.
Moreover, SchNet only achieves a performance that lies on
the level of CM and BOB.

As SchNet is able to include complex many-body terms
in the representation, the non-locality of the transition
energies do not allow a decomposition into atomic contri-
butions. This indicates the need for much more complex
global many-body terms for predicting transition energies,
possibly encoding higher order interactions with order
larger than three.

As most descriptors are either size-dependent or encode
a sum or average term over local many-body interac-
tions, they are naturally better suited to predict extensive
properties. Such descriptors are typically limited by the
order of the explicitly included many-body interactions.
This can be a problem for predicting more complex
quantum mechanical properties as demonstrated by the
HOMO–LUMO gap, where SchNet performs better than
explicit pairwise and 3-body interaction descriptors. For
the transition energies, SchNet does not improve upon the

Fig. 1. Percentiles of the residuals of using kernel ridge
regression in combination with various descriptors to predict
the singlet-singlet transition energy TDPBE0/def2TZVP-E1.
Specifically, the left and right borders correspond to the 5%
and 95% percentiles, the solid middle line is the median and
the left and right dashed lines correspond to the 20% and 80%
percentiles, respectively. The candle serves as a guide to the
eye for the median and furthermore as a guide to the occasion
of this special issue.

F2B +F3B result. Even though the 3-body descriptors are
only applied to local bond angles, they perform better
than 2-body descriptors. In light of the SchNet results, this
indicates that explicit many-body terms are more suitable
to model transition energies using machine learning. As
SchNet is designed to include high-order local interactions,
we speculate on the need to develop global descriptors
for intensive properties. As such properties are in general
more difficult to predict than their localized counterparts,
we conjecture that such kind of descriptors will describe
both extensive and intensive properties on equal footing.
In addition, as seen by the learning curves in Figures 2–6,
more data may be exceedingly helpful for further improv-
ing the predictive performance of the intensive properties
under investigation.

4 Conclusion

We have evaluated a variety of machine learning tech-
niques for intensive and extensive properties. As expected,
all of them perform better on extensive properties than
on intensive quantities. For the gap, SchNet performs
25% better than the explicit combination of pairwise and
3-body descriptors. As SchNet is able to include com-
plex many-body terms in principle, this result indicates
the need for descriptors with many-body interactions
with order larger than three for predicting the HOMO–
LUMO gap. For the intensive properties E1 and E2, the
3-body descriptors work best, in particular combined with
the 2-body terms. In contrast, the decomposition into
atom-wise contributions of SchNet, while working well for
extensive properties, can be considered a drawback when

https://epjb.epj.org/


Page 4 of 6 Eur. Phys. J. B (2018) 91: 178

Fig. 2. Mean absolute error of predicting the singlet-singlet
transition energy TDPBE0/def2TZVP-E2 in dependence of
the number of training samples. The errors are given in
kcal/mol. The model hyperparameters have been determined
by 10-fold cross validation.

Fig. 3. Mean absolute error of predicting the B3LYP/6-
31G(2df,p) atomization energy in dependence of the number
of training samples. The errors are given in kcal/mol. The
model hyperparameters have been determined by 10-fold cross
validation.

attempting to predict transition energies by the averaging
approach in the last output layer of SchNet.

Still, even with the best-performing descriptors the
error of transition energy prediction may still be too high
for any practical use. More advanced non-local descrip-
tors will be necessary to predict transition energies more
accurately, possibly encoding higher many-body terms or
electronic state information. In addition, as seen by the
learning curves, more data may be exceedingly helpful
for further improving the predictive performance of the
intensive properties under investigation.
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tion and Research (BMBF) for the Berlin Big Data Center
BBDC (01IS14013A). Additional support was provided by the

Fig. 4. Mean absolute error of predicting the B3LYP/6-
31G(2df,p) polarizability in dependence of the number of
training samples. The errors are given in Bohr3. The model
hyperparameters have been determined by 10-fold cross vali-
dation.

Fig. 5. Mean absolute error of predicting the B3LYP/6-
31G(2df,p) HOMO–LUMO gap in dependence of the number
of training samples. The errors are given in kcal/mol. The
model hyperparameters have been determined by 10-fold cross
validation.
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Fig. 6. Mean absolute error of predicting the singlet-singlet
transition energy TDPBE0/def2TZVP-E1 in dependence of
the number of training samples. The errors are given in
kcal/mol. The model hyperparameters have been determined
by 10-fold cross validation.

Table A.2. Bond lengths in ngström for all combinations
of the elements C, H, N, O, F. Used for computing the
3-body interaction descriptors F3B.

Bond-type (Z1, Z2) L(Z1, Z2)

H–H (1, 1) 0.74
H–C (1, 6) 1.08
H–O (1, 8) 0.96
H–N (1, 7) 1.01
C–C (6, 6) 1.51
C–O (6, 8) 1.43
C–N (6, 7) 1.47
O–O (8, 8) 1.48
O–N (8, 7) 1.40
N–N (7, 7) 1.45
F–H (9, 1) 0.92
F–C (9, 6) 1.35
F–O (9, 8) 1.42
F–N (9, 7) 1.36
F–F (9, 9) 1.42

performed the experiments. AT and KRM supervised the
project. All authors discussed the results and contributed
to the final manuscript.
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Appendix A

A.1 Kernel ridge regression (KRR)

In kernel ridge regression (e.g. [33]), a kernel is used as
similarity measure between two molecules. From this sim-
ilarity measure, the prediction of a given property of a
new molecule xxx is obtained by

E =
N∑
i=1

αi ·K(xxxi,xxx), (A.1)

where the αi denote the weighting coefficients obtained
by training the model and N is the number of train
molecules {xxxi}Ni=1. Training the model involves a set of
molecules with known labels {xxxi, Ei}Ni=1 from which the
ααα is obtained by solving a regularized system of linear
equations

(λ · I + K) ·ααα = EEE, (A.2)

where Kij := K(xxxi,xxxj) and λ is the regularization
parameter. Popular choices of kernels are the Gaussian
kernel and the Laplace kernel, respectively. The hyper
parameters of the model can be determined with cross-
validation [34].

A.2 Bond lengths

Table A.2 lists the bond lengths in ngström for all com-
binations of the elements C, H, N, O, F used to compute
the 3-body interaction descriptors F3B.
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