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Received 28 September 2017
Published online 15 January 2018
c© The Author(s) 2018. This article is published with open access at Springerlink.com

Abstract. The linear response transport properties of carbon nanotube quantum dot in the strongly corre-
lated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects.
Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or
valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or
spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs
due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to
the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the
absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

1 Introduction

In the last two decades carbon nanotubes (CNTs) have
attracted tremendous interest from fundamental science
and technological perspectives [1–6]. The unique elec-
tronic properties of these thin, hollow cylinders formed
from graphene are due to confinement of electrons nor-
mal to the nanotube axis. In a very crude approach
(zone-folding approximation [7,8]), the bandstructure of
nanotube is obtained from the bandstructure of graphene
by imposing periodic boundary conditions along the cir-
cumference. Depending on the way graphene is rolled up,
carbon nanotube can be either metallic or semiconducting.
In this simple picture bandgap depends on the minimum
separation of the quantization lines from Dirac points and
is inversely proportional to diameter. The zone folding
approximation breaks down for tubes of small diame-
ter. In this case the curvature induced corrections to the
overlaps between adjacent orbitals cannot be neglected.
In this way one can understand experimentally observed
opening of a narrow gap (∼10 meV) even in nominally
metallic tubes (these systems are sometimes called nearly
metallic carbon nanotubes [9]). Similar effect occurs also
due to the strain. The resulting gaps are inversely pro-
portional to the square of diameter, depend on chiral
angles and are typically much smaller than the gaps result-
ing from circular quantization. The dispersion laws of
narrow gap nanotubes differ considerably from the disper-
sions of wide gap nanotubes and consequently distinctly
different is their behavior in magnetic fields [9]. Considera-
tions of the present work are addressed to semiconducting
and narrow gap carbon nanotubes. We focus on strong
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correlation effects, which are of importance in quantum
dots (CNTQDs) formed from a short part of nanotube
e.g. by introducing a confining potential in the longi-
tudinal direction. Electron correlations in CNTQDs are
strong due to the one-dimensional nature of confinement
and due to the low dielectric constant especially in sus-
pended nanotubes [10]. As the size of the dot decreases
the charging energy of a single excess charge on the dot
increases. Transmission of the contacts determines the
regime of charge transport. For very weak transparency
charging effects dominate transport at low temperature
and the electrons enter the dot one by one yielding the
well known Coulomb blockade oscillations of conductance
as a function of the gate voltage. For more open contacts
the role of higher order tunneling processes (cotunneling)
increases what results at low temperatures in formation of
many-body resonances at the Fermi level, and a new trans-
port path opens in the valleys between Coulomb peaks.
Until the ground breaking paper of Kuemmeth et al. on
spin-orbit coupling in CNTs [11] it was believed that spin
and orbital (valley) degrees of freedom could be seen as
independent in CNTQDs and the electron spectrum of
nanotubes in the absence of magnetic field was considered
as fourfold spin-orbital degenerate. A conviction of orbital
degeneration was based on the presence of two equivalent
dispersion cones (K and K ′) in graphene, in nanotubes
this degeneracy can be intuitively viewed to originate
from two equivalent ways electrons can circle the graphene
cylinder, that is clockwise and counter-clockwise [12].
Experimentally the presence of quadruplets of degenerate
levels has been confirmed e.g. by observation of fourfold
periodicity of the electron addition energy (e.g. [13]). This
degeneration also manifests in many-body effects by the
enhanced symmetry of many body-resonances. The first
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report on the appearance of the exotic many-body state in
CNTs was the result of Jarillo-Herrero et al. indicating the
occurrence of Kondo effect of spin-orbital SU(4) symmetry
[14]. Later appeared similar reports also evidencing the
occurrence of SU(4) Kondo effect in carbon nanotubes
[15–19]. Since it is hardly possible from the conductance
to distinguish between SU(2) and SU(4) symmetries, of
importance are ultra-sensitive current noise measurements
reported in [18–20]. The problem of simultaneous screen-
ing of orbital and spin degrees of freedom has been also
discussed from theoretical point of view in several pub-
lications [21–43]. Whereas in conventional spin Kondo
effect (SU(2)), a formation of many-body dynamical sin-
glet between localized spin and delocalized electrons is a
consequence of spin flip cotunneling processes, in the case
when spin and orbital degeneracies occur simultaneously
(SU(4)), a formation of many-body resonance results from
spin, orbital isospin and spin-orbital cotunneling. The spin
and orbital degrees of freedom are totally entangled and
Kondo resonance for odd occupancies is no longer peaked
at the Fermi level (EF ) as in the standard spin Kondo
state and Kondo temperature is largely enhanced in com-
parison to SU(2) systems. When CNTQD is occupied by
two electrons (N = 2) there are six degenerate states
and Kondo state is formed due to cotunneling induced
fluctuations between all these states. Kondo resonance in
this case is centered at EF . Conclusive observation, con-
firming that the phenomena reported by Jarillo-Herrero
et al. was indeed SU(4) Kondo resonance was detection
of splitting of this resonance in parallel magnetic field
into four lines. Parallel magnetic field knocks out from
degeneracies both spin and orbital isospin and sufficiently
strong field destroys Kondo correlations. Some other per-
turbations suppress the role of only one of the degrees of
freedom and then system is left in SU(2) symmetry and
a crossover from Kondo effect of higher symmetry into
Kondo effect of lower effect is observed [14,38]. Exam-
ple of such a case is the action of perpendicular magnetic
field, which breaks only spin degeneracy [38]. Similarly
valley (orbital) coupling caused by local perturbations
introduced e.g. by vacancies or substitution of atoms or
by deformations of structure in interatomic distances mix
only orbital channels [44,45]. At half filling (N = 2) par-
allel magnetic field splits the sixfold degenerate manifold
into three doublets and Kondo state of SU(2) symmetry
associated with the lowest doublet emerges [19,38]. More
recent experiments pointed out on the intrinsic source
of breaking of the symmetries and lowering the degen-
eracy. The use of suspended CNTs [11] allowed to reduce
both the disorder in the sample and the dielectric screen-
ing due to substrate. The single electron spectroscopy
measurements performed on ultraclean nanotubes showed
that even at zero magnetic field, the spin and orbital
motions are not independent and a level splitting into two
Kramers doublets has been observed [11]. This effect has
been attributed as resulting from spin-orbit interaction
(SO). Destruction of the full spin-orbital entanglement is
certainly disadvantageous for quantum computing appli-
cations, because storage capacities of qubit systems is
smaller than for four-state bit systems associated with
SU(4) symmetry. Also unfavorable effect of SO interaction

is opening of a route for spin decoherence. But there is
also an advantage of SO interaction, it gives the way of
electrical manipulation of spin degrees of freedom [46,47].
The significant SO interaction has been confirmed later by
other authors [9,40,42–44,48–51]. Almost all of the above-
mentioned experiments also investigated the Kondo range.
The origin of spin-orbit coupling in CNTs is curvature, as
was already theoretically predicted by Ando [52] and is
described in more detail in [53–55]. In graphene this inter-
action is almost completely suppressed due to inversion
symmetry of graphene plane. In nanotubes inversion sym-
metry is broken and in consequence the hopping between p
orbitals of different parity from different atoms is allowed.
The combined effect of curvature and intra-atomic SO
coupling mixes spin and orbital channels and the four-
fold degenerate manifolds of states are split into doublets
by a few tenth of meV. One can look at the source of SO
splitting as the result of effective radial electric field aris-
ing out of curvature, which in rotating electron frame is
seen as an effective local magnetic field that has opposite
direction for the two valleys. Depending on the sign of
SO coupling constant it introduces parallel, or antiparal-
lel alignment of spin and angular momentum. The energy
of SO coupling is comparable with the energy scale of
Kondo effect and therefore the two effects interplay or
compete. Several interesting articles have been published
taking up this topic [30,41,51,55–57]. The first theoretical
analysis showing how SO interaction significantly changes
the low-energy Kondo physics in CNTQDs was the paper
of Fang et al. [56], where the multipeak structure of many-
body resonance resulting from the interplay of spin-orbit
and Zeeman effect has been analyzed. The most compre-
hensive study of the impact of SO coupling on Kondo
effect is the paper of Galpin et al. [57], where applying
numerical renormalization group technique the differen-
tial conductance of CNTQD has been calculated as a
function of gate voltage and magnetic field. Similar calcu-
lations, but additionally taking into account the effect of
valley mixing have been presented in [41,58]. In [41] also
nonlinear transport has been discussed and universality
of conductance curves with the energy scale determined
by Kondo temperature has been tested. Interesting fea-
ture of Kondo correlations reported recently in [41,51] and
also explained therein by symmetry arguments, is block-
ing of those transport resonances that are not related to
pseudospin flips.

Our present publication generalizes and supplements
the earlier theoretical studies in three aspects:

– we extend the discussion of the interplay of SO inter-
action and valley mixing in many-body processes by
considering additional to disorder, other important
sources of valley scattering, not discussed earlier.
We analyze the impact of indirect intervalley mix-
ing resulting from the coupling to the leads, where
due to interference appears e–h asymmetry within
the shell, fact often observed in experiment (e.g.
[50]). We also discuss the effect of intervalley mixing
induced by short-range Coulomb interactions (valley
backscattering – VBS). VBS changes the splitting
between different valley and spin states, what can
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be interpreted as a result of the effective spin and
intervalley exchange. In effect of this interaction the
tendency to form entangled two-electron states com-
petes with Kondo screening of spin or orbital isospin.
The reconstruction of dot states resulting from VBS
leads in some cases to enhanced degeneracy, what
opens the path for the occurrence of high symmetry
Kondo effects;

– discussing the effect of magnetic field in CNTQDs,
we draw special attention on the role of field induced
reconstruction of single electron dispersion curves.
This effect is particularly important for narrow gap
nanotubes, where the details of the band structure
are decisive for the response on the field. This mani-
fests most visibly in the vicinity of the gap. Close to
the gap effective spin-orbit coupling changes dramat-
ically and often exhibits different sign for electrons
and holes [43]. All these changes strongly modify the
conditions for the occurrence of Kondo resonances,
what reflects in the gate and field dependencies of
conductance and polarization of conductance. We
show that for dots in nearly metallic nanotubes
the effective spin-orbit splitting can even vanish
for some specific values of gate voltages and full
SU(4) symmetry could be recovered with all conse-
quences for many-body physics, including possibility
of occurrence of SU(4) Kondo effect;

– we generalize the analysis of correlation effects by
taking into account the shell mixing processes, that
are not negligible for long CNTQDs or high mag-
netic fields. For specific cases magnetic field partially
recovers degeneracy broken by SO interaction, what
leads to a formation of the many body resonances
of different origins and symmetries. For vanishing
intervalley mixing only spin and valley Kondo effects
are induced within the single shell. Intershell effects
or intervalley mixing additionally allow formation
of spin-valley Kondo resonance. Another interest-
ing observation is that for strong Coulomb induced
intervalley coupling, or due to intershell coupling,
magnetic field can in some cases lead not only two,
but also three states to degeneracy. It is interest-
ing from the point of view of quantum computing,
because it. would allow to operate in these systems
not only on qubits, but also on qutrics (tree state
information units). Threefold degeneracy allows also
for a formation of Kondo state of exotic SU(3) sym-
metry, problem previously discussed only in a few
works [59–61].

To complement the discussion of the crossovers between
Kondo states of different symmetries we present in some
cases, apart from evolution of total conductance also the
corresponding dependencies of partial conductances, ther-
mopower or noise Fano factor. This is especially useful for
analysis of SU(4) to SU(2) crossover, because total con-
ductances coincide for both symmetries. Special attention
is also paid to spin dependent characteristics important
for spintronic applications.

This paper is organized as follows. In Section 2, we
describe the model of CNTQD and the many body

technique we use in analysis – slave boson approach.
Numerical results and analysis are given in Sections 3
and 4, where we successively present the effect of SO inter-
action on transport characteristics, discuss the impact of
different types of intervalley mixing on Kondo physics and
analyze the effect of magnetic field and intershell mixing.
Section 5 contains summary and a short discussion.

2 Model and slave boson mean-field
formulation

Our considerations are addressed to the low temperature
range and it is enough therefore to restrict to the low-
est quadruplet of states labeled by spin (σ = ±1 =↑, ↓)
and the orbital pseudospin (m = ±1 = K,K ′) commonly
referred to as valley. Although the CNTQD states are in
principle additionally numbered by longitudinal momen-
tum k‖ and circumferential momentum k⊥ we do not
write them explicitly, because the level separations corre-
sponding to the quantizations of these quantities are much
larger than the thermal energy and the energy scale of the
processes engaged in many-body effects discussed. Fixed
values of k⊥ and k‖ corresponding to the lowest occupied
states are assumed, with only one exception in Section 4,
where intershell effects are discussed and in this case apart
from the lowest also the first excited longitudinal mode is
considered. The basic Hamiltonian describing CNTQD is
extended two orbital Anderson model:

H = HL +HR +Hd +Ht. (1)

The first two terms describe noninteracting electrons in
the leads:

Hα =
∑
kmσ

Ekαmσc
†
kαmσckαmσ, (2)

(α = L,R) for the left (right) electrode and Ekαmσ is the
energy of an electron in the lead α. The dot Hamiltonian
is given by:

Hd =
∑
mσ

Emσnmσ + U
∑
m

nm↑nm↓

+U ′
∑
σσ′

n1σn−1σ′ , (3)

where nmσ = c†mσcmσ and dot energies are:

E±mσ = ±
√

(−mEg
2

+ µoB‖ + σ∆1
so)

2 + E2
0(Vg)

+mσ∆0
so +

σµsB‖

2
, (4)

the upper or the lower sign refer to conduction or valence
band states, Eg is the bandgap at zero field without spin-
orbit coupling, E0 is gate dependent dot energy for the
fixed value of k‖, B‖ is magnetic field directed along the
nanotube axis. SO interaction sets as spin quantization
axis the nanotube axis and locks spin and valley degrees
of freedom. ∆0

so and ∆1
so parameterize the strength of Zee-

man and orbital contributions to the spin-orbit coupling
[52–54]. The former gives rise to a vertical shift of the
Dirac cones that is opposite for two spin directions and
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∆1
so gives rise to horizontal shift of Dirac cones, what is

equivalent to spin dependent magnetic flux. As it is seen
we have included the SO corrections already in the single
particle energies (4). They result from SO perturbation of
the form [43]:

Hso = ∆1
soszτx +∆0

somsz, (5)

where sz is the spin component along the nanotube axis
and τx is Pauli matrix in the A-B graphene sublattice
space. For large bandgap tubes i.e. in the limit Eg � ∆0

so,
∆1
so the SO splitting can be described by one parameter

∆ = 2(∆0
so ∓

∆1
so√

1+(E0/Eg)2
) ≈ 2(∆0

so ∓ ∆1
so). The terms

parameterized by U , U ′ describe intra and interorbital
Coulomb interactions and the last term Ht describes elec-
tron tunneling from the leads to the dot (or vice versa)
and takes the form:

Ht =
∑
kαmσ

t(c†kαmσcmσ + h.c.). (6)

Coupling of the dot to the electrodes can be parameterized
by Γmσ(E) = 2π

∑
kα |t|2δ(E − Ekαmσ). We assume that

Γmσ(E) is constant within the energy band, Γmσ(E) = Γ .
The full spin-orbital rotational SU(4) symmetry occurs
only for B = 0, ∆ = 0 and U = U ′. Apart from magnetic
field and SO interaction we will also discuss the effect
of other symmetry breaking perturbations: direct and
indirect valley mixing and valley and spin exchange. The
forms of these additional perturbations will be given in
the sections, where these problems will be discussed. To
analyze correlation effects, we use finite U slave boson
mean field approach (SBMFA) of Kotliar and Rucken-
stein [62] and introduce a set of boson operators for each
electronic configuration of the single shell of CNTQD.
These operators act as projectors onto empty state e,
single occupied state pmσ, doubly occupied d, triply
occupied tmσ and fully occupied f . The e operators are
labeled by orbital index, p operators by indices specifying
the corresponding single-electron states, t by indices
of state occupied by a hole, and the six d operators
denote projectors onto double occupied states dm=1,−1

(↑↓,0), (0,↑↓) and dσσ′ (↑,↑), (↑,↓), (↓,↑) and (↓,↓). To
eliminate unphysical states, the completeness relations
for the slave boson operators and the conditions for the
correspondence between fermions and bosons have to be
imposed. These constraints can be enforced by introduc-
ing Lagrange multipliers λ, λmσ and supplementing the
effective slave boson Hamiltonian by corresponding terms
in (7). The SB Hamiltonian then reads:

HK−R =
∑
mσ

Emσn
f
mσ + U

∑
m

d†mdm + U ′
∑
σσ′

d†σσ′dσσ′

+
∑
mσ

(U + 2U ′)t†mσtmσ + (2U + 4U ′)f†f

+
∑
mσ

λmσ(nfmσ −Qmσ)λ(I − 1)

+t
∑
kαmσ

(c†kαmσzmσfmσ + h.c.)

+
∑
kαmσ

Ekαmσnkαmσ, (7)

with Qmσ = p†mσpmσ + d†mdm + d†σσdσσ + d†σσdσσ +

t†mσtmσ + t†mσtmσ + t†mσtmσ + f†f , I = e†e +∑
mσσ′(p†mσpmσ + d†mdm + d†σσ′dσσ′ + t†mσtmσ) + f†f and

zmσ = (e†pmσ + p†mσdm + p†mσ(δm,1dσσ + δm,−1dσσ) +

p†mσdσσ + d†mtmσ + d†σσtmσ + (δm,−1d
†
σσ + δm,1d

†
σσ)tmσ +

t†mσf)/
√
Qmσ −Q2

mσ. zmσ renormalize interdot hoppings
and dot-lead hybridization (6). The pseudofermion
operator fmσ is defined by cmσ = fmσzmσ and the
corresponding occupation operator is nfmσ = f†mσfmσ. In
the mean field approximation the slave boson operators
are replaced by their expectation values. In this way the
problem is formally reduced to the effective free-particle
model with renormalized hopping integrals and renor-
malized dot energies. The stable mean field solutions are
found from the saddle point of the partition function
i.e. from the minimum of the free energy with respect
to the mean values of boson operators and Lagrange
multipliers. SBMFA best works close to the unitary
Kondo limit, but it gives also reliable results of linear
conductance for systems with weakly broken symmetry
in a relatively wide dot level range, being in a reasonably
agreement with experiment and with renormalization
group calculations [28,37,63–66]. Current flowing through
CNTQD in the (mσ) channel can be expressed as
Imσ =

∫
[fL(E) − fR(E)]Tmσ(E)dE, where transmission

is given by Tmσ = 4πΓLΓR
ΓL+ΓR

Amσ(E) and fα are the Fermi

distribution functions. The dot spectral weight Amσ(E)
is obtained from the retarded Green’s function GRmσ,mσ
by Amσ = (−1/π)Im[GRmσ,mσ]. The linear conductance is

defined by Gmσ = dImσ
dV |V→0 and spin polarization of con-

ductance by PCs = (
∑
m Gm↑ − Gm↓)/G, G =

∑
mσ Gmσ.

In an analogous way defined are also polarizations
associated with other degree of freedom, orbital
PCo = (

∑
σ G1σ − G−1σ)/G or spin-orbital Kramers

polarizations PCK = (G1↑ + G−1↓ − G1↓ − G−1↑)/G.
To get closer insight into evolution of many-body
correlations under symmetry breaking perturba-
tions we also analyze other transport quantities.
Thermopower (TEP) acts as an excellent tool to
describe the crossover between SU(4) and SU(2) Kondo

states. It is defined by S = −1
|e|T

∑
mσ L1mσ∑
mσ L0mσ

, where

Lnmσ = −(1/h)
∫

(E − µ)n df
dETmσ(E)dE. Also the shot

noise is strongly affected by a change of correlations and
we analyze the noise Fano factor F defined as the ratio
between the actual shot noise S and the Poissonian noise
of uncorrelated carriers (2|e|I). The most important infor-
mation about symmetries of the resonances can be inferred
from non-equilibrium noise. This is however outside the
formalism we use, but also zero bias noise which can easily
be calculated in SBMFA formalism distinguishes between
different symmetry classes. In the linear regime noise can
be expressed by transmissions alone nd the linear Fano
factor then reads F =

∑
mσ Tmσ(1 − Tmσ)/(

∑
mσ Tmσ).

We parameterize the unperturbed fully spin-orbital
rotationally invariant CNTQD Hamiltonian by three
parameters: charging energy U , tunnel rate between the
dot and the reservoirs Γ , and the half-bandwidth D. The
numerical results discussed below are presented with the
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Fig. 1. Transport characteristics of CNTQD with SO interaction. (a) Spin and orbital resolved conductances of CNTQD vs dot
occupation N = (1/2)(1− 2E0/U) plotted for several values of SO splitting ∆: ∆ = 0 (solid black line), ∆ = 0.025 (dotted blue),
∆ = 0.05 (dashed red), ∆ = 0.1 (solid green), ∆ = 0.25 (short dashed purple) and ∆ = 0.75 (dashed dotted grey). The same
assignment of the lines is valid also for the inset and figures (b,e,f). Inset presents corresponding total conductances. Parameters:
U = 3 and Γ = 0.05 (if not specified differently the same parameters apply also to other pictures). (b) Noise Fano factors. (c)
Thermopower for ∆ = 0 (solid black), ∆ = 0.08 (dotted blue), ∆ = 0.2 (dashed red), ∆ = 0.5 (solid green), ∆ = 0.65 (short
dashed purple) (V = 0.005 and T = 10−6). (d) Temperature evolution of thermopower for ∆ = 0 and T = 2 × 10−2 (dashed
line), T = 10−2 ≈ TK (solid black), T = 10−3 (dotted blue) (V = 0.005). (e, f) Partial transmissions for N = 1 and N = 2
plotted for different values of SO splitting.

use of energy unit defined by its relation to the band-
width 2D = 100. The assumed energy unit corresponds to
energy of 1–4 meV. If not specified differently the results
are presented for U = 3 and Γ = 0.05. Typically charging
energy for semiconducting CNTs is of order of tens of
meV [67,68] and Γ in the assumed weak-coupling regime
is of order of several meV [14,15,69].

3 Single-shell many-body effects

3.1 Breaking of SU(4) symmetry by spin-orbit
interaction

The fully symmetric system characterized by SU(4) uni-
tary group of spin-orbital rotations (U = U ′, ∆ = 0 and

https://epjb.epj.org/
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Fig. 2. Spin-orbit interaction induced SU(4)→ SU(2) crossover in the single electron valley (N = 1). (a) Characteristic tem-
peratures TC of many-body resonances vs SO splitting ∆ (U = 3). (b) TC(∆) for U = 3 (solid line), U = 4 (dotted), U = 5
(dashed). Inset shows mean values of the product of slave boson operators plotted vs SO splitting parameter. (c) Transmission
map T (E,∆) for U = 5. (d) Densities of states of many-body resonances for ∆ = 0 (solid black line), ∆ = 0.003 (dotted blue),
∆ = 0.005 (dashed red), ∆ = 0.1 (solid green) and ∆ = 0.52 (short dashed purple).

B = 0) exhibits the fourfold degeneracy for odd occu-
pancies (N = 1, 3) and sixfold degeneracy at half filling
(N = 2). CNT Hamiltonian is in this case invariant under
time-reversal and valley-reversal. For N = 1 (1e valley)
the degenerate states are (|mσ〉, m = K,K ′, σ =↑, ↓) and
for N = 3 (|mσ〉, m = K,K ′, σ =↑, ↓), where the under-
lined quantum numbers refer to the unoccupied states i.e.
|K ↑〉 for instance denotes the state |K ↓ K ′ ↑ K ′ ↓〉. In
the following we will also interchangeably use instead of
K, K ′ quantum numbers 1,−1. The six degenerate two-
electron states for N = 2 are |K ↑ K ′ ↓〉, |K ↑ K ↓〉, |K ′ ↑
K ′ ↓〉, |K ↑ K ′ ↑〉, |K ↓ K ′ ↓〉, |K ↓ K ′ ↑〉. For the Kondo
effect to occur apart from degeneracy it is also required
that spin and valley quantum number are conserved. It
may be approximately satisfied if the contacts constitute
parts of the same CNT as the dot and the carriers dwell
for some time before moving into the metallic electrodes.
One can think then that before and after tunneling pro-
cess electron share the same degrees of freedom [24,41].
Kondo effect in odd electron valleys results from effective
spin and valley isospin fluctuations (transitions between
four degenerate states) occurring due to cotunneling pro-
cesses. Both the total spin SZ = (n↑ − n↓)/2 and orbital

pseudospin TZ = (n1 − n−1)/2 are quenched by these
fluctuations. The spin-valley many-body peak is shifted
above (1e) or below (3e) the Fermi level corresponding to
phase shifts δ = π/4 and δ = 3π/4 respectively. Increased
degeneracy reflects in broadening of Kondo resonance in
comparison to the standard spin Kondo peak, what means
exponential enhancement of Kondo temperature. In 2e
valley for ∆ = 0 transitions between all six states lead
to a formation of Kondo resonance centered at EF , the
corresponding phase shift is δ = π/2 and conductance is
doubled in comparison to SU(4) Kondo effect for odd num-
ber of electrons. Spin-orbit coupling depends on chirality
and diameter. The observed values of SO splitting are of
order of 0.1–0.4 meV [11,43,50], but also splitting of up
to 3.4 meV has been reported [9]. Figure 1 presents lin-
ear partial conductances, noise Fano factor, transmissions
and thermoelectric power plotted for different values of
SO coupling. In all these quantities the crossover between
different symmetries induced by SO interaction is evi-
dently reflected. Total conductance curves are given only
as a point of reference in the inset of Figure 1, but we
skip an analysis of their evolution with the increase of
SO coupling, because this problem has been discussed
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Fig. 3. Direct valley mixing. Conductances of CNTQD vs
unperturbed dot energy level E0 for ∆ = 0.5 and valley mix-
ing parameters: ∆KK′ = 0 (short dashed line), ∆KK′ = 0.3
(dashed) and ∆KK′ = 0.8 (solid).

earlier in [30,58]. It is also known that the total con-
ductance is not a proper quantity to track the crossover
between the considered symmetries, because both symme-
tries SU(4) and SU(2) achieve the same unitary limit in
the Kondo range for odd electron occupations. For N = 2
conductance is doubled in comparison to the odd case,
what is a consequence of half transmission of each channel
in odd valleys and full transmission for even occupation
(Figs. 1c and 1d). In the latter case tunnel induced fluctu-
ations between six two-electron states lead to a formation
of Kondo resonance centered at the Fermi level. Differ-
ent opening of the many-body transmission channels is
clearly seen in different limits of spin and orbital resolved
conductances in odd and even valleys (Fig. 1a). This is
also reflected in the linear noise. Perfect transmission of
all channels in 2e valley corresponds to no noise (F = 0,
Fig. 1b). In odd valleys on the other hand, the observed
half transmission of spin-orbital channels corresponds to
strong partition, what means strong shot noise (F = 1/2)
[18,20,37]. Total conductance curve and noise Fano factor
are symmetric vs E0 = −(3/2)U line (symmetry of 1e and
3e regions), as they reflect transmission values at EF for
T = 0 or transmissions averaged over the thermal energy
kBT for higher temperatures. Thermopower complements
this information. This quantity provides information on
the possible asymmetry of the transmission line T (E) near
the Fermi energy in the range of the thermal broadening.
In the limit of T → 0 the sign of TEP reflects the slope
of the spectral function at the Fermi level. For N = 1
Kondo resonance lies above EF (inset of Fig. 1c), the
slope is positive, resulting in a negative TEP. For N = 3
the peak is located below EF and the opposite sign is
observed. Zero value of thermopower for N = 2 corre-
sponds to the central position at the Fermi energy of
Kondo resonance for even occupation. Now let us look
at the broken symmetry case induced by spin-orbit inter-
action (∆ 6= 0). For N = 2 the sextet is split into three
groups of states, of degeneracy 1, 4 and 1, with relative

energies −∆, 0, and ∆ respectively (Fig. 5f). Since the
state of the lowest energy is singlet, Kondo correlations
are gradually destroyed by SO interaction, what results
in a drop of conductance. In transmission, the top of the
peak is replaced by a valley, deepening with the increase
of ∆ and since this effect occurs around the Fermi level
and it manifests by a change of the sign of TEP in the
N = 2 region. Spin-orbit interaction lowers the symmetry,
but it does not break time-inversion symmetry. Conse-
quently in odd valleys it splits the four degenerate levels
into the pairs of Kramers doublets separated by an energy
∆ (Fig. 5e) and the system gradually falls into SU(2)
symmetry class with the increase of SO coupling. Only
lower doublet in the single electron range |K ↓〉, |K ′ ↑〉
or the higher doublet |K ↑〉, |K ′ ↓〉 for triple occupancy
remains active in Kondo fluctuations. Evolution of par-
tial conductances is illustrated in Figure 1a, taking as
the examples spin and orbital resolved conductances for
the channels corresponding to the lower Kramers dou-
blet. In the SU(4) limit (∆ = 0) G1− = G−1+ = 1/2 for
N = 1 corresponding to a quarter occupancy of each
spin-orbital. Increase of ∆ results in the increase of the
partial conductances, for ∆ � T they reach the unitary
SU(2) Kondo limit. The curves G1+ = G−1−, not presented
here (higher Kramers doublet), are symmetric under shell
electron–hole symmetry line and these transport channels
are almost completely closed in N = 1 range for strong
SO coupling, they are open however in 3e valley. For this
filling, in turn, as seen in Figure 1a, G1− and G−1+ are
negligible. Reduction of symmetry with the increase of
SO coupling manifests itself in a tendency to total sup-
pression of TEP at the points N = 1, 3, which indicates
the location of the SU(2) Kondo resonances at the Fermi
energies. Local minima of maxima of thermopower curves
visible for small deviations from these integer occupa-
tions reflect the influence of many-body fluctuations in
Kondo active doublets. Similar local extremes are also
seen closer to the Coulomb border lines and in this case
they signal the impact of charge fluctuations. Figure 1d
illustrates temperature evolution of thermoelectric power
shown only for the full SU(4) symmetric case. Apart
from an obvious increase of TEP, a shift of extremes to
the borders of Coulomb blockade regions is observed for
temperatures above TK , i.e. in the range, where Kondo
correlations are destroyed. Destruction of the symmetry
or the crossover between the symmetry classes can be
also monitored by shot noise (Fig. 1b). Killing of Kondo
correlations at half filling for strong enough SO coupling
causes that the noise gets Poissonian. For odd occupations
the SU(4) symmetry transmission is distributed evenly
across all channels and they are only partially open. When
system evolves into SU(2) class two of the channels are
closed and two other become transparent. In consequence
Fano factors change from F = 1/2 for SU(4) symmetry to
F = 0 for SU(2). In the latter case electrons pass through
the dot with probability one, and the linear conductance
is noiseless. We are aware that much more information
for understanding the SU(4) → SU(2) crossover would
provide analysis of nonlinear noise, but that would require
going beyond SBMFA formalism. Discussion of nonlinear
noise for CNTQDs have been done for Kondo-correlated
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Fig. 4. Indirect valley mixing. (a) Conductance of CNTQD disturbed by direct and indirect valley mixing, ∆ = 0.1, ∆KK′ = 0.01
and q = 0 (solid black line), q = 1/2 (dotted blue), q = 3/4 (dashed red), q = 1 (solid green). (b,c,d) Transmissions for
N = 1 (dotted line) and N = 3 (solid line) ∆ = 0.1, ∆KK′ = 0.01 and q = 0 (b), q = 1/2 (c), q = 1 (d). (e) Intershell e–h
asymmetry: conductance for∆ = 0.1 and∆KK′ = 0.01, q = −1/2 (dotted blue line),∆KK′ = 0.01, q = 1/2 (solid). Inset presents
conductances for ∆KK′ = −0.01, q = 1/2 (dotted blue line), ∆KK′ = 0.01, q = 1/2 (solid). (f) Comparison of conductances for
∆ < TK (∆ = 0.1, solid line) with the case ∆� TK (∆ = 1, dotted line), ∆KK′ = 0.01, q = 1/2.

CNTQD [18–20] but only for the case undisturbed by
SO interaction. It was shown how fluctuations affect
the residual interactions between the quasiparticles, what
leads to a clear shot noise enhancement for SU(4) sys-
tems and it distinguishes it from SU(2) case, for which
shot noise reduction is expected [18,19,70,71]. Figure 2a
shows characteristic temperature TC of many-body reso-

nances in N = 1 region, vs SO splitting ∆ and Figure 2b
presents TC(∆) for several values of Coulomb interaction.

TC has been estimated from the temperature dependence
of conductance (G(TC) = G(0)/2) or from the position of
the center of the peak (ε̃) and half width of the reso-

nance peak (∆̃), TC =
√
ε̃2 + ∆̃2, and both estimations

are qualitatively consistent and show the same tendency.
The stronger enhancement of SU(4) Kondo temperature
with respect to SU(2) Kondo temperature is observed for
larger values of U , what is consistent with the well known
exponential dependencies of TK on U combined with the
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Fig. 5. CNTQD in parallel magnetic field (∆1
so = −0.01, ∆0

so = 0.04, µo/µs = 5). (a) Electron conductance map Ge(E0, B‖)
with the ground states stability regions on it. (b) The same as in (a) but for holes. (c) Spin polarization of electron conductance
and valley conductance polarization in the inset. (d) The same as in (c), but for holes. (e) Field dependence of single hole states.
(f) Field dependence of two-hole states.

dependence on the fold of degeneracy [72]. The crossover
region also extends with increasing U and interestingly,
the characteristic temperatures do not always evolve
monotonically. For high U values, where pure SU(4) res-
onances are relatively narrow, the effect of symmetry
breaking induced broadening is more significant than for
wider SU(4) Kondo resonances and this effect dominates
in a broad range of crossover region over the tendency
for extracting the additional peak associated with the
processes encountered in the doublet inactive in SU(2)
Kondo fluctuations (Fig. 2d). The region of enhanced

characteristic temperature corresponds to mixed valence
range, where charge fluctuations become also of impor-
tance. In SBMFA formalism it manifests for discussed
here 1e valley in enhancement of mean values of p and
e SB operators in the range of enhanced TC . The prod-
ucts of operators presented in the inset of Figure 2b
are the dominant contributions to SB parameters zmσ,
which determine the widths of the resonance. The enor-
mous broadening of many-body resonance in the crossover
region is also visualized on the T (∆,E) transmission map
(Fig. 2c).
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Fig. 6. Spin polarization of conductance for the chosen values
of magnetic field: B‖ = 0.025 (Bo) (solid black line), B‖ =
0.118 (dotted blue), B‖ = 0.125 (Bs) (dashed red), B‖ = 0.13
(solid green), B‖ = 0.278 (short dashed purple). Inset presents
magnetic moments at the dot for the same choice of the fields.

3.2 Direct and indirect valley mixing

Apart from lifting of the fourfold degeneracy by SO
interaction, some experiments indicate that a similar
role can be played by valley mixing [11,41]. To scat-
ter from one valley to the other, a scattering vector of
the order of the Brillouin zone vector is needed. This
can be caused by scattering on nonmagnetic impurities,
structure defects or deformations of structure e.g. by
putting CNT on a rough substrate. Valley mixing can be
modeled by

∑
m∆m,−mc

†
mσc−mσ. Spin-orbit interaction

reduces degeneration, but does not change the quan-
tum numbers, valley mixing preserves only spin. Due to
the time inversion symmetry double degeneracy is pre-
served in odd valleys. Splitting between the doublets
caused by SO interaction and valley mixing is given by
∆eff =

√
∆2 +∆2

KK′ . Figure 3 shows the gate voltage
dependence of conductance for fixed value of SO cou-
pling presented for several values of ∆KK′ . Valley mixing
enhances the SO destruction of Kondo correlations at half
filling. The borders of odd occupation valleys and Kondo
conductance plateaus move symmetrically away from shell
e–h symmetry point with the increase of ∆KK′ . Since
valley scattering has been detected also in ultraclean nan-
otubes [11,41,43,45], it is worth considering also the role
of other mechanisms that cause valley mixing. One of
them is local Coulomb scattering, which we will discuss
in Section 3.4. Also electrical contacts can induce valley
scattering due to valley mixing during tunneling. Com-
monly accepted conviction on valley conservation during
tunneling, which is also adopted in this work, is based on
the view, that the leads to the dot are formed within the
same nanotube as the dot, or that electrons from metal-
lic leads enter the nanotube segment before tunneling.
If, however, these requirements are not fully met, some
mixing in the orbital channels may occur. The effect of
contacts which may mix orbital numbers is thoroughly dis-
cussed in [41,43]. Indirect valley scattering via the electron
states of electrodes can be represented by the off diagonal

terms of electrode-dot coupling matrix Γm,−m, and fol-
lowing [73,74] they can be approximated by Γm,−m = iqΓ .
The processes represented by off diagonal terms of Γ result
from various interference effects and are the consequence
of indirect transitions between dot orbitals by states in
the electrodes. Parameter q describes the strength of this
indirect mixing, in general q can be a complex number,
but in our considerations is assumed real |q| < 1. In the
case discussed at present, besides the cotunneling pro-
cesses, which preserve valley also cotunneling, which flips
isospin comes into play in formation of many-body res-
onances. The partially separated peaks of transmissions
presented in Figures 4b–4d correspond to resonances set
up primarily by cotunneling processes within only one of
the Kramers doublets for each of the resonances, although
for small SO splitting also the states from the second
doublet play some role. The peaks located around EF cor-
respond to Kondo like resonances. In 1e valley the Kondo
peak is lower in energy than the peak associated with
tunneling into the second doublet and in 3e valley the
opposite energy ordering of the peaks occurs. Due to the
electrode mediated destructive interference between the
Kondo state and the renormalized states from the sec-
ond doublet the asymmetric Fano resonance is formed
between the peaks. As it is seen Fano resonance differ-
ently perturbs Kondo peak in 1e and 3e valleys and this
results in intrashell e–h asymmetry (1e–3e) of conduc-
tance (Fig. 4a). Formally changing the sign of one of the
parameters either ∆KK′ or q on the opposite results in
reversing of the asymmetry, conductances of 1e and 3e
valleys change the role. Similar interference induced asym-
metry effects have been earlier reported e.g. for double dot
Kondo systems [74]. In carbon nanotubes the single shell
e–h conductance asymmetry has been observed in many
systems [14,41,75]. Of course experimentally observed con-
ductance asymmetry between 1e and 3e valleys can be also
caused by many other reasons, which we do not discuss
here, e.g. asymmetry in coupling of the leads to differ-
ent SO Kramers doublets. Also the gate dependence of
dot-lead coupling, or gate dependence of spin-orbit inter-
action can introduce intrashell 1e–3e asymmetry, but for
the narrow energy interval of the single shell, the latter
effects are expected to be of minor importance at least for
wide gap tubes. As we discuss in Section 3.5 they might be
of importance in nearly metallic nanotubes. In the limit
of strong indirect intervalley mixing (q = 1) the destruc-
tive interference leads to a zero transmission dip (Fig. 4d).
For certain values of gate voltage this dip locates at the
Fermi energy and linear conductance vanishes in this case.
The largest asymmetry caused by indirect valley mixing is
observed in the crossover region between SU(4) and SU(2)

symmetries, for ∆ � T
SU(4)
K conductance again becomes

approximately symmetric with respect to E0 = −(3/2)U
line (Fig. 4f).

3.3 Magnetic field

Analysis of transport through strongly correlated CNTQD
in magnetic field, which takes into account SO coupling
has been already discussed in literature [9,30,41,43,58].
Here we only supplement the earlier reports by presenting
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Fig. 7. Impact of valley scattering on field dependencies. (a) Field dependencies of spin-orbital resolved conductances of CNTQD
for N = 3. (a) ∆KK′ = 0, G1↑ (solid black line), G1↓ (dotted blue), G−1↑ (dashed red), G−1↓ (solid green). (b) The same as
in (a), but for ∆KK′ = 0.3. (c) Field dependencies of three-electron states for ∆KK′ = 0.3 and for ∆KK′ = 0.8 in the inset.
(d) Polarizations of conductance for N = 3: spin conductance polarization (solid line), valley polarization (broken), Kramers
polarization (dotted) for ∆KK′ = 0 and for ∆KK′ = 0.3 in the inset.

conductance map also for holes and discussing polar-
ization. In order to facilitate the latter discussion we
complement the conductance maps by the ground state
configuration diagram of the system (Figs. 5a and 5b).
Magnetic field breaks time-inversion symmetry, parallel
magnetic field splits the Kramers doublets in odd valleys
and splits the quartet in 2e valley by both spin and orbital
Zeeman effects (Figs. 5e and 5f). For magnetic field of
energy exceeding Kondo energy the corresponding many-
body correlations are destroyed and as a consequence the
linear conductance is suppressed. Let us focus on the hole
case, for electrons the picture is analogous, replaced is
only the role of single occupied and triple occupied valleys.
Figure 5e shows single-hole energies. Hereafter presenting
electron or hole energies we use the shifted energies defined

by E1e(1h)(mσ) = E±mσ − E±0 , where E±0 = ±
√
E2
g + E2

0 .

As it is seen in Figure 5e a competition of SO interac-
tion and Zeeman effect in 1h valley leads to level crossing
in the ground state. For the field Bs = ∆h/gµs (N = 1)
(Fig. 5e), the energy of the state |K ′ ↑〉 is crossed by
energy line of one of the states from excited Kramers
doublet |K ′ ↓〉 i.e. degeneracy is recovered. This allows
revival of the Kondo effect. Cotunneling induced spin fluc-
tuations are responsible for the creation of the many-body

resonance in this case (spin SU(2) Kondo effect). Similar
field induced recovery of degeneracy is observed in the
N = 2 sector (Fig. 5f), where at the field Bo = ∆h/gµo
ground state |K ↑ K ′ ↓〉 crosses |K ′ ↑ K ′ ↓〉 state. The cor-
responding quantum fluctuations leading to Kondo effect
are now valley isospin fluctuations and spin is preserved
(valley SU(2) Kondo effect). In the wide gap limit here
discussed, E0

G � ∆0
so, ∆

1
so and for ∆KK′ = 0 the Kondo

lines of enhanced conductance are parallel to the gate volt-
age axis, because the corresponding characteristic fields
Bo and Bs are determined by SO splitting alone. Com-
paring conductance maps for electrons and holes (Figs. 5a
and 5b) it is seen that electron–hole symmetry around the
band gap is broken. The reason is that orbital–like contri-
bution to SO coupling ∆1

so contributes with opposite signs
for electrons and holes. Looking at the areas of stability
of states presented in Figures 5a and 5b one can see that
neighboring Coulomb blockade regions differ in magnetic
moments and this reveals by an increase of polarization of
conductance at the borders of Coulomb blockade regions
(Figs. 5c and 5d). The corresponding lines for electrons
and holes are characterized by polarizations of opposite
signs. Conductance on the Kondo lines is unpolarized in
odd valleys and polarized in even. In odd valleys it is the
spin, which due to cotunneling processes, despite applied
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Fig. 8. Coulomb Intervalley scattering. (a) Field dependencies of two-electron states of CNTQD in the case of weak intervalley
scattering (V = 0.05, ∆ = 0.1) and (b) for strong intervalley scattering (V = 0.1, ∆ = 0.05) (U = 3 and U ′ = 2.8). Inset of
Figure 8b illustrates the field induced threefold degeneracy of two-electron states occurring for V = 0.1 and ∆ = 0.087. (c)
Total conductance for V = −0.04 and ∆ = 0.02 (solid black) and for ∆ = 0.053 (solid green) with the spin-orbital resolved
contributions (solid gray line (−1 ↑), dashed red (1 ↓), dotted blue (1 ↑) and dashed magenta (−1 ↓)). Upper inset shows
the ground-state diagram. Dashed lines on the inset mark ∆ values, for which the conductances are plotted and black point
marks the threefold degeneracy. Lower inset on Figure 8c presents transmission in the SU(3) Kondo state. (d) Conductance for
V = 0.04 ∆ = 0 (dashed blue line) and ∆ = 0.02 (solid black) and for ∆ = 0.127 (solid green). Insets show the ground-state
diagrams for (left: U = U ′ = 3) and (right: U = 3 and U ′ = 2.8). Lower curves present the spin-orbital resolved conductances
for the SU(3) symmetry.

magnetic field, freely fluctuates between two orientations
and orbital pseudospin is fixed. Transport occurs effec-
tively only in one orbital channel with equal probability
for both spin orientations and thus conductance is spin
unpolarized and orbitally (valley) polarized in this case
(compare a map of valley polarization presented in the
insets of Figures 5c and 5d). For half filling on the other
hand, orbital pseudospin fluctuates and spin orientation
is fixed, what results in spin polarization of conductance.
The orientations of net spin magnetic moments of Kondo
active doublets are opposite for 2e and 2h occupations
and correspondingly opposite are also spin polarizations
of conductance in these regions. Conductance is orbitally
unpolarized in this case. Figure 6 presenting spin polar-
ization vs gate voltage for several values of magnetic field
highlights the possible spintronic applications. Polariza-
tion of conductance can be changed both by magnetic field
and gate voltage. The former is a consequence of the field
dependence of gate voltages at which the Coulomb borders

occur and electrical control is due to subsequent crossing
of different Coulomb borders with the change of the gate.
Finally let us look at the impact of valley scattering on
transport characteristics in magnetic field. When both SO
coupling and valley mixing are taken into account the field
dependencies of dot energies become nonlinear. The char-
acteristic fields of crossing of the states Bc are modified
by valley mixing, for ∆KK′ = 0 Bc = Bs = 0.5 (Fig. 7a)
and for ∆KK′ = 0.3 Bc = 0.47 (Figs. 7b and 7c). For
strong mixing no ground state crossing is observed (inset
of Fig. 7c). Field induced SU(2) Kondo effect results from
the effective fluctuation of isospin characterizing Kramers
doublet. The isospin in this case is neither the pure spin
nor valley pseudospin, but a combination of both and its
screening does not mean quenching of pure spin nor val-
ley pseudospin. It reflects in significant and almost equal
contribution of all four spin-orbital channels to total con-
ductances, both at zero field and for the field of revival
of Kondo correlations (Fig. 7a). When valley mixing is
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Fig. 9. Small bandgap CNTQD. (a,b) Hole conductance map Gh(E0, B‖) for ∆g = 2 (a) and ∆g = 5 (b) (∆Z = −1/2,
∆O = 3/4, µo = 5). Inset presents field dependencies of single-hole states. (c,d,e) Zero field conductances for Nh = 1, ∆g = 2
(b), Nh = 2, ∆g = 4 (c), Nh = 3, ∆g = 6 (d) (solid lines). Dotted and dashed lines present partial conductances corresponding to
the spin-orbital doublets. Inset of (a) illustrates crossing of two single-hole doublets and insets of (c,d) present the corresponding
transmissions of SU(4) Kondo resonances for Nh = 2 and Nh = 3.

absent and valley quantum number is preserved, only
two channels are opened (Fig. 7b). To elucidate the role
of spin and valley pseudospin in Kondo fluctuations we
present spin, valley and Kramers polarizations of conduc-
tance for ∆KK′ = 0 (Fig. 7d) and in the inset for finite
valley mixing. For B = 0 spin and valley polarizations
vanish both for finite and zero valley mixing. Kramers
polarization is finite and indicates which Kramers dou-
blet is active in Kondo processes, for ∆KK′ 6= 0 pure
spin-orbital Kramers polarization considerably decreases.

For the fields of Kondo revivals, spin conductance polar-
izations vanish, but Kondo states become valley polarized,
opposite in two cases.

3.4 Intervalley scattering induced by Coulomb
interaction

In Section 3.2 we have discussed intervalley scattering
resulting from disorder on the scale of interatomic spacing
and indirect valley mixing, where interference processes
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Fig. 10. Schematic diagram of energy levels of two consecutive
CNTQD shells (Eint

1e = E1e − 2U , where E1e is the shifted dot
energy in the lower shell). The solid lines present energies of
the lower shell and the dotted lines the energies of the upper.
The blue dots mark valley crossing for the same spin channel
and red dots indicate spin-valley crossing.

with the electrode states played the essential role. Here
we analyze mixing between valleys caused by local part
of electron–electron interaction. The dominant part of
Coulomb interaction – long range interaction is diagonal
in valley and spin degrees of freedom. The correspond-
ing scattering processes, called forward scattering (FS),
are associated with small momentum transfer. For short
quantum dots also local interactions, which can exchange
isospin come into play (backward scattering term VBS
[76–79]). This term is described by [78]:

HV BS =
V

2

∑
σσ′

c†mσc
†
−mσ′cmσ′c−mσ. (8)

Isospin flip implies a momentum transfer of the order 1/a
(a – lattice constant) and it occurs when electrons have
non-negligible probability of being closer than a distance
a. VBS term can be viewed as an effective intervalley
exchange, since it lifts the degeneracy of the spin polar-
ized and valley polarized states. The confirmation of this
view was the observation of huge enhancement of effec-
tive spin-orbit splitting at half filling of hole shell [50]. A
similar observation was also reported for electrons [79].
The difference between odd and even filling of the nan-
otube multiplets was attributed to the effective intervalley
backscattering. VB scattering acts on a much smaller
energy scale than FS scattering, but these processes are
relevant for the problems discussed by us, because their
energy is comparable with SO interaction energy and
Kondo temperature. We focus on two electron case. Due
to large separation of longitudinal modes, when one can
restrict to a good approximation to the single longitudinal
mode, the CNTQD wave function can be decomposed into
a spatial and a spin-isospin components. Since the total
wave function of two electrons has to be antisymmetric
under exchange of electrons, the antisymmetric function

in real space implies symmetric form in spin-isospin sec-
tor and vice versa. The ground state of the two-electron
system has a symmetric orbital wave function with cor-
responding six antisymmetric spin-valley functions. They
can be labeled by total helicity κ = σ1m1 + σ2m2, total
spin σ = σ1 + σ2 and isospin m = m1 + m2, (|κmσ〉).
SO interaction acts only on the states κ 6= 0, VB scat-
tering on the states m = 0, and total spin remains a
good quantum number. As has been discussed in Sec-
tion 3.1, in the absence of magnetic field SO interaction
splits the sixfold multiplet into two singlets (κ = 2̄, 2
and quartet κ = 0). In effect of backscattering κ = 0
quartet is further split by ∆V BS with the correspond-
ing lower states, which are spin polarized (S2 = |002〉,
S2̄ = |002̄〉) and higher states, valley polarized (V2 =
|020〉, V2̄ = |02̄0〉). The valley polarized doublet is raised
with respect to spin polarized doublet. VB scattering does
not conserve helicity and spin-valley unpolarized states
(κ = 2̄, 2) become mixed by VBS perturbation (SV± =

1/
√

2(|2̄00〉 ± |200〉)). The corresponding shifts of ener-

gies are ±Λ = ±
√
∆2 +∆2

V BS [78]. The values of ∆V BS

calculated from the observed effective SO splitting Λ are
∆V BS = 0.2 meV [79] and ∆V BS = 1.56 meV [50]. Esti-
mates from uncorrelated states based on first-principles
perturbation theory predict ∆V BS to be of hundreds
of µeV [6,78] and other theoretical estimates give much
smaller values of ∆V BS ∼ 1− 10 µeV [77–79]. There are
suggestions that neglect of superexchange with partici-
pation of the state from different shell is responsible for
an underestimation of valley exchange [6]. Since there is
no clear view in literature on the relative value of VBS
parameter V in relation to SO splitting, and even the
sign of V is the subject of discussion [6] we analyze both
cases V > 0 and V < 0. The examples of field evolution
of the mentioned two-electron dot eigenstates are shown
for weak VBS case (|V/Λ| � 1) in Figure 8a, and in
the strong VB scattering limit (|V/Λ| ∼ 1) in Figure 8b.
Interesting observation shown in the inset of Figure 8b
is that apart from the field induced recovery of double
degeneracy, for strong VBS, also triple degeneracy may
appear. Figures 8c and 8d show examples of the field
dependencies of conductance in the presence of VB scat-
tering and insets present the ground state maps of the
dot with lines, which mark cross sections, for which con-
ductances have been drawn. The results are presented for
U ′ < U , because no triple degeneracy point appears on
the ground state map for U = U ′ for V < 0. For V > 0
triple degeneracy occurs also for U = U ′ (left inset of
Fig. 8d), but the degeneracy region on the (∆, B) map
is considerably smaller than for U ′ < U (right inset).
Conductance curves with two maxima reflect two con-
secutive field induced Kondo effects, maxima for lower
fields correspond to spin SU(2) resonances and for higher
fields spin-valley Kondo effects. Conductance curves with
the single maximum correspond to SU(3) Kondo effect.
The corresponding transmission peak of this many-body
resonance of enhanced symmetry is asymmetric and is
shifted away from the Fermi energy and is characterized
by a phase shift δ ∼ π/3 (lower inset of Fig. 8c). We
also present partial conductances for SU(3) case, and it
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Fig. 11. Energies in intershell manifold. (a,b) Field dependencies of single-electron energies for ∆ = 1/10 (a) and ∆ = 1/6
(b). (c,d) Two-electron energies for ∆ = 1/10 and ∆ = 1/6 correspondingly (Eint

2e = E2e − 2U). Energy separation of the shells
∆E = 1. Triangles on (b) and (d) mark SU(3) cases.

is seen that practically only three channels participate in
transport and they equally contribute to the total con-
ductance (G ∼ (9/4)(e2/h)). The residual value derived
from the fourth channel only slightly enhances the total
conductance.

3.5 Small bandgap carbon nanotube quantum dots

The small gaps occur in the nanotubes which in the simple
zone folding picture should be nominally metallic. These
gaps do not result from quantization of momentum along
circumference (gaps of order of few hundred meV), but are
induced by curvature or strain (band gaps ≤ 10 meV) [9].
Nearly metallic nanotubes exhibit crossing of the Dirac
points at anomalously low magnetic fields (BDirac ∼ 2 T
[9,80]), what indicates the small shifts of circumference
quantization lines from the Dirac point and thus confirm
the small values of the bandgaps. The small gaps are com-
parable with the energies of SO splitting or valley mixing
and therefore the commonly used large gap expansion of
single electron energies cannot be applied in this case.
Using the full expression (4) the parabolic field depen-
dencies of single electron energies result (see the inset of
Fig. 9a). These dependencies are determined not only by
the response of orbital and spin magnetic moments, as in
the case of large gaps, but crucially depend also on the
value of the gap and gate voltage. Consequently neither

Coulomb lines nor the Kondo lines are straight lines on
gate voltage- magnetic field conductance maps (Fig. 9a).
The fields of Kondo recovery depend on voltage and this
manifests in that the Kondo lines are not parallel to the
gate axis. As it is seen the maps do not exhibit intrashell
e–h symmetry. Apart from 2e valley, recovery of Kondo
effect is observed not only in one, but in both odd val-
leys (Fig. 9b). This is in contrast to what is observed in
wide gap nanotubes, where depending on the sign of SO
coupling Kondo effect appears in 1e or 3e valley (Sect.
3.3). The ability to restore degeneration in both odd val-
leys is again a consequence of nonlinear field dependence
of energies. The surprising result is observed also at zero
magnetic field. For some values of the gap, different for
different SO couplings, Kondo effect of SU(4) symmetry
can appear. Due to nonlinear gate dependence of the dot
energies characteristic for small gap carbon nanotubes,
the effective spin-orbit splitting tends to zero for some
values of the bandgap and SO parameters. The example
for N = 1 is presented in the inset of Figure 9c. For a
certain value of gate voltage the curves cross, what means
vanishing of the effective spin-orbit splitting and SU(4)
symmetry is recovered. Similar crossings of the states,
for different values of SO coupling are also possible in
N = 2 and N = 3 valleys. Figures 9c and 9e illustrate,
how crossover to Kondo effect of higher symmetry in
odd valleys (SU(2)→ SU(4)) manifest in conductance and
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Fig. 12. Intershell gate-magnetic field conductance maps (Eint
0 = E0 − 2U). (a) ∆ = 1/10, (b), ∆ = 1/6 (SU(3) Kondo for

N = 1, 2) (c), ∆ = 1/4, (d) ∆ = 1/2 (SU(3) Kondo for N = 2, 3). (e) Conductances presented for magnetic fields, for which
SU(3) Kondo effects occur ∆ = 1/6, B‖ = 1/6 (broken line), ∆ = 1/2, B‖ = 1/2 (solid). (f) Conductance for ∆ = 1/10, with

finite intershell intervalley mixing ∆int
KK′ = 1/10.

similarly Figure 9d presents response of conductance on
the rebuild of Kondo correlations destroyed by SO cou-
pling in N = 2 region. It is hard to keep track of the
crossover in odd valleys observing only the evolution of
total conductance with the change of the gap, because lin-
ear conductance for SU(4) symmetry coincides with that
for SU(2), but SU(4) Kondo effect reflects in equal val-
ues of partial spin-orbital conductances reaching values of

1/2(e2/h) each (Figs. 9c and 9e). In even valley the gate
induced rebuild of SU(4) Kondo correlations manifests
not only in partial conductances, which have equal values
e2/h, but in this case it reflects also in total conductance
by the emergence of a distinct peak. The described phe-
nomena allow switching between transport Kondo regimes
of different symmetries or even between Kondo and non-
Kondo states by small changes of gate voltage. Having
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in mind the property that strain can modify the gap
in nearly metallic nanotubes [81] and thus can in some
cases induce Kondo correlations in 2e valley and opens
new transport channels, one can think about possibility
to use this mechanism for nano-mechanical switching of
the current.

4 Intershell Kondo effects

The electron energies of CNTQD are quantized by peri-
odic boundary conditions along the circumference (quan-
tization of k⊥) and by longitudinal confinement (quan-
tization of k‖). For small diameter the level spacing
corresponding to the circumference quantization is large,
of order of 0.5–1 eV [82], and it is enough to restrict, sim-
ilarly as we have done so far, to a single pair of clockwise
and anticlockwise modes. In this approximation the only
quantum number reflecting circumferential quantization
is valley pseudospin. In most cases a similar argument on
large level spacing applies also to longitudinal modes. In
general, the energies of the longitudinal modes depend
on the bandgap and on the details of confining potential.
In the case of a sharp confining potential and for states
lying not to close to the gap, the resulting quantized ener-
gies are inversely proportional to the dot length. Typically
they are of order of several meV [83] and usually these
energies are much larger than the rest of energies relevant
for the issues discussed here. Restriction to a single shell
i.e. to a manifold of four states (|Kσ〉) corresponding to a
single value of k‖ is then justified. All our previous discus-
sion was limited to this case. In this section we abandon
this assumption and focus on the intershell effects, that
are relevant for higher magnetic fields or for longer dots.
Figure 10 schematically illustrates spectrum of two neigh-
boring shells vs parallel magnetic field. In the following
we concentrate on the description of many-body processes
only for the high fields, where intershell crossings of the
states occur and the states from the lower doublet of the
lower shell and similarly the states form higher doublet
of the higher shell are well separated from the rest and
with a good approximation it is enough to restrict to
the intershell manifold (IM) of the states (|IM〉 = |IK ′ ↓
〉, |IK ′ ↑〉, |IIK ↓〉, |IIK ↑〉) (the first quantum numbers
label the shells). In other words, instead of analyzing
more generally all occupation regions from both shells, we
focus on the high field regions of NI = 3, 4 occupations
of lower shell and NII = 1, 2 for higher shell. Alterna-
tively we can look at this region as single occupied range
of (IM) Nint = 1 (NI = 3), and similarly double occupied
Nint = 2 (NI = 4), triple occupied Nint = 3 (NII = 1)
and full occupied Nint = 4 (NII = 2). The considered
region of energies and fields is shown in Figure 10 (box
bounded by dotted lines). Formally the many body cor-
relations can be described within SB formalism, similarly
to the cases discussed in the previous paragraphs, by 16
slave bosons. There are two different types of intershell
line crossings: spin conserving crossing (valley SU(2)) or
crossing of the lines of opposite spins (spin-valley SU(2)).
Figure 12 shows conductance maps for several values of

spin-orbit splitting. The number of Kondo enhanced con-
ductance lines appearing in each occupancy region and the
characteristic fields, for which the lines appear, depend on
the value of ∆ and they correspond to degeneracy recovery
in the presented field range. As an example let us analyze
conductance for ∆ = 1/10 (Fig. 12a). The lower line for
Nint = 1 (Eint0 ∼ −7.5) is the intershell Kondo resonance
(B‖ = 0.1) and the higher at B‖ = 0.2 reflects Kondo
revival due to cotunneling induced effective intershell val-
ley quantum fluctuations between the states |IK ′ ↓〉 and
|IIK ↓〉 (see Fig. 11a). In Nint = 3 region (Eint0 = −13.5)
intershell valley Kondo effect occurs at B‖ = 0.3 due to
effective fluctuations between the |IIK ↑〉 and |IK ′ ↑〉
states (not presented). In both cases significant conduc-
tance spin polarization is observed (Figs. 12a and 13c),
because Kondo processes occur within the single spin
channels (for Nint = 1 PCs ≈ −1 and for Nint = 3 PCs ≈
1). InNint = 2 region two Kondo lines correspond to inter-
shell spin-valley effects, the lower occurring for B‖ = 1/6
results from |IIK ↑ IIK ↓〉 and |IIK ↓ IK ′ ↓〉 fluctua-
tions and the higher for B‖ = 1/2 from |IIK ↑ IIK ↓〉
and |IK ′ ↑ IK ′ ↓〉 fluctuations (Fig. 11c). In both cases
the corresponding conductances are unpolarized (Figs.
12a and 13c). Apart from the field induced SU(2) Kondo
revivals also higher symmetry effects are possible. For the
assumed parameters it holds for ∆ = 1/6 and ∆ = 1/2.
As it is illustrated for ∆ = 1/6 in Figure 11b (single elec-
tron states) and Figure 11d (two-electron states) magnetic
field brings three states to degeneracy. Each of these states
is coupled with equal strength to the corresponding state
in electrode and in the considered strong coupling limit
Kondo SU(3) effect appears at half filling (N = 2) and
in one of odd occupied regions (N = 3 for ∆ = 1/6, or
N = 1 for ∆ = 1/2). It manifests by the enhanced conduc-
tance, which in the limit of small coupling to the electrodes
approaches G = (9/4)(e2/h) value. The conductance plot-
ted for the fields, for which the threefold degeneracy
occurs exhibit clear plateaus evidencing the appearance
of the mentioned Kondo effects (Fig. 12e). Let us close
this section by a short remark on the impact of inter-
shell intervalley mixing. Figure 12f shows conductance
map for ∆int

KK′ = 0.1, corresponding map for ∆int
KK′ = 0

is presented in Figure 12a. In the N = 3 region, instead
of Kondo enhanced line, line of strongly reduced conduc-
tance is observed for finite valley mixing and in region
of single occupancy instead of two Kondo lines only one
broadened line is seen. To understand these changes we
show in Figures 13a and 13b the evolution of conductances
with increasing valley mixing drawn for the gates corre-
sponding to the centers of Nint = 3 and Nint = 1 areas.
We additionally present in the insets schematic views of
the field dependencies of pure dot electron states per-
turbed by valley mixing. For Nint = 3 anticrossing of the
ground state with one of the states from the higher shell
occurs and consequently the Kondo peak splits and con-
ductance maximum first lowers for small ∆int

KK′ and for
stronger valley mixing a dip is observed. For Nint = 1
a similar anticrossing of the states from different shells
is observed with correspondingly reduced conductance
(B‖ = 0.2), but for slightly lower field (B‖ = 0.1) crossing
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Fig. 13. Conductances for ∆ = 0.1 presented for (a) the centre of intershell occupation region N = 1 (Eint
0 = −7.5) and

(b) centre of intershell occupation N = 3 (Eint
0 = −13.5) for different intershell valley mixings: ∆int

KK′ = 0 (solid black line),
∆int

KK′ = 0.005 (dotted blue), ∆int
KK′ = 0.01 (dashed red), ∆int

KK′ = 0.02 (green) and ∆int
KK′ = 0.03 (short dashed magenta).

Insets shows the field evolutions of single- electron energies (a) and energies of three-electron states of intershell manifold (b)
(Eint

3e = E3e − 2U). Spin polarization map of conductance for ∆ = 0.1 and ∆int
KK′ = 0 (solid black line), ∆int

KK′ = 0.005 (dotted
blue), ∆int

KK′ = 0.01 (dashed red), ∆int
KK′ = 0.02 (green), ∆int

KK′ = 0.03 (short dashed magenta) and ∆int
KK′ = 0.05 (dashed dotted

gray). (c,d) Spin polarization map of conductance for ∆ = 0.1, ∆int
KK′ = 0 and ∆int

KK′ = 0.01.

of the states from the same (lower) shell occurs leading to
a modified Kondo line. The latter problem of restoring of
the Kondo resonance within single shell has been already
discussed in Section 3.3. Comparing the spin polarizations
of conductance presented in Figure 13c for ∆int

KK′ = 0
and ∆int

KK′ 6= 0 (Fig. 13d) it is seen that the valley mix-
ing induced splitting of the Kondo resonance results in
the change of sign of polarization for Nint = 1, 3. To
get insight into this effect we present in the lower inset
of Figure 13 a example for transmission for Nint = 1.
T↓ represents Kondo resonance, which for ∆KK′ = 0 is
an unsplit peak (compare Fig. 11a), whereas T↑ reflects
excited processes involving spin up states lying higher in
energy and this line is split already for vanishing valley
mixing. For ∆KK′ 6= 0 the energies of Kondo active states
differ and instead of location of the Fermi level at the peak
of T↓ (∆KK′ = 0), for finite mixing EF places close to the
dip. T↑ shifts towards lower energies with the increase of
∆KK′ and continues to split. For sufficiently large val-
ley mixing T↓ dominates at the Fermi level and reverse of
polarization results.

5 Concluding remarks

We have studied the interplay of different symmetry
breaking perturbations on transport through CNTQD in
the range of strong correlations. Spin-orbit interaction or
valley mixing breaks the spin-orbital symmetry in carbon
nanotubes and in odd occupied valleys lifts the fourfold
degeneracy of the states leaving Kramers double degen-
eracy. A crossover from highly symmetric SU(4) Kondo
effect into lower symmetry SU(2) then results. At half
filling the sixfold degeneracy is removed under these per-
turbations and a quartet and two singlets appear. For
strong perturbation Kondo correlations are destroyed in
this case, because the dot state of the lowest energy is
singlet. Magnetic field breaks time-reversal symmetry and
degeneracy is completely lifted and consequently Kondo
resonances disappear for fields exceeding Kondo energy
scale. Magnetic field acts both on spin and orbital (val-
ley) pseudospin, in the case of wide gap nanotubes field
linearly increases or decreases the energies depending on
the orientations of magnetic moments associated with
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the dot states. At some fields the degeneracy of some
states might be recovered and revival of Kondo effect
can occur. Depending which states come to degeneracy,
the screened isospin in Kondo processes is a pure spin
or orbital pseudospin or a mixture of both, what reflects
in complete or only partial vanishing of spin or valley
polarizations. By applying gate voltage one can change
the region of the dot occupations, but for wide gap tubes
it is not possible electrically recover the degeneracy within
the same occupation range. In nearly metallic nanotubes
the field evolution of state energies is not linear and
then not only magnetic field, but also gate voltage can
recover degeneracy within a valley of a given occupation,
opening the conditions for building up of Kondo correla-
tions. Interesting, in these narrow gap systems the gate
induced reconstruction of dot states can compensate in
specific conditions the changes induced by spin-orbit cou-
pling and revival of SU(4) Kondo effect can result at
zero magnetic field. Kondo physics in CNTQDs is even
richer if one includes the impact of other perturbations
e.g. local Coulomb interaction induced valley back scatter-
ing, important for short QDs, or intershell effects, which
may play the role for longer dots and in high magnetic
fields. In these cases the possibility of the occurrence of
SU(3) Kondo effect is foreseen by us. To get more com-
prehensive description of intra- and intershell many-body
effects on equal footing extended basis of states from
both shells have to be considered requiring a use of more
slave boson operators. This problem will be discussed else-
where [84]. Also the presented discussion of SU(3) Kondo
effect is only preliminarily, the more detailed analysis is
under our investigation. Theoretical challenge which we
encounter considering many-body processes in the pres-
ence of VBS perturbation is the impact of VBS induced
intradot entanglement of the dot states on the cotunneling
processes in which participate also unentangled states of
electrodes. Even in the case of the full geometrical symme-
try, the mentioned distinction of electrode and dot states
reflects in Kondo resonance. Zero frequency transmissions
of the highly symmetric many-body resonances (SU(N))
are identical for the degenerate states, but as suggested by
our preliminary results they slightly differ (depending on
the degree of entanglement) for finite frequencies. This dif-
ferentiates this case from the situation when only product
dot and electrode states participate in many-body pro-
cesses, then all N partial transmissions are identical. It is
also worth pointing out that taking into account states
from more than two shells degeneracy of higher order
than three can occur at high fields. Rapid progress in
technology allows production of ultraclean CNTQDs mak-
ing them the ideal objects for studying different strongly
correlated regimes. The richness of many-body states
occurring in these systems results from a competition of
different interactions and from different degrees of free-
dom involved in formation of resonances in the strongly
correlated CNTQDs. This is promising for information
processing, because it opens the path for magnetic, elec-
tric or mechanical manipulation not only of the spin, but
also valley degree of freedom, or both of them.
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