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Abstract. The structure factor and correlation energy of a quantum wire of thickness b� aB are studied
in random phase approximation (RPA) and for the less investigated region rs < 1. Using the single-loop
approximation, analytical expressions of the structure factor are obtained. The exact expressions for the
exchange energy are also derived for a cylindrical and harmonic wire. The correlation energy in RPA is found

to be represented by εc(b, rs) = α(rs)
b

+ β(rs) ln(b) + η(rs), for small b and high densities. For a pragmatic
width of the wire, the correlation energy is in agreement with the quantum Monte Carlo simulation data.

1 Introduction

The motion of electrons confined in one spatial dimen-
sion gives rise to a variety of interesting phenomena with
anomalous properties [1]. Recently quasi one-dimensional
systems are experimentally realized in carbon nanotubes
[2–5], semiconducting nanowires [6,7] and cold atomic
gases [8–10], edge states in quantum hall liquid [11–13]
and conducting molecules [14]. The electrons in one
dimension do not obey the conventional Fermi-liquid
theory, hence the prospect to observe non-Fermi-liquid
features has given a large impetus to both theoretical
and experimental research. An appropriate description of
the one-dimensional (1D) homogeneous electron gas is
provided by the low-energy theory based on an exactly
solvable Tomonaga-Luttinger model [15–17]. The ran-
dom phase approximation (RPA) is the correct theory
for a homogeneous electron gas in the high-density limit
i.e. at large electron densities n = 1/(2rsaB), with aB
being the effective Bohr radius and rs being the coupling
parameter.

We model the interactions by a smoothed long-range
Coulomb potential v(x) ∝ (x2 + b2)−1/2, where b is a
parameter related to the width of the wire. We also use
a harmonic confinement potential. The true long-range
character of the Coulomb potential has been studied by
Schulz [18] and Fogler [19,20] using a different approxi-
mation than RPA in certain domains of (b, rs). In fact,
a considerable amount of theoretical and numerical work

a e-mail: morawetz@fh-muenster.de

has been done in this domain [21–34] using RPA, its gener-
alized version and other methods, but still there is a need
to understand the accurate parametrization of correlation
energy for thin wires in the high-density limit. There-
fore the calculation of the ground-state energy for thin
wires in the high-density limit for realistic long-range
Coulomb interactions is still an open problem for the 1D
homogeneous electron gas.

Recently Lee and Drummond [35] have studied the
ground state properties of the 1D electron liquid for
an infinitely thin wire, and the harmonic wire using a
quantum Monte Carlo (QMC) method, and provided a
benchmark of the total energy data for a limited range
of rs. Furthermore, the harmonic wire with transverse
confinement has been investigated with a lattice regu-
larized diffusion Monte Carlo (LRDMC) technique by
Casula et al. [36], and by others [37–39].

Loos [40] has considered the high-density correlation
energy for the 1D homogeneous electron gas using the
conventional perturbation theory by taking the smoothed
Coulomb potential described above in the limit b → 0
(infinitely thin wire). At b = 0 they have reported a corre-
lation energy of −27.4 mHartree per electron at rs → 0. In
their calculations the divergences in the integral for small
b cancels out exactly. Although there is no direct compar-
ison possible between results of Loos [40] and de Oliveira
and Verri [32] with the RPA result due to use of differ-
ent method of calculations, however, we mention that in
RPA the correlation energy diverges for b→ 0 and rs → 0.
The exchange energy has been found to be independent
of b (leaving the logarithmic thickness L which may be
cancelled with the uniform charge background). Further,
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the agreement between the RPA result with QMC for the
structure factor [41] ensures that the RPA should recover
the normal Coulomb operator.

The purpose of the present paper is to study elec-
tron correlation effects in the interacting electron fluid
described by RPA at high densities. The dependence of
the structure factor and correlation energy on the wire-
width is analyzed in the domain of rs < 1 and b � aB .
In this respect it is noted that RPA is a good approx-
imation in the high density limit rs → 0. We derive
analytical expressions for the static structure factor in
the high-density limit. The exact analytical expression
for the exchange energy is also obtained for cylindrical
and harmonic potentials. It is found that on the basis
of theoretical deduction and a logical assumption, the
correlation energy can be represented by the formula

εc(b, rs) = α(rs)
b + β(rs) ln(b) + η(rs).

The paper is organized as follows. In Section 2, we calcu-
late the static structure factor within RPA and using the
first-order approximation. In Section 3, the RPA ground-
state energy formula is given. Subsection 3.1 provides
the exact analytical result of exchange energy for cylin-
drical and harmonic potentials for finite b and rs. The
result for small-b limit is also given there. Subsection 3.2
describes the correlation energy partially by an analyti-
cal formula and partially through numerical calculation.
Then the final result of the correlation energy and its
parametrization is presented. In Section 4 the results are
discussed.

2 Structure factor

The structure factor S(q) is now calculated within the
RPA and its first-order version, where it is possible to
obtain the result analytically. The RPA density response
function χ(q, ω) is given by [42],

χ(q, ω) =
χ0(q, ω)

1− V (q) χ0(q, ω)
, (1)

where V (q) is the Fourier transform of the inter-electronic
interaction potential. For harmonically trapped electron
wires, and for cylindrical wires [26], it is given respectively

by V (q) = e2

4πε0
E1(b2q2) eb

2q2 and V (q) = 2 e2

4πε0
K0(bq),

where E1 is the exponential integral and K0 the modified
Bessel function of 2nd kind.

The static structure factor is defined through the
fluctuation-dissipation theorem as

S(q) = − 1

π n

∫ ∞
0

dω χ
′′
(q, ω), (2)

where χ
′′
(q, ω) is the imaginary part of the density

response function (1). The integral in (2) can be re-written
using the contour integration method [1] as,

S(q) = − 1

π n

∫ ∞
0

dω χ(q, iω), (3)

where n = (kF gs)/π is the linear electron number density,
gs is the spin degeneracy factor and kF is the Fermi wave
vector. Using the high-density expansion

χ(q, iω) = χ0(q, iω) + χ0(q, iω) V (q) χ0(q, iω), (4)

where,

χ0(q, iω) =
gsm

2πq
ln

[
ω2 + ( q

2

2m −
qkF
m )2

ω2 + ( q
2

2m + qkF
m )2

]
, (5)

the structure factor (3) can be calculated for rs → 0 using
(4) and (5) The zeroth-order static structure factor is
easily calculated

S0(q) = − 1

n π

∫ ∞
0

χ0(q, i ω)dω

=

{
q

2kF
, q < 2kF

1, q > 2kF
. (6)

The first-order correction to the structure factor can be
obtained by substituting χ0(q, iω) in the second term of
(4), and than using it in (3) The resulting integral can be
performed analytically and the result for q < 2kF reads

S1(q) = −v(q)
g2s rs 2kF
π2 q

[(
1− q

2kF

)
ln

(
1− q

2kF

)
+

(
1 +

q

2kF

)
ln

(
1 +

q

2kF

)]
. (7)

Similarly, for q > 2kF one obtains

S1(q) = −v(q)
g2s rs 2kF
π2 q

[(
q

2kF
− 1

)
ln

(
q

2kF
− 1

)
+

(
1 +

q

2kF

)
ln

(
1 +

q

2kF

)
− q

kF
ln

q

2kF

]
. (8)

Here and in the following we use V (q) = v(q)e2/4πε0. In
the limit of small q, q around 2kF and large q, the S1(q)
takes the simpler forms

S1(q) =


−v(q → 0)

g2s rs
2π2

q
kF
, q � 2kF

−v(q → 2kF )
g2s rs
2π2

kF
q Λ(z), q → 2kF

−v(q →∞)
4g2s rs
π2

k2F
q2 , q � 2kF

, (9)

where Λ(z) = (8 ln(2)− 2|z|+ 2|z| ln |z| − 3
4 |z|

2) and z =
q−2kF
kF

. It can be easily seen that for harmonic wires the
interaction potential approaches

v(q) =

{
−γ − 2 ln(bq) for bq → 0
1/(bq)2 for bq →∞ , (10)

with the Euler Gamma constant γ.
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For a cylindrical potential the corresponding results are,

v(q) =

{
−γ + ln(2)− ln(bq) for bq → 0

e−bq
√

π
2bq for bq → ∞ . (11)

Both potentials behave similarly at the small bq limit, but
at large bq they differ. Substituting values of v(q) from
(10) in (9), the corresponding leading term agrees with
Fogler [20].

To see the effect of thickness b of the wire we calcu-
late the structure factor from (3) by using (1) and (5),
for rs < 1 and plot them in Figure 1. It is seen from
Figure 1a that as b decreases, the structure factor S(q)
also decreases. A similar trend is also obtained for other
rs. To see the validity of the first-order structure factor we
plot in Figure 1b for rs = 0.1, S0(q) + S1(q) and RPA for
b = 0.025. These are compared with diffusion quantum
Monte Carlo simulation [43] for an infinitely thin wire,
as implemented in CASINO code [44]. All three curves
match perfectly. It is noted that in the high density limit
(rs � 1), the structure factor is more or less the one of
a non-interacting gas of electrons. This is due to the fact
that in this region, the kinetic energy is the dominant con-
tribution to the total energy leading the system to behave
as a gas of non-interacting electrons as conjectured by
Fogler [20].

3 Ground state energy

The ground-state energy can be obtained by the
density-density response function in conjunction with the
fluctuation-dissipation theorem as [1],

Eg = E0 +
n

2

∑
q 6=0

v(q)

×
(
− 1

nπ

∫ 1

0

dλ

∫ ∞
0

χ(q, iω;λ) dω

)
. (12)

It further simplifies into a sum of kinetic energy of the non-
interacting gas with the exchange energy and the residual
energy (i.e. correlation energy) as,

Eg = E0 + Ex + Ec, (13)

where

Ex =
n

2

∑
q 6=0

v(q)

×
(
− 1

nπ

∫ 1

0

dλ

∫ ∞
0

χ0(q, iω) dω − 1

)
, (14)

Ec =
n

2

∑
q 6=0

(
− 1

nπ

∫ 1

0

dλ

×
∫ ∞
0

λ v(q)2 χ2
0(q, iω)

1− λ v(q) χ0(q, iω)
dω

)
. (15)

Fig. 1. (a) The static structure factor S(q) in RPA for a cylin-
drical wire is plotted as a function of q/kF for rs = 0.3, at
different thickness of the wire b= 0.1, 0.01 and 0.001 a.u. (b)
The RPA structure factor is compared with diffusion Monte
Carlo simulation, and with the first order RPA structure factor
for rs = 0.1 and b= 0.025.

3.1 Exchange energy

In this section the exchange energy for a cylindrical as well
as for a harmonic electron wire is obtained analytically, by
integrating (14). Specifically for cylindrical wire it turns
out to be,

Ex = −NkF
π

(
2kF bK1[2kF b]− 1

2(kF b)2
+ πK0[2kF b]L−1[2kF b]

+πK1[2kF b] L0[2kF b]

)
, (16)

where Kn(x) is nth order modified Bessel function of 2nd
kind, and Ln(x) is modified Struve function [45]. Similarly,
the exchange energy can also be obtained for a harmonic
wire of finite thickness given as

Ex = −NkF
2π

(
G2,2

2,3

(
4b2k2F |

0, 12
0, 0,− 1

2

)
−

ln
(
4b2k2F

)
+ e4b

2k2F Γ
(
0, 4b2k2F

)
+ γ

4b2k2F

)
, (17)
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Table 1. Parameters obtained in fitting correlation energy data with the formula given in (30) and (31) for various
rs.

rs ε α1/α2/α β1/β2/β η1/η2/η χ2 ARS AIC BIC RSq Fig.

0.1 εc1 −0.500 −5.0 −9.15692 – – – – – 2a
εc2 0.52184 14.9682 54.0315 0.997365 0.998632 291.265 298.579 0.998721 2a
εc −0.000845452 0.319619 1.31095 1 0.999768 −279.783 −272.469 0.999784 2b

0.01 εc −0.000378126 −0.032961 −0.119755 1 0.999925 −544.096 −536.781 0.99993 2c
0.001 εc −0.0000108161 −0.00244274 −0.0110844 0.937348 0.99788 −333.214 -329.035 0.998183 2d

where G2,2
2,3

(
4b2k2F |

0, 12
0, 0,− 1

2

)
and Γ

(
0, 4b2k2F

)
are the

Meijer G function [46] and the incomplete gamma func-
tion, respectively. As it is difficult to visualize the former
function, it is desirable to write it in its integral form

G2,2
2,3

(
4r2| 0, 12

0, 0,− 1
2

)
=

∫ 2

0

(
1− x

2

)
er

2x2

E1

(
r2x2

)
dx

+
log
(
4r2
)

+ e4r
2

Γ
(
0, 4r2

)
+ γ

4r2
.

(18)

For thin harmonic wires b� aB the exchange energy can
be simplified to be,

Ex = −NkF
2π

(−1− γ − ln(4)− 2 ln(kF b)

−2 ψ(0)(1/2) + 2 ψ(0)(3/2)), (19)

where ψ(0)(1/2) and ψ(0)(3/2) are polygamma functions
[45]. We now use the simpler expansion of the polygamma
function as 2 ψ(0)(1/2) = −2γ− 2 ln(4) and 2 ψ(0)(3/2) =
4− 2γ− 2 ln(4) in the above equation. Equations (16) and
(17) can also be written for a polarized gas by defin-
ing kF↑(↓) = kF (1 ± p), N↑(↓) = N(1 ± p)/2 and kF =

π/(2gsrsaB). Explicitly for thin cylindrical wires b� aB ,
the exchange energy per particle can be obtained by
expanding equation (16) as

εx = − 1

4gsrs

(
(1 + p)2

[
3

2
− γ − ln

(
π(1 + p)

2gsrs

)
+ L

]
+(1− p)2

[
3

2
− γ − ln

(
π(1− p)

2gsrs

)
+ L

])
. (20)

Similarly for harmonic wires, equation (19) gives

εx = − 1

4gsrs

(
(1 + p)2

[
3

2
− γ

2
− ln(2)

− ln

(
π(1 + p)

2gsrs

)
+ L

]
+ (1− p)2

[
3

2
− γ

2

− ln(2)− ln

(
π(1− p)

2gsrs

)
+ L

])
, (21)

where L = ln(aB/b). It is noted that equations (16) and
(17) are new results and for special cases they reduce to

(20) and (21). It is worth mentioning that the logarith-
mic thickness of the wire is defined by L−1. For polarized
(gs = 1 and p = 1) and unpolarized fluids (gs = 2 and p =
0), the exchange energy of a cylindrical wire is obtained
respectively to be

εx = − ln(rs)

rs
− 1

rs

[
3

2
− γ − ln(π) + L

]
, (22)

and

εx = − ln(4rs)

4rs
− 1

4rs

[
3

2
− γ − ln(π) + L

]
. (23)

These are in agreement with Fogler’s results [19].

3.2 Correlation energy

The integration over the coupling constant λ is easily done
in (15) and the correlation energy becomes

Ec =
n

2

∑
q 6=0

(
1

nπ

∫ ∞
0

{v(q) χ0(q, iω)

+ ln[1− v(q) χ0(q, iω)]}dω
)
. (24)

The above equation can be written further as,

εc = εc1 + εc2, (25)

where

εc1 = − gs
2π

∫ ∞
0

v(q) S0(q) dq, (26)

εc2 =
gs
2π

∫ ∞
0

(
1

nπ

∫ ∞
0

ln {1− v(q) χ0(q, iω)} dω
)
dq.

(27)

The first term εc1 can be integrated analytically for the
cylindrical potential,

εc1 = −g
2
srsa

2
B

b2π2
+
gsaB
bπ

K1

(
b

aB

π

gsrs

)
+

aB
2brs

×
[
−gsrs + π(b/aB)L−1

(
b

aB

π

gsrs

)
K0

(
b

aB

π

gsrs

)]
+

[
πbL0

(
b

aB

π

gsrs

)
K1

(
b

aB

π

gsrs

)]
. (28)
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Fig. 2. (a) The parts of correlation energy εc1 (lower curve)
and εc2 (upper curve) versus b for rs = 0.1 where the analytical
result εc1 (green continuous line) are plotted together with the
numerical εc2 (green dots) and the fitted curve (black continu-
ous line) for the same rs. (b) Total correlation energy εc for the
same value of rs with the fitted curve (black continuous line)
and the numerical results (blue dots). (c) and (d) for rs = 0.01
and rs = 0.001 respectively, but numerical results (dots) are
shown by magenta and red colors.

Equation (28) is further simplified for an infinitely thin
wire b→ 0 for any finite rs as

εc1 =
−gs

2(b/aB)

+
1

2rs

[
3

2
− γ + ln

(aB
b

)
− ln

(
π

2gsrs

)]
. (29)

For a given rs the above equation has a functional
dependence on b (in atomic unit) as

εc1(b, rs) =
α1(rs)

b
+ β1(rs) ln(b) + η1(rs), (30)

where α1(rs), β1(rs) and η1(rs) can be read from (29).
Equation (27) cannot be integrated analytically, therefore
we solve it numerically. Anticipating that the correlation
energy εc for b→ 0 and rs → 0 turns out to be a constant,
εc2 may also be represented by (30) but with the coeffi-
cients α2(rs), β2(rs) and η2(rs). Therefore we represent
εc2 by,

εc2(b, rs) =
α2(rs)

b
+ β2(rs) ln(b) + η2(rs), (31)

and fit it to the numerical result. The coefficients α, β, η
for εc2 and εc are given in Table 1, for rs=0.1, 0.01 and
0.001. Note that the coefficients for εc1 are analytically
known. Also the same formula as for εc2 is assumed for
εc. To estimates the accuracy of the fit with the numer-
ical calculation, we have provided the statistical analysis
with different methods: χ2, R2 adjusted for the number
of model parameters, AdjustedRSquared (ARS), Akaike
information criterion (AIC), Bayesian information crite-
rion (BIC) and coefficient of determination R2 (RSq). The
fitted parameters by the statistical analysis in Table 1
reflect the quality of the function εc2(b, rs) and εc(b, rs).

The correlation energies per particle εc1 (lower curve)
and εc2 (upper curve) are plotted in Figure 2a, as obtained
analytically and numerically, and are shown as green con-
tinuous curve and green dots, respectively. The fitted εc2
from representation (31) is shown by the black continu-
ous line. It is clearly seen that there is a perfect fit of εc2,
as also inferred above from the statistical analysis. It is
seen that there is no cancellation between the two curves
for rs = 0.1. The resulting sum is plotted for the same rs
in Figure 2b. Total correlation energy for rs = 0.01 and
rs = 0.001 are also plotted in Figures 2c and 2d respec-
tively. These figures show that there is no indication that
the correlation energy approaching a constant value for
very small rs for an infinitely thin wire.

For a pragmatic width of the wire, the correlation
energy for a polarized fluid is reported in Table 2. The
correlation energy at high densities rs ≤ 0.1 and b = 0.1,
is in agreement with the quantum Monte Carlo simulation
[36,37] for polarized fluids.

To check the consistency of our result of the cor-
relation energy for b → 0 and rs < 1, we plot it in
Figure 3 as a function of rs for small values of b. It is
seen that as b decreases, the correlation energy increases,

https://epjb.epj.org/
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Table 2. Correlation energy per particle for fully polarized fluids for various rs and b.

rs / b Correlation energy εc (mHartree)
0.001 0.01 0.1 0.2 0.3 0.4 0.5

0.001 −5.1925 −0.051326 −0.00051321 −0.000128314 −0.000057025 −0.00032081 −0.000205298
0.01 −267.9063 −5.18143 −0.0512140 −0.01280232 −0.00568998 −0.00320059 −0.002048385
0.1 −1675.0533 −258.96748 −5.075932 −1.2577678 −0.5580828 −0.3137399 −0.20074031
0.2 −2250.7232 −568.01835 −19.866556 −4.9634643 −2.1935919 −1.2308436 −0.7868883
0.3 −2543.4151 −684.53832 −41.492422 −11.018708 −4.8636832 −2.7297174 −1.7380320
0.4 −2714.8034 −814.49113 −66.343762 −19.104517 −8.5835144 −4.7704732 −3.0480646
0.5 −2815.2034 −895.4 −93.330872 −28.570889 −13.510079 −7.3493536 −4.6830739

Fig. 3. The correlation energy per particle versus rs for
different thicknesses b of a cylindrical wire.

which is consistent with our previous results given in
Figures 2b–2d.

In Figure 4 the total ground-state energy is presented
with different wire thicknesses as a function of rs. As b
decreases, the ground-state energy increases. For the range
rs � 1 there are no QMC data available to compare the
ground-state energy for an infinitely thin wire. Our cal-
culation is suited for long-range interactions whereas the
Fogler calculation deals with the short-range interaction.

4 Summary

In this paper we have calculated the dependence of the
ground-state structure factor and the correlation energy
on the thickness of an electron wire as a function of
rs. The structure factor is calculated in the single-loop
approximation of RPA. The electron-electron interactions
are modeled by a cylindrical and a harmonic potential.
We find an agreement with the variational calculation
of Fogler [20]. The structure factor has also been com-
pared for b = 0.025 and rs = 0.1 with the QMC data
[43]. For first-order corrections in the interaction, the
RPA results and the QMC data match perfectly, indicat-
ing that for small thickness and for high densities, the
electron gas behaves as a gas of non-interacting particles
though highly correlated, which is clear from the correla-
tion energy calculations. In this sense Fogler [19,20] calls
it a Coulomb-Tonks gas.

Fig. 4. Ground state energy εg is plotted as a function of
rs ≤ 1, for values of wire widths b.

We have also obtained new analytical expressions for
the exchange energy of both cylindrical and harmonic elec-
tron wires. In the small-thickness limit the expressions
simplify considerably and are more or less the same for
both wires. This has been also worked out for polarized
gases, from which the paramagnetic and ferromagnetic
phases can easily be obtained. The exchange energy for
a fully polarized gas agrees with Fogler [19].

In the present paper the total correlation energy in RPA
is found to be fitted by

εc(b, rs) =
α(rs)

b
+ β(rs) ln(b) + η(rs), (32)

with the parameters given explicitly. This correlation
energy is the sum of two terms which only partially can-
cel. The first term is calculated analytically exactly by
the expression (32) where the values of α, β and η are
precisely known. The second term has been calculated
numerically. It perfectly fits with the expression of (32)
but with different parameters.

This findings clearly indicate that the correlation energy
is diverging in the limit of b → 0 and rs → 0. Further,
the correlation energy as a function of rs for various b,
again points out that the correlation energy increases
as b decreases for rs → 0. The Coulomb correlations
are enhanced, and the interacting electron gas behaves
structure-less in the ultra-thin and high-density domain
of L−1 � rs � 1 like a strongly-interacting electron gas

https://epjb.epj.org/
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named Coulomb-Tonks gas [19,20]. Further, we find that
the correlation energy does not approach a constant value
for an infinitely thin wire and rs → 0 within the RPA.
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