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Abstract. An extended version of the Continuous-Time Random Walk (CTRW) model with memory is
herein developed. This memory involves the dependence between arbitrary number of successive jumps of
the process while waiting times between jumps are considered as i.i.d. random variables. This dependence
was established analyzing empirical histograms for the stochastic process of a single share price on a
market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask
bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared
exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical
counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research
significantly extends capabilities of the CTRW formalism.

1 Introduction

The dynamics of many complex systems, not only in
natural but also in socio-economical sciences, is usually
represented by stochastic time series. These series are
often composed of elementary random spatio-temporal
events, which may show some dependencies and correla-
tions as well as apparent universal structures [1–6]. By
this elementary event we understand a “spatial” jump, r,
of a stochastic process preceded by waiting (interevent or
pausing) time, τ , both being stochastic variables.

Such a two-phase stochastic process, named
Continuous-Time Random Walk (CTRW), was intro-
duced in the physical context of dispersive transport
and diffusion by Montroll and Weiss [7] and applied
successfully to description of a photocurrent relaxation
in amorphous films [8–12] (and references therein) and in
OLED ones [13,14].

The CTRW formalism was applied for example, for
diffusion in probabilistic fractal structures such as per-
colation clusters [15] and for fractional diffusion [16].
The CTRW with broad waiting time distribution was
applied, e.g. for diffusion in chaotic systems [17]. The
CTRW formalism, containing broad spatial jump distribu-
tion explained superdiffusion (Lévy flights or walks) [18]
observed in domains of rotating flows or weakly turbulent
flow [19,20]. The CTRW found innumerable applications
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in many other fields: hydrogen diffusion in nanostructure
compounds [21], nearly constant dielectric loss in disor-
dered ionic conductors [22] subsurface tracer diffusion [23],
electron transfer [24], aging of glasses [25,26], transport in
porous media [27], diffusion of epicenters of earthquakes
aftershocks [28], cardiological rhythms [29], search models
[30], human travel [31] and even financial markets [32–36].
Today, the CTRW provides an unified description for both
enhanced and dispersive diffusion [37–40] – the list of its
applications is still growing (cf. [41]).

Nearly three and a half decades ago the versions of
the CTRW formalism containing the backward or forward
correlations between jump directions were developed [42]
(and references therein). Soon, the first application of the
former version of the formalism, as in the case of con-
centrated lattice gas, was performed for the study of the
tracer diffusion coefficient [43]. The study was directly
inspired by hydrogen diffusion in transition metals [44,45]
and ionic conductivity in super-ionic conductors [46]. As
a result, for lattices of low coordination numbers or net-
works with low average nodes’ degrees, the description of
the tracer diffusion in concentrated lattice gas requires an
extension of the CTRW formalism to take into account the
dependencies over several subsequent jumps [47]. These
dependencies can occur because the vacancy left behind
the tracer particle after its jump favorizes the return of
the tracer to the origin location, even after several jumps.
The CTRW formalism with memory appeared also in
other contexts including correlation over waiting times
[48–51] (or the alternative approach in [52,53]), but up
to now, still limited only to the dependence over two sub-
sequent jumps as its extension to the case of memory (or
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dependence) over three or more subsequent jumps was too
complicated for the theoretical derivation.

This work extends the field of applications of the CTRW
formalism by including memory ranging over two jumps
behind the current jump. In other words, in this work
the dependence between three subsequent jumps is con-
sidered resulting in an exact analytical solution. Such an
approach is useful not only for study of one-dimensional
random walk but also can be useful in higher dimensions
for different kinds of lattices and networks.

Furthermore, we applied our CTRW formalism to the
subtle description of the high-frequency price dynamics
driven by the microscopic mechanism of bid-ask bounce
phenomena. One reason in favor of CTRW formalisms is
that they provide a generic formula for the first and second
order time-dependent statistics in terms of two auxiliary
spatial, h(r), and temporal, ψ(τ), distributions that can
be obtained directly from empirical histograms.

The paper is organized as follows: in Section 2 we
present the motivation of our work. In Section 3 we define
the proper stochastic process which is solved in Section
4. In Section 5 the novel model is compared with our
previous model [54] and in Section 6 the comparison
with empirical data was made. Section 7 contains our
concluding remarks.

2 Direct motivation

There are few (considered below) direct reasons supplied,
e.g. by financial markets, that prompted us to include
the two-step memory into the Continuous-Time Random
Walk formalism in a generic way.

If, for simplicity, we record only successive share price
jumps and not time intervals (waiting-times) between
them, we will obtain the so-called “event-time” series.
The event-time dependent autocorrelation functions of
price changes obtained on this basis were already widely
considered [55,56]. The shape of these autocorrelation
functions, i.e. their dependence on event-time, is universal
in the sense that this shape is independent of the mar-
ket and stock analyzed. Moreover, for each considered
event-time series we receive a distinctly negative value
of lag-1 autocorrelation function while almost vanishing
values for lag-2, lag-3, . . .. Therefore, the shape of this
autocorrelation function can be considered as a stylized
fact.

The significant correlation between two successive price
jumps stimulated Montero and Masoliver [48] as well as
authors of the present work [54] to describe the stochas-
tic process of the single stock price as a CTRW with one
step backward memory. In this one step backward mem-
ory the current value of the increment depends only on
the previous one. Such a dependence is caused in finance
by the bid-ask bounce phenomenon [55,57]. Previously, we
assumed that the dependence between current price jump
and the second one before the current price jump can be
neglected as corresponding correlation vanishes [54]. How-
ever, in the present work the mentioned above dependence
is taken into account as we observed, herein, that even
vanishing of the correlation does not imply the lack of
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Fig. 1. Empirical normalized histograms of different kinds of
two price jumps dependencies: (a) for the current price jump
and the preceding price jump, (b) for the current price jump
and the second one before the current price jump or next-
to-last jump. The larger logarithm of the joint probability is
visualized by more intense grayness. To avoid singularity of
the logarithmic scale, all probabilities are increased by small
insignificant number, 10−5. The histogram is based on the
dataset used in [54] for PEKAO stock.

dependence. This is a key observation which initialized
the present work.

We remind that by basing on the empirical histogram
of the two consecutive price jumps (compare diagrams in
Fig. 1 in Ref. [54] and the analogous one in Fig. 1a in
the present work), we proposed a formula which describes
dependence (herein of the backward form) between two
consecutive (lag-1) jumps, rn, rn−1, by the joint two-
variable pdf

h(rn, rn−1) = (1− ε)h(rn)h(rn−1)

+ε δ(rn + rn−1)h(rn−1), (1)

or equivalently by the conditional pdf

h(rn | rn−1) = (1− ε)h(rn) + ε δ(rn + rn−1), (2)

where h(x) is an even function as no drift is present
herein and 0 ≤ ε ≤ 1 is a constant weight, which can
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be estimated either from the histogram or from the lag-1
autocorrelation function of consecutive jumps of the pro-
cess. Apparently, only the second term in equations (1)
and (2) describes dependence (herein of the backward
type) between rn and rn−1 variables. Furthermore, above
formulas imply a dependence between rn and rn−2 jumps,
expressed in the two-variable pdf

h2(rn, rn−2) =

∞∫
−∞

drn−1h(rn | rn−1)h(rn−1, rn−2)

= (1− ε2)h(rn)h(rn−2)

+ε2 δ(rn − rn−2)h(rn−2), (3)

which gives a significant, positive correlation between rn
and rn−2 equals ε2.

The generalization of equation (3) for the dependence
between any two jumps is straightforward

hk(rn, rn−k) =

∞∫
−∞

drn−1 . . .

∞∫
−∞

drn−k+1h(rn | rn−1)

×h(rn−1 | rn−2) . . . h(rn−k+1, rn−k)

= (1− εk)h(rn)h(rn−k)

+εk δ(rn − (−1)krn−k)h(rn−k),

k = 2, 3, . . . (4)

where k is the number of steps in the event time. Hence,
the autocorrelation function of jumps in the event time is
simply

c(k) =
1

µ2

∞∫
−∞

drn

∞∫
−∞

drn−krnrn−khk(rn, rn−k) = (−ε)k,

(5)

where the second moment µ2 =
∞∫
−∞

dxx2 h(x). However,

relation (5) is not observed in empirical data as empirical
autocorrelation function decreases to zero much quicker.

In principle, the empirical autocorrelation function
between jumps cannot be reproduced if one assumes that
(i) only two successive jumps are dependent and (ii) this
dependence is described by the symmetric distribution
function h(rn, rn−1) = h(rn−1, rn), although the latter is
justified by the empirical representation of h(rn, rn−1)
shown in Figure 1a. As a consequence of assumption (i)
the correlation between rn and rn−2 is always greater
than zero (see Appendix A for detailed derivation), which
essentially disagrees with empirical data shown in Figure
1b. Indeed, this disagreement is one of the main inspira-
tions to consider the CTRW model with longer memory,
where each current jump of the process depends on the
two previous jumps.

3 Definition of the model

Let us begin with the analysis of the empirical histogram
presenting dependence between the current price jump
and the second one before the current jump. This his-
togram, which is a statistical realization of the function
h2(rn, rn−2), is shown in Figure 1b. Observed antisym-
metric dependence between rn and rn−2 can be considered
as a generic empirical example of two random variables
which are dependent but uncorrelated. Besides a sharp
central cross, it contains both a “diagonal” and an “anti-
diagonal”. These diagonals and anti-diagonals correspond
to the case, where the current price jump and the second
one before the current price jump have the same length
but might have the same or the opposite signs.

Apparently, equation (3) is able to reproduce only the
diagonal of the histogram. To reproduce both diagonal
and anti-diagonal we have to extend equation (3) into the
form

h2(rn, rn−2) = (1− 2ζ)h(rn)h(rn−2)

+ζ δ(rn − rn−2)h(rn−2)

+ζ δ(rn + rn−2)h(rn−2), 0 ≤ ζ ≤ 1, (6)

essential for further considerations, where the second
and third terms represent diagonal an anti-diagonal,
respectively. These terms, together with the first term,
make distribution h2(rn, rn−2) well normalized quantity.
To obtain a vanishing correlation between rn and rn−2

we assumed weights of the diagonal and anti-diagonal
equal and denoted by ζ. Now, we can construct the
three-variable pdf of three consecutive price jumps. For
simplicity, instead of notation (rn, rn−1, rn−2) we use
(r3, r2, r1).

The three-variables pdf, h(r3, r2, r1), should obey the
following constrains concerning the marginal distribu-
tions:

– Firstly, distribution h(r3, r2, r1) integrated over any
two of the three variables should reproduce, for the
third variable, a single price jump distribution – the
same for all three cases. The analogical constrain for
two variables pdf is already satisfied by equation (1).

– Secondly, distribution h(r3, r2, r1) integrated over
variable r1 should reproduce two-variables pdf,
h(r3, r2), in the form of equation (1). The same pdf
h(r3, r2, r1) integrated over variable r3 should also
reproduce two-variables pdf, h(r2, r1), again in the
form of equation (1).

– However, pdf h(r3, r2, r1) integrated over variable r2

should give pdf h2(r3, r1) in the form of equation (6).

Hence, we propose a key formula for h(r3, r2, r1) in the
form

h(r3, r2, r1) = (1− 2ε)h(r3)h(r2)h(r1)

+ζδ(r3 + r2)δ(r2 + r1)h(r1)

+(ε− ζ)δ(r3 + r2)h(r2)h(r1)

+(ε− ζ)δ(r2 + r1)h(r3)h(r1)

+ζδ(r3 + r1)h(r2)h(r1), (7)
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which satisfies all constrains mentioned above. Obviously,
this form is not a unique pdf but it is the simplest
one which uses only two parameters (ε and ζ), where
additionally each term has clear interpretation.

It is worth to mention that all terms shown on the right-
hand side of equation (7), except the last one, are present,
with slightly modified pre-factors, in the simple product of
distributions h(r3 | r2) and h(r2, r1) defined by equations
(1) and (2), respectively. The only new term is the last
one, proportional to δ(r3 + r1)h(r2). This term describes
the case, when the price jump r1 is followed by the second,
independent price jump r2 and the third price jump r3 =
−r1 which has the same length as jump r1 but the opposite
sign. The adding of such a term is due to the bid-ask
bounce phenomena with delay present herein. We explain
what is meant by the name “bid-ask bounce with delay”
by using a characteristic scenario given below.

Let us consider a continuous-time double auction mar-
ket organized by the order book system [55,58–60]. Let
buy and sell orders be sorted according to the corre-
sponding price limit. The gap between buy order with
the highest price limit and sell order with the lowest price
limit is called the bid-ask spread [55,58–60]. In our previ-
ous paper [54] we analyzed, as a typical example, a series
of orders which lead to the bouncing of the price between
lower and higher border of the bid-ask spread. To jus-
tify the form of equation (1), we argued that if the price
increases from the lower border of the bid-ask spread to
some possibly new value of the higher border, the two
cases are possible.

In the first case, an appropriate sell order occurs, with
probability ε, and the price goes back to the vicinity of the
previous price. This results in two consecutive price jumps
of approximately the same length but opposite signs. In
the second case, if other type of the order arrived, it leads
to the elimination of the system memory present in the
bid-ask spread. As a result, the subsequent price jump can
be considered in this case as independent of the previous
jump and appears with probability 1− ε. These two cases
can be formally expressed by the two variable pdf just in
the form given by equation (1). However, as we argued in
the previous section, one-step memory CTRW formalism
is not able to properly describe the high frequency stock
market dynamics.

Fortunately, from the second case considered above, we
are able to extract the subsequent case, leading eventually
to the two-step memory. That is, if after the first price
jump the sufficiently executable small volume buy order
appeared, the price jump (initiated by this buy order) will
be equal zero. In such a case, the memory of the system is
still present in the bid-ask spread, because its lower border
still did not move, in fact. Hence, the backward jump to
the lower border is still possible with the price jump of
approximately the same length as the second to last price
jump, but with opposite sign. Analogous dependence can
be present for longer series of consecutive jumps but with
systematically decreasing order. We emphasize that we do
not assume that subsequent orders are independent, so our
model even describes a situation where memory is present
in the order flow [61].

By means of pdf, the term describing such a case (of
the two-step memory) can be approximated by the term
proportional to δ(r3 + r1)δ(r2)h(r1). The first Dirac’s
delta is responsible for the situation where the current
jump r3 repeats the second one, r1, before the current
price jump, but with the opposite sign (i.e. r3 = −r1).
The second Dirac’s delta gives the zero-length mid price
jump r2. However, to obey all three constrains (a)–(c) on
marginal distributions of h(r3, r2, r1), we were forced to
use instead of two deltas, the last term based on the prod-
uct δ(r3 + r1)h(r2)h(r1). Let us remind that single jump
distribution h(r2) is strongly concentrated at the vicin-
ity of r2 equals zero. Taking this term into account with
appropriate weight, we thus completed our basic equation
(7).

In our model the jumps of the process are not indepen-
dent, as a current jump depends on two preceding jumps.
Hence, the conditional pdf of the jump length r3, under
the condition of previous jumps r2 and r1, can be obtained
from equation (7) by dividing of its both sides by h(r2, r1)
given by equation (1). This leads to the useful conditional
pdf

h(r3 | r2, r1) = (1− δr2,−r1)

×
(

1− 2ε

1− ε
h(r3) +

ζ

1− ε
δ(r3 + r1)

)
+ (1− δr2,−r1)

ε− ζ
1− ε

δ(r3 + r2)

+ δr2,−r1

(
ε− ζ
ε

h(r3) +
ζ

ε
δ(r3 + r2)

)
,

(8)

where the following dependences between Dirac’s delta
and Kronecker’s delta were used

(1− δx,−y)δ(x+ y) = 0,

δx,−yδ(x+ y) = δ(x+ y).

As we precisely defined dependences between consecutive
jumps, we can introduce a stochastic process and derive
the analytical forms of the most significant quantities such
as the propagator and velocity autocorrelation function of
the process.

Notably, equations (7) and (8) have generic character,
which does not limit them to the local dynamics of share
price only.

4 Solution

The high-frequency share price time series can be con-
sidered as a single realization or trajectory of a jump
stochastic process. The trajectory of such a process is a
step-way function consisting of waiting times τn prior to
the sudden jump increment of a price rn. Hence, the single
trajectory can be defined in time and space by the series
of subsequent temporary points

τ1, r1; τ2, r2; . . . ; τn, rn,
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and the process can be described by the conditional
probability density

ρ(rn, τn | rn−1, τn−1; rn−2, τn−2; . . . ; r2, τ2; r1, τ1).

This is the probability density of jump increment rn
after waiting time τn, conditioned by the whole his-
tory (τ1, r1; τ2, r2; . . . ; τn−1, rn−1). To construct theoret-
ical model, we have to make the following simplifying
assumptions:

– the process is stationary, ergodic and homogeneous
in space (price) variable. In the case of financial mar-
ket, we neglect the influence of the so-called lunch
effect, which is the non-stationarity resulting as a
daily stable pattern of investors’ activity;

– all waiting times between successive changes of the
process, τn, are i.i.d. random variables with distribu-
tion ψ(τn) having finite average.1 In case of infinite
average the process is non-ergodic [62,63];

– each jump increment rn of the process depends only
on two previous jump increments rn−1, rn−2 in the
form given by equation (8).

The approximations given above can be summarized in
the form of a factorized distribution,

ρ(rn, τn | rn−1, τn−1; rn−2, τn−2; . . . ; r2, τ2; r1, τ1)

≈ h(rn | rn−1, rn−2)ψ(τn). (9)

Equation (9) gives the recipe for the infinitely long tra-
jectory but, as the process is homogeneous and stationary,
we can arbitrary choose the origin for the time and space
axes. Since we analyze the trajectories starting at some
arbitrary time t = 0 at origin, we have to take into account
that the first jump of the process after time t = 0 depends
on the two previous jumps, that we call r0 and r−1. This
can be solved by weighting the trajectories by h(r0, r−1),
where h is given by equation (1) even for n = 0.

Furthermore, we cannot use the same waiting-time dis-
tribution for the first jump as for other jumps. This is
because jump increment r0 might occur at any time before
t = 0. Therefore, we can average over all possible time
intervals τ ′ between the instant of jump increment r0 and
the time origin t = 0. Such an averaging was proposed in
[42] and leads to the distribution

ψ1(τ) =

∞∫
0

dτ ′ψ(τ + τ ′)

∞∫
0

dτ ′′
∞∫
0

dτ ′ψ(τ ′ + τ ′′)

⇔ ψ̃1(s) =
1

〈τ〉
1− ψ̃(s)

s
, (10)

where expected (mean) waiting-time is

〈τ〉 =

∫ ∞
0

τ ψ(τ)dτ <∞.

1 The stationary process we can obtain by using a modified
distribution for the first jump, as we consider further in the text.

The denominator in the first equation in equation (10)
is required for the normalization. The only continuous
case where ψ1(τ) = ψ(τ) is an exponential waiting-time
distribution of a Poisson process.

The aim of this section is to derive the conditional
probability density, P (X, t), to find value X of the pro-
cess at time t, under the condition that the process
initial value was assumed as the origin. Further in the
text we call this probability the soft stochastic prop-
agator, in contrast to the sharp one, which we define
below. The derivation of the propagator consists of few
steps described in the following paragraphs, which extends
the corresponding derivation of the canonical CTRW
formalism.

The intermediate very useful quantity describing
the stochastic process is the sharp, n-step propaga-
tor

Qn (X, rn, rn−1; t) , n = 1, 2, . . .

This propagator is defined as the probability density
that the process, which had initially (at t = 0) the
original value (X = 0), makes its (n − 1)th jump by
rn−1 from X − rn − rn−1 to X − rn (at any time) and
makes its nth jump by increment rn from X − rn to
X exactly at time t. The key expression needed for
exact solution of the process is given by the recursion
relation

Qn (X, rn, rn−1; t) =

t∫
0

dτ ψ(τ)

∞∫
−∞

drn−2

× h(rn | rn−1, rn−2)

× Qn−1 (X − rn, rn−1, rn−2; t− τ) ,

n = 3, 4, . . . (11)

Equation (11) relates two successive sharp propaga-
tors by the spatio-tempotral convolution. This equation
is valid only for n ≥ 3 and should be completed by propa-
gators Q1 and Q2 calculated directly from their definitions
(cf. Ref. [54]).

We define sharp summarized propagator Q (X, t) as
follows:

Q (X, t)
def.
= Q1 (X; t) +Q2 (X; t)

+
∞∑
n=3

∞∫
−∞

drn

∞∫
−∞

drn−1Qn (X, rn, rn−1; t) . (12)

Finally, to obtain the soft stochastic propagator,
P (X, t), we use the relation between soft and sharp
propagators, which is much easier to consider in the
Fourier-Laplace domain

ˆ̃P (k, s) = Ψ̃1(s) + Ψ̃(s) ˆ̃Q(k; s), (13)

where Õ means the Laplace, and Ô Fourier transform of
O. Sojourn probabilities (in time and Laplace domains)
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Page 6 of 15 Eur. Phys. J. B (2017) 90: 228

are defined by the corresponding waiting-time distribu-
tion

Ψ(τ) =

∞∫
τ

ψ(τ ′)dτ ′ ⇔ Ψ̃(s) =
1− ψ̃(s)

s
, (14)

wherein Ψ1(τ) is defined analogously.
To find an explicit form of equation (13), the proce-

dure analogous to that for the one-step memory model
was developed [54], although it was much more tedious
(see Appendix B for details). Hence, the Laplace trans-
form of the velocity autocorrelation function (VAF, also
known as velocity autocovariance function) is given by

C̃(s) =
s2

2

〈
X̃2
〉

(s) =
µ2

2 〈τ〉
N(ψ̃, ζ, ε)

D(ψ̃, ζ, ε)
, (15)

while numerator, N(ψ̃, ζ, ε), and denominator, D(ψ̃, ζ, ε),
are defined, as follows:

N(ψ̃, ζ, ε) = ψ̃3ζ
(
ζ − ε2

)
+ ψ̃2εζ(2(ε− 1)ε− ζ + 1)

+ψ̃(1− ε)2
(
2ε2 − ζ

)
− (1− ε)2ε,

D(ψ̃, ζ, ε) = ψ̃3ζ
(
ζ − ε2

)
+ ψ̃2εζ(ζ − 2ε+ 1)

+ψ̃ζ(1− ε)2 + (1− ε)2ε, (16)

where the relation between the stochastic propagator in
the Fourier and Laplace domains and the corresponding
mean-square displacement were used herein.

As we are interested in a closed form of the VAF in
the time domain, we find both expressions in equation
(16) as too complicated to perform the inverse Laplace
transformation of equation (15), even for simple forms of

ψ̃(s). To keep our model self-consistent (that is, Eq. (6)
being an extension of Eq. (3)), we assume

ζ = ε2. (17)

Our estimation of parameter ζ, based on the empirical
data, gives this parameter almost equals to ε2. Hence,
relation (17) simplifies both expressions in equation (16)
eliminating the residual fluctuations of the order of ζ − ε2.
Equation (15) is simplified now into

C̃(s) =
µ2

2 〈τ〉
1− εψ̃(s)− ε2ψ̃2(s)

1 + εψ̃(s) + ε2ψ̃2(s)
=

µ2

2 〈τ〉

×

[
1− 2

(
j

j − 1

εψ̃(s)

εψ̃(s)− j
+
−1

j − 1

εψ̃(s)

εψ̃(s)− j̄

)]
,

(18)

where root j = − 1
2 + i

√
3

2 and Ō means a complex
conjugate of O.

Noticeably, we can obtain power spectra of our pro-
cess from equation (18) directly by using Wiener-Khinchin
theorem [64].

The normalized VAF (market with superscript n) is
then given, in the time domain, by the expression

C n(t) = δ(t)− 2εL−1
t

(
λ

ψ̃(s)

εψ̃(s)− j
+ λ̄

ψ̃(s)

εψ̃(s)− j̄

)
,

(19)

where L−1
t (. . .) is an inverse Laplace transform and λ =

j
j−1 = 1

2 − i
√

3
6 .

Apparently, the above obtained VAF uses solely quan-
tities (ψ̃(s) and the parameter ε) analogous to that of the
one-step memory model [54].

Moreover, the very regular form of equation (18) and
the corresponding result for the model containing the
one-step memory backward enables to formulate the con-
jecture concerning the memory through arbitrary number
of steps

C̃(s) =
µ2

2 〈τ〉
2−

∑n
j=0 ε

jψ̃j(s)∑n
j=0 ε

jψ̃j(s)

=
µ2

2 〈τ〉
1− 2εψ̃(s) + (εψ̃(s))n+1

1− (εψ̃(s))n+1
, n = 1, 2, . . .

(20)

Herein, three terms in denominator of the first equality in
equation (18) are treated as initial terms of a geometric
series (accordingly, the numerator is treated). Apparently,
for infinite many steps backward, (n→∞), this equation
gives the following result,

C̃(s) =
µ2

2 〈τ〉
2−

∑∞
j=0 ε

jψ̃j(s)∑∞
j=0 ε

jψ̃j(s)
=

µ2

2 〈τ〉
(1− 2εψ̃(s)),

(21)

very useful for our further considerations.
The evolution of C̃(s) governed in equations (20) and

(21) solely by ψ̃(s) is a significant issue. For instance, a
multifractality could directly be considered using equation
(21) if ψ(t) would be conducted in the form of prop-
erly suited superstatistics [35,36]. However, the analysis of
anomalous diffusion requires, herein, resignation from sta-
tionarity. Lack of stationarity, which would appear here,
results from the initial situation and not from how the pro-
cess evolves itself. Therefore, there are no major obstacles
to build a non-stationary CTRW formalism containing
memory through infinite-many steps.

5 Comparison of the models

In Section 2, we discussed selected properties of the one-
step memory model and compared them with the well
known properties of empirical data. The observed dis-
agreement inspired us for development of the two- and
infinite-step memory model, solved in the previous sec-
tion, where the latter model is based on our conjunction.
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Table 1. Comparison of the two-step memory model
with the one-step memory model. Subsequent five values
of the event-time autocorrelation function are presented.
Apparently, the two-step memory model gives c(2) = 0,
as required by empirical data.

Model c(0) c(1) c(2) c(3) c(4)

One-step memory 1 −ε ε2 −ε3 ε4

Two-step memory 1 −ε 0 ε3 −ε4
Empirical data 1 −ε 0.0 0.0 0.0

In the present section we examine difference between
one-, two-, and infinite-step memory models by using the
autocorrelation function.

Let us begin with the analysis of the autocorrelation
function in the event time. The dependence between any
two jumps of the process within the one-step memory
model is given by equation (4). This dependence results in
autocorrelation expressed by equation (5). However, in the
case of the two-step memory model, the analogous depen-
dence for k ≥ 1 is a bit more complicated. Fortunately, we
obtain autocorrelation functions in the event time solely to
k = 4. These functions are compared in Table 1 with the
corresponding results for one-step memory model calcu-
lated from equation (5). It is worth recalling that empirical
lack of the correlation for k ≥ 2 is considered as a styl-
ized fact in high frequency empirical financial data. As we
assumed during the construction of the model, the current
version gives c(2) = 0. Apparently, for k ≥ 3 both models
give autocorrelation functions of the same orders, which
for empirical values of ε are negligibly small quantities (see
also Sect. 6).

The particularly useful way to visualize the role of the
two- and infinite many step memory models is to compare
the corresponding velocity autocorrelation functions in a
real time. We perform the inverse Laplace transformation
in equations (19) and (21) for the simplest possible expo-
nential waiting-time distribution to highlight the generic
difference between the models. We assume

ψ(t) =
1

〈τ〉
e−t/〈τ〉, (22)

where 〈τ〉 is an average of interevent time. Notably, this
is a solely waiting-time distribution obeying the equality
ψ1(t) = ψ(t) for the first step. In the frame of one-step
memory model this WTD leads to the normalized VAF in
the form (cf. Eq. (23) in [54])

Cn(t) = δ(t)− 2ε

〈τ〉
e−(1+ε)t/〈τ〉. (23)

Analogously, by substituting equation (22) into equa-
tion (19) we obtain for the two-step memory model

C n(t) = δ(t)− 2ε

〈τ〉
e−(1+ε/2)t/〈τ〉 2√

3
cos

(√
3ε

2

t

〈τ〉
+
π

6

)
.

(24)
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Fig. 2. Comparison of velocity autocorrelation functions for
one-, two-, and infinite many steps memory models for three
different values of parameter ε = 0.05, 0.5, 0.95. All curves are
based on exponential waiting time distribution given by equa-
tion (22). For better visualization, the result for ε = 0.05 was
shifted up by 1, while result for ε = 0.5 up by 0.5. For the same
reason, all results are deprived of the Dirac’s delta.

It can be easily proved that for ε� 1 the VAF given by
equation (24) reduces into equation (23). This reduction
was expected as within approximation given by equation
(17) the difference between both models is of the order of
ε2.

Furthermore, by combining the conjecture given by
equation (21) and the exponential WTD defined by
equation (22), we easily obtain

C n(t) = δ(t)− 2ε

〈τ〉
e−εt/〈τ〉. (25)

The predictions given by equations (23)–(25) for three
different values of ε are shown in Figure 2. As expected, for
time t� 〈τ〉 the autocorrelations vanish within all three
models, while initially autocorrelations begin their evolu-
tion from the same value. For the intermediate time, more
steps of memory taken into account in the model lead to
strengthening the VAF. Besides, the increase of param-
eter ε increases the difference between autrocorrelation
functions.

6 Comparison with empirical data

The satisfactory comparison of predicted autocorrelation
functions with empirical ones requires [54]:

– the use of sufficiently realistic waiting time distribu-
tion ψ̃(s),

– determination of values of our basic parameter ε
from the separate fit to the corresponding empirical
histograms, and

– the use of sufficiently effective method of VAF esti-
mation for unevenly spaced elements of time-series
(as interevent time intervals have random lengths).
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Useful form of waiting-time distribution is a superposi-
tion (or weighted sum) of two exponential distributions

ψ(t) =
w

τ1
e−t/τ1 +

1− w
τ2

e−t/τ2

⇔ ψ̃(s) =
w

1 + sτ1
+

1− w
1 + sτ2

, (26)

where 0 ≤ w ≤ 1 is the weight, while τ1 and τ2 are the
corresponding (partial) relaxation times. Apparently, this
waiting time pdf has sufficiently simple (for the analytical
calculations) closed form after the Laplace transforma-
tion. Such a form can be easily and satisfactory fitted to
the empirical histogram of waiting times (cf. Fig. 4 in
Ref. [54]). Besides, this WTD makes the inverse Laplace
transformation present in equation (19) an analytically
solvable. Finally, we obtain VAF in the useful form

Cn(t) = δ(t)− 2ε
[
λ
(
A1(j) e−η1(j) t +A2(j) e−η2(j) t

)
+λ̄
(
A1(j̄) e−η1(j̄) t +A2(j̄) e−η2(j̄) t

) ]
, (27)

where

η1,2(j) =
1

2j
[(ω1 + ω2)j + ευ ± γ(j)] ,

γ(j) =

√
[(ω1 + ω2)j + ευ]

2 − 4(j + ε)jω1ω2,

A1(j) =
ω1ω2 − η1υ

(η2 − η1)j
,

A2(j) =
ω1ω2 − η2υ

(η1 − η2)j
,

ω1 = 1/τ1,

ω2 = 1/τ2,

υ = w ω1 + (1− w) ω2. (28)

Apparently, the above given VAF is nontrivial because
it contains the complex prefactors and exponents making
its interpretation more complicated.

Notably, all required parameters τ1, τ2, w and ε are esti-
mated by the separate empirical data without exploiting
the empirical VAF. This is a basic result for further consid-
erations. That is, to find parameter ε only set of empirical
jump increments are sufficient to have, while for the esti-
mation of remaining parameters only set of empirical
waiting times is required. We obtained a very promis-
ing comparison of our theoretical VAF with its empirical
counterpart because this is not a fit as no free parameters
were left to make it.

The comparison of our theoretical predictions with the
corresponding empirical VAFs is shown in Figure 3. The
improved agreement provided by the two- and infinite
many step memory models in comparison with the one-
step memory model is well seen. However, still small but
distinct systematic deviations exist even for the infinite
many step memory model (especially for the initial time).
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Fig. 3. Comparison of three normalized autocorrelation func-
tions of price velocity, for instance, for the PGNIG company
(from the fuel and energy sector) quoted on the Warsaw Stock
Exchange: (i) the empirical one (small black squares), (ii) the
theoretical VAF (dotted curve) derived in reference [54] for
the one-step memory model, (iii) the theoretical VAF (dashed
curve) for the two-step memory model, and (iv) the theoretical
VAF (solid curve) for the infinite many-step memory model.
All models use the waiting time distribution in the form of the
weighted sum of two exponential distributions given by equa-
tion (26). All parameters were fitted to separate data records,
so both theoretical curves have no free parameters to fit to the
empirical VAF (notably, the required method of determination
of the empirical VAF was thoroughly considered in Ref. [54]).

7 Concluding remarks

Hitherto, only one step backward memory was considered
analytically. In the present paper, we developed a ver-
sion of the CTRW formalism containing memory over two
steps backward or dependence between three consecutive
jumps of the process. Herein, this extended dependence
was studied, independently of whether the second-order
correlations in the system exist or not. This condition
significantly extends the capability of the CTRW formal-
ism. This approach suggests that several already existing
results could be improved if the one step backward mem-
ory model used there, would be replaced by the two step
backward memory model.

Two results that can be considered as an achievement
of our work are as follows.

– The derivation of the analytical closed formula for
the propagator containing the two-step memory (cf.
Eq. (13)). This is a significant extension of the corre-
sponding one derived in our previous paper (cf. Eq.
(17) in Ref. [54]), without increasing the number of
free parameters and functions.

– The conjugation of obtained propagator with geo-
metric series, which enabled derivation of the veloc-
ity autocorrelation function containing infinite many
step memory, keeping the model still analytically
solvable. The solution is even simpler than that for
those with finite-step memory.

By using propagator (13) we obtained the velocity
autocorrelations of the processes. These autocorrelations
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describe the empirical counterpart better than model with
one-step memory [54].

The strategy presented in this work brings a new
approach to random walks with memory showing that
even in the case of a finite diffusion coefficient the depen-
dence through infinitely many steps play an important
role in the CTRW formalism making the VAF much more
realistic. However, still the presence of a distinct deficit
of correlations suggests that, perhaps, the dependence
between interevent times should be somehow coupled with
a multi-step memory – this is still a challenge.
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Appendix A: Proof

Below, we prove that c(2) is always larger than 0 if only
two successive jumps are dependent.

c(2) =
1

µ2

∞∫
−∞

drn

∞∫
−∞

drn−1

∞∫
−∞

drn−2 rn rn−2

×h(rn | rn−1) h(rn−1, rn−2)

=
1

µ2

∞∫
−∞

drn−1 h(rn−1)

∞∫
−∞

drn rn h(rn | rn−1)

×
∞∫
−∞

drn−2 rn−2 h(rn−2 | rn−1)

=
1

µ2

∞∫
−∞

drn−1 h(rn−1)

×

 ∞∫
−∞

drn rn h(rn | rn−1)

2

> 0. (A.1)

Appendix B: Detailed derivation

In the present Appendix, we present detailed procedure
of obtaining the propagator out of the two-step memory
CTRW model. Let us begin with the generalization of the
pdf of three consecutive jumps h(r3, r2, r1) given by equa-
tion (7). Our two-step memory model is coherent with the

one-step memory model presented in [54] only at the level
of two-variable pdfs h(r3, r2) and h(r2, r1). The h2(r3, r1)
dependence present in the two-step memory model given
by (6) is irreducible to the form obtained within one-step
memory model (3). To obtain such a reducibility, we pro-
pose to add another formal parameter θ in the h(r3, r2, r1)
form:

h(r3, r2, r1) = (1− 2ε+ θ)h(r1)h(r2)h(r3)

+ζδ(r3 + r2)δ(r2 + r1)h(r1)

+(ζ − θ)δ(r3 + r1)h(r2)h(r1)

+(ε− ζ)δ(r2 + r1)h(r3)h(r1)

+(ε− ζ)δ(r3 + r2)h(r2)h(r1). (B.1)

As a result, for θ = 0 equation (B.1) reduces to the
form of (7) and for θ = ζ = ε2 we obtain one-step memory
model.

For simpler notation, let us introduce the following
variables

A =

(
1− 2ε+ θ

1− ε

)
, (B.2)

B =

(
ζ − θ
1− ε

)
, (B.3)

C =

(
ε− ζ
1− ε

)
, (B.4)

D =

(
ε− ζ
ε

)
, (B.5)

E =

(
ζ

ε

)
. (B.6)

Conditional pdf h(r3 | r2, r1) can now be expressed in
the form

h(r3 | r2, r1) = (1− δr2,−r1)
[
Ah(r3) +Bδ(r3 + r1)

+Cδ(r3 + r2)
]

+δr2,−r1 [Dh(r3) + Eδ(r3 + r2)] . (B.7)

The key relation needed for exact solution of the prop-
agator is given by equation (11), which we recall below
as

Qn (X, rn, rn−1; t) =

t∫
0

dt′ψ(t′)

×
∞∫
−∞

drn−2h(rn | rn−1, rn−2)

×Qn−1 (X − rn, rn−1, rn−2; t− t′) ,
(B.8)
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For simplicity of notation, let us introduce the following
notation

Q̃n (rn, rn−1) ≡
∞∫

0

dt

∞∫
−∞

dXeikX e−st

×Qn (X, rn, rn−1; t) , (B.9)

where we omit an explicit dependence on variables k and
s. The key relation (B.8) in the Fourier–Laplace space and
with notation defined above, takes the form:

Q̃n (rn, rn−1) = ψ̃(s)eikrn
∞∫
−∞

drn−2 h(rn | rn−1, rn−2)

×Q̃n−1 (rn−1, rn−2) . (B.10)

As previously, in order to obtain more intuitive notation
we change variables (rn, rn−1, rn−2) to (r3, r2, r1), which
gives

1

ψ̃(s)
Q̃n (r3, r2) = eikr3

∞∫
−∞

dr1 h(r3 | r2, r1)

×Q̃n−1 (r2, r1) . (B.11)

The method, which will allow us to solve equation
(B.11) for the given form of h(r3 | r2, r1) in (B.7), is to

separate sharp propagator Q̃n (r3, r2) into two parts, i.e.
the regular one and the singular one given, accordingly,
by:

Q̃Rn (r2, r1) = (1− δr2,−r1) Q̃n (r2, r1) , (B.12)

Q̃Sn (r2) =

∞∫
−∞

dr1δr2,−r1Q̃n (r2, r1) . (B.13)

With the quantities above, we can restore Q̃n (r3, r2),
using the following relation

Q̃n (r2, r1) = Q̃Rn (r2, r1) + δ(r2 + r1)Q̃Sn (r2) . (B.14)

Next, we transform equation (B.11) by substituting h
with its exact form (B.7) and using definitions (B.12) and
(B.13):

e−ikr3
Q̃n (r3, r2)

ψ̃(s)
= Q̃Sn−1 (r2) [Dh(r3) + Eδ(r3 + r2)]

+BQ̃Rn−1 (r2,−r3)

+

∞∫
−∞

dr1Q̃
R
n−1 (r2, r1) [Ah(r3) + Cδ(r3 + r2)] . (B.15)

The RHS of (B.15) contains only the regular and the
singular propagators, while on the LHS we still have the
full propagator Q̃n (r3, r2). Our aim is to obtain recurrence

relation between the regular and the singular propaga-
tor. Let us multiply both sides of equation (B.15) by
(1− δr3,−r2)

e−ikr3 (1− δr3,−r2)
Q̃n (r3, r2)

ψ̃(s)
= Q̃Sn−1 (r2)

× (1− δr3,−r2)Dh(r3)

+B (1− δr3,−r2) Q̃Rn−1 (r2,−r3) + (1− δr3,−r2)

×Ah(r3)

∞∫
−∞

dr1Q̃
R
n−1 (r2, r1) . (B.16)

As a result, the term containing (1− δr3,−r2) δ(r3 + r2)
disappears. Afterward, we multiply both sides of equation
(B.15) by δr3,−r2 , which leads us to

e−ikr3
1

ψ̃(s)
δr3,−r2Q̃n (r3, r2) = Q̃Sn−1 (r2)

× [Dδr3,−r2h(r3) + Eδ(r3 + r2)]

+Bδr3,−r2Q̃
R
n−1 (r2,−r3)

+

∞∫
−∞

dr1Q̃
R
n−1 (r2, r1)

[Aδr3,−r2h(r3) + Cδ(r3 + r2)]. (B.17)

Now, we rewrite relations (B.16) and (B.17) in terms of
new variables integrating the latter over2 r2

e−ikr3
Q̃Rn (r3, r2)

ψ̃(s)
= Dh(r3)Q̃Sn−1 (r2) +BQ̃Rn−1 (r2,−r3)

+ Ah(r3)

∞∫
−∞

dr1Q̃
R
n−1 (r2, r1) , (B.18)

e−ikr3
Q̃Sn (r3)

ψ̃(s)
= EQ̃Sn−1 (−r3) + C

∞∫
−∞

dr1Q̃
R
n−1 (−r3, r1) .

(B.19)

In effect, we obtain a system of two recurrence equa-
tions on the regular and the singular sharp propagators. In
order to solve these equations, let us introduce additional
functions

Rn(b, a) = <
∞∫
−∞

dr3e
ibkr3

∞∫
−∞

dr2e
iakr2 Q̃Rn (r3, r2) ,

(B.20)

Sn(a) = <
∞∫
−∞

dreiakr Q̃Sn (r) , (B.21)

2 We neglect zero measure sets and assume that pdf h(x) does not
contain any term proportional to the Dirac delta function.

https://epjb.epj.org/


Eur. Phys. J. B (2017) 90: 228 Page 11 of 15

H(a) = <
∞∫
−∞

dxeiakx h(x), (B.22)

where operator < gives the real part of the complex
number.

Because of the definition, the following properties are
satisfied

Rn(b, a) = Rn(−b, a) = Rn(b,−a) = Rn(−b,−a),

Sn(a) = Sn(−a),

H(a) = H(−a), (B.23)

or simply the functions are even in all their parameters.
Acting on both sides of equation (B.18) with the operator

<
∞∫
−∞

dr3e
ibkr3

∞∫
−∞

dr2e
iakr2 ,

on equation (B.19) with operator

<
∞∫
−∞

dr3e
iakr3

and using definitions (B.20) and (B.21) we obtain

Rn(b− 1, a)

ψ̃(s)
= D H(b) Sn−1(a) +B Rn−1(a,−b)

+A H(b) Rn−1(a, 0),

Sn(b− 1)

ψ̃(s)
= E Sn−1(−b) + C Rn−1(−b, 0). (B.24)

Notably, by basing on equation (12) in the Fourier–
Laplace domain, equation (B.14) and definitions (B.20),
(B.21) we obtain

Q̃n (k, s) =

∞∫
−∞

dr2

∞∫
−∞

dr1 Q̃n (k, r2, r1; s)

=

∞∫
−∞

dr2

∞∫
−∞

dr1 Q̃
R
n (r2, r1) +

∞∫
−∞

dr2 Q̃
S
n (r2)

= Rn(0, 0) + Sn(0). (B.25)

Apparently, the sharp propagator Q̃n (k, s) can be
expressed by functions Rn and Sn with all arguments
equal to zero. Hence, our aim is to obtain Rn and Sn
with all arguments equal to zero from the recurrence rela-
tions (B.24) and (B.24). Let us begin with the analysis of

equation (B.24) for four cases, using properties (B.23):(
a = 0
b = 0

)
⇒ Rn(1, 0)

ψ̃(s)
= D H(0) Sn−1(0) +B Rn−1(0, 0)

+A H(0) Rn−1(0, 0),

(
a = 0
b = 1

)
⇒ Rn(0, 0)

ψ̃(s)
= D H(1) Sn−1(0) +B Rn−1(0, 1)

+A H(1) Rn−1(0, 0),

(
a = 1
b = 0

)
⇒ Rn(1, 1)

ψ̃(s)
= D H(0) Sn−1(1) +B Rn−1(1, 0)

+A H(0) Rn−1(1, 0),

(
a = 1
b = 1

)
⇒ Rn(0, 1)

ψ̃(s)
= D H(1) Sn−1(1) +B Rn−1(1, 1)

+A H(1) Rn−1(1, 0). (B.26)

At this place, it is reasonable to redefine factors
A,B,C,D,E to remove ψ̃(s) from the relation, which lead
to

A = ψ̃(s)
(

1−2ε+θ
1−ε

)
,

B = ψ̃(s)
(
ζ−θ
1−ε

)
,

C = ψ̃(s)
(
ε−ζ
1−ε

)
,

D = ψ̃(s)
(
ε−ζ
ε

)
,

E = ψ̃(s)
(
ζ
ε

)
. (B.27)

After few linear operations on the system of Equations
(B.26), we obtain an expression

B3Rn−3(1, 0) = B3D H(0) Sn−4(0) +B4 Rn−4(0, 0)

+B3A H(0) Rn−4(0, 0),

Rn(0, 0) = D H(1) Sn−1(0) +B Rn−1(0, 1)

+A H(1) Rn−1(0, 0),

B2Rn−2(1, 1) = B2D H(0) Sn−3(1) +B3 Rn−3(1, 0)

+B2A H(0) Rn−3(1, 0),

BRn−1(0, 1) = BD H(1) Sn−2(1) +B2 Rn−2(1, 1)

+BA H(1) Rn−2(1, 0).
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Summation of both sides of equation given above results
in

Rn(0, 0) = B3D H(0) Sn−4(0) +B4 Rn−4(0, 0)

+B3A H(0) Rn−4(0, 0) +D H(1) Sn−1(0)

+A H(1) Rn−1(0, 0) +B2D H(0) Sn−3(1)

+B2A H(0) Rn−3(1, 0) +BD H(1) Sn−2(1)

+BA H(1) Rn−2(1, 0).

(B.28)

On the RHS of equation (B.28) two components signed
by Rn−3(1, 0) and Rn−2(1, 0) are still present. They can
be once more expressed (with help of Eq. (B.26)) by using

B2A H(0)Rn−3(1, 0) = AB2D H2(0) Sn−4(0)

+AB3 H(0)Rn−4(0, 0)

+A2B2 H2(0) Rn−4(0, 0),

and

BA H(1)Rn−2(1, 0) = ABD H(0) H(1) Sn−3(0)

+AB2 H(1)Rn−3(0, 0)

+A2B H(0) H(1) Rn−3(0, 0).

Using relation H(0) = 1 and substituting above two
expressions to equation (B.28), we obtain

Rn(0, 0) = A H(1) Rn−1(0, 0) +B2(A+B)2 Rn−4(0, 0)

+AB(A+B) H(1)Rn−3(0, 0) +AB2D Sn−4(0)

+ABD H(1) Sn−3(0) +DB3 Sn−4(0)

+D H(1) Sn−1(0) +DB2 Sn−3(1)

+DB H(1) Sn−2(1). (B.29)

where function R occurs with both arguments equal to
zero. We still have function S with the argument equal to
one. We can express it differently using relation (B.24) for
b = 0, which gives

Sn(1) = E Sn−1(0) + C Rn−1(0, 0). (B.30)

Hence,

DB2Sn−3(1) = DB2E Sn−4(0)

+DB2C Rn−4(0, 0),

DB H(1) Sn−2(1) = DBE H(1) Sn−3(0)

+DBC H(1) Rn−3(0, 0),

which substituted to equation (B.29) gives

Rn(0, 0) = A H(1) Rn−1(0, 0) +D H(1) Sn−1(0)

+
[
B2(A+B)2 +DB2C

]
Rn−4(0, 0)

+ [AB(A+B) +DBC] H(1)Rn−3(0, 0)

+DB2 (A+B + E)Sn−4(0)

+BD (A+ E)H(1) Sn−3(0). (B.31)

This is the final form containing functions R and S with
arguments equal to zero. To obtain the second recurrence
relation, we rewrite equation (B.24) to the form

Sn(b− 1) = E Sn−1(−b) + C Rn−1(−b, 0).

For b = 1 it gives

Sn(0) = E Sn−1(1) + C Rn−1(1, 0),

where the term containing Sn−1(1) is obtained from
equation (B.30). It leads to

Sn(0) = E (E Sn−2(0) + C Rn−2(0, 0)) + C Rn−1(1, 0).

As previously, the term containing Rn−1(1, 0) can be
expressed using equation (B.26)

Rn−1(1, 0) = D Sn−2(0) + (B +A) Rn−2(0, 0),

which gives the final form of the second recurrence relation

Sn(0) = (E2 + CD)Sn−2(0) + C(A+B + E) Rn−2(0, 0).

(B.32)

Now, we introduce additional quantities to simplify the
notation

Sn ≡ Sn(0), (B.33)

Rn ≡ Rn(0, 0), (B.34)

S =
∞∑
n=1

Sn, (B.35)

R =
∞∑
n=1

Rn. (B.36)

Then, we perform summation of equation (B.32) from
n = 3 to ∞ and a similar summation of equation (B.31)
from n = 5 to ∞

(S− S1 − S2) = (E2 + CD)S + C(A+B + E) R,

(R−R1 −R2 −R3 −R4)

= A H(1) (R−R1 −R2 −R3)

+D H(1) (S− S1 − S2 − S3)

+
[
B2(A+B)2 +DB2C

]
R

+ [AB(A+B) +DBC] H(1) (R−R1)

+DB2 (A+B + E)S +BD (A+ E)H(1) (S− S1) .
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By using ĥ = ĥ(k) = H(1), we find the above given
expressions as equivalent to

0 = S1 + S2 + (E2 + CD − 1)S + C(A+B + E)R,

0 = R
[
−1 +A ĥ+B2(A+B)2 +DB2C

]
+R

[
(AB(A+B) +DBC) ĥ

]
+S
[
D ĥ+DB2 (A+B + E) +BD (A+ E) ĥ

]
+R1 + R2 + R3 + R4

+A (−R1 −R2 −R3) ĥ

+ [AB(A+B) +DBC] (−R1) ĥ

+D (−S1 − S2 − S3) ĥ+BD (A+ E) (−S1) ĥ.

(B.37)

If we obtain explicitly the forms of
R1,R2,R3,R4,S1,S2,S3, we will be able to reduce
the problem of finding the the sharp propagator to the
problem of solving a system of two Equations (B.37) with
two variables R i S.

In order to obtain explicit forms of
R1,R2,R3,R4,S1,S2,S3, we start with the explicit
form of the first four propagators Q calculated directly
from the definition and presented in the Fourier-Laplace
space

Q̃1 (k, s)

ψ̃1(s)
=

∞∫
−∞

dξ0

∞∫
−∞

dXeikXh(X, ξ0),

Q̃2 (k, s)

ψ̃1(s)ψ̃(s)
=

∞∫
−∞

dr1

∞∫
−∞

dXeikXeikr1 h(X, r1),

Q̃3 (k, s)

ψ̃1(s)ψ̃2(s)
=

∞∫
−∞

dr1

∞∫
−∞

dr2

∞∫
−∞

dXeikX

eikr1eikr2h(X, r2, r1),

Q̃4 (k, s)

ψ̃1(s)ψ̃3(s)
=

∞∫
−∞

dr1

∞∫
−∞

dr2

∞∫
−∞

dr3

∞∫
−∞

dXeikX

eikr1eikr2eikr3 h(X | r3, r2)h(r3, r2, r1).

On the basis of equations (B.33) and (B.34), (B.20) and
(B.21) as well as (B.12) and (B.13) with help of equation
(B.9) we obtain

S1

ψ̃1(s)
= εĥ,

R1

ψ̃1(s)
= (1− ε)ĥ,

S2

ψ̃1(s)ψ̃(s)
= ε,

R2

ψ̃1(s)ψ̃(s)
= (1− ε)ĥ2,

S3

ψ̃1(s)ψ̃2(s)
= εĥ,

R3

ψ̃1(s)ψ̃2(s)
= (1− 2ε+ θ)ĥ3 + (ε− θ)ĥ,

R4

ψ̃1(s)ψ̃3(s)
= A(1− 2ε+ θ)ĥ4 +B(ζ − θ)

+ ĥ2 [B(1− 2ε+ θ) +Dζ +A(ζ − θ)]
+ ĥ2(A+B +D)(ε− ζ).

Substituting the above given equations into (B.37) and
basing on (12), (B.25), (B.35) and (B.36), we get

Q̃(k, s) = R + S = ψ̃1
N1

D1
(B.38)

where

N1 = −(ε− 1)ψ̃3(ζ − θ)

×
[
ĥ2
(
ε2 − ζ

) (
ε2(ζ − θ + 1)− ζ

)
− (ε− 1)2ε2(ζ − θ)

]
+(ε− 1)3ε2ψ̃

[(
ĥ2 − 1

)
ε2 + ĥ2(−θ) + ε

]
−ĥ(ε− 1)3ψ̃2

(
ε2(θ − 2ζ) + ζ2

)
−ĥ(ε− 1)4ε2 − ĥψ̃4

(
ε2 − ζ

)
(ζ − θ)

×
[
ε3 + ε2(−ζ + θ − 1) + εζ(ζ − θ − 1) + ζ

]
+ψ̃5

(
ε2 − ζ

)2
(ζ − θ)2

and

D1 = ĥ(ε− 1)ψ̃5
(
ε2 − ζ

)
(ζ − θ)

[
ε2 + ζ(ζ − θ − 1)

]
+ĥ(ε− 1)3ε2ψ̃(2ε− θ − 1)

−ĥ(ε− 1)ψ̃3

×
[
ε4(3ζ − 2θ) + 2ε3

(
ζ2 − 2ζ(θ + 1) + θ2 + θ

)]
+ĥ(ε− 1)ψ̃3

×ε2
[
(ζ + 1)θ2 − 2ζ(ζ + 2)θ + ζ(ζ(ζ + 4)− 2) + θ

]
−ĥ(ε− 1)ψ̃3

×2εζ2 + ζ2(ζ − θ − 1)

−ψ̃6
(
ε2 − ζ

)2
(ζ − θ)2 − (ε− 1)4ε2

+εψ̃4
(
3ε3 − ε2(2ζ + 3) + ε+ ζ2

)
(ζ − θ)2

−(ε− 1)3ψ̃2
(
ε3 − 2ε2ζ + ζ2

)
.

Notably, RHS of equation (B.38) depends on s only

through ψ̃ = ψ̃(s) and ψ̃1 = ψ̃1(s), while it depends on

k only through ĥ = ĥ(k). We obtained the explicit form
of the sharp propagator of the process containing two-
step memory. The soft propagator can be simply obtained
using (13).
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Appendix C: Variance and velocity
autocorrelation function

The results obtained in the present Appendix are based
on explicit form of the process propagator derived in
Appendix B for the two-step memory.

This propagator was derived in Appendix B from the
recursive Equation (B.8) according to a conditional depen-
dence of three consecutive changes in the price given by
equation (B.7). An exact closed form of the propagator

Q̃ (k, s) was given there by equation (B.38). Using equa-

tion (13), the soft propagator P̃ (k, s) was derived. Next,
the Laplace transform of the time-dependent process
variance was derived

m̃2(s) = − ∂2P̃ (k, s)

∂k2

∣∣∣∣∣
k=0

= − µ2

s2 〈τ〉
N2

D2
(C.1)

where, ψ̃ = ψ̃(s), while remaining quantities are parame-
ters independent on s and

N2 = ψ̃3
(
ζ − ε2

)
(ζ − θ) + (ε− 1)2ψ̃

(
2ε2 − ζ

)
+εψ̃2(2(ε− 1)ε− ζ + 1)(ζ − θ)− (ε− 1)2ε

D2 = ψ̃3
(
ζ − ε2

)
(ζ − θ) + εψ̃2(−2ε+ ζ + 1)(ζ − θ)

+(ε− 1)2ζψ̃ + (ε− 1)2ε. (C.2)

Finally, we obtain the Laplace transform of the veloc-
ity autocorrelation function of the process where explicit
dependence on parameters ζ and θ is well seen.

C(s, ζ, θ) = − µ2

2 〈τ〉
N2

D2
(C.3)

We remind that for ζ = θ = ε2 the model with the two-
step memory well reproduces the results of that with the
one-step memory. Then,

C(s, ζ = ε2, θ = ε2) =
µ2

2 〈τ〉
1− εψ̃(s)

1 + εψ̃(s)
, (C.4)

which is the result derived already in [54].
For the autocorrelation function of the process including

the two-step memory, one just accepts the value of the
parameter θ = 0, which leads to equation (15).
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