
Eur. Phys. J. B (2017) 90: 130
DOI: 10.1140/epjb/e2017-80130-8

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Density of states in the bilayer graphene with the excitonic
pairing interaction

Vardan Apinyana and Tadeusz K. Kopeć
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Abstract. In the present paper, we consider the excitonic effects on the single particle normal density
of states (DOS) in the bilayer graphene (BLG). The local interlayer Coulomb interaction is considered
between the particles on the non-equivalent sublattice sites in different layers of the BLG. We show the
presence of the excitonic shift of the neutrality point, even for the noninteracting layers. Furthermore, for
the interacting layers, a very large asymmetry in the DOS structure is shown between the particle and
hole channels. At the large values of the interlayer hopping amplitude, a large number of DOS at the
Dirac’s point indicates the existence of the strong excitonic coherence effects between the layers in the
BLG and the enhancement of the excitonic condensation. We have found different competing orders in
the interacting BLG. Particularly, a phase transition from the hybridized excitonic insulator phase to the
coherent condensate state is shown at the small values of the local interlayer Coulomb interaction.

1 Introduction

The problem of excitonic pair formation in the graphene
and bilayer graphene (BLG) systems is one of the long-
standing and controversial problems in the modern solid
state physics [1–12]. The chiral invariance of the free quasi-
particle Hamiltonian, combined with electron Coulomb
interaction term brought the idea about the possibility
of spontaneous chiral symmetry breaking (CSB) in a sin-
gle layer and bilayer graphene, reflecting in the form of
the gapped states in the fermionic quasiparticle spec-
trum [1,13–18]. The excitonic gap equation has been de-
rived in references [5–11] at the Bardeen-Cooper-Schrieffer
(BCS) limit of the excitonic transition scenario. The gen-
eral idea used there is based on the supposition of the
weak electronic correlations in the BLG, due to its large
number of the fermionic flavors. It has been suggested in
references [1,16,17] that even a partial account of the wave
vector or energy dependence of the gap function rules out
the constant gap solution in the BCS limit. Meanwhile, it
has been shown that even undoped graphene can provide
a variety of electron-hole type pairing CSB orders espe-
cially for the strong Coulomb coupling case [16,17], which
renders the treatments in [1,13–15,18] to be obscure.

Concerning the excitonic condensation, the proper in-
clusion of the chemical potential fluctuation effects on
the excitonic pairing gap and condensation in the BLG
system, and also the role of the average chemical poten-
tial on the excitonic effects have been discussed in refer-
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ences [10–12]. A very large excitonic gap, found in a suffi-
ciently broad interval of the repulsive interlayer Coulomb
interaction parameter, given in reference [12], suggests
that the level of intralayer density and chemical poten-
tial fluctuations in the BLG system, discussed in refer-
ence [11], are sufficiently small and do not affect the ro-
bust excitonic insulator state in the BLG. The excitonic
condensation in the single BLG is principally possible in
the case of the static interlayer screening regime [10].

Moreover, it has been shown that there exists a crit-
ical value of the interlayer hopping amplitude γ1 [15],
which provides an interesting energy cutoff, below which
the electron-hole correlations do not drive the system to-
wards the CSB excitonic transition. More recently, it has
been shown [19,20] that the single-particle coherent den-
sity of states (DOS) in the usual two-dimensional (2D) [19]
and three-dimensional (3D) [20] semiconducting systems
at the zero temperature limit is always finite, reflecting
with the excitonic condensate regime in these systems.
For the 3D semiconducting systems, the coherent DOS
spectra survive also for the higher temperatures [20]. This
situation is also typical for the double layer electronic
structures at the half filling [21] when considering the
electron-hole pair formation and condensation. In addi-
tion, it has been demonstrated that the excitonic insula-
tor state and the excitonic condensation are two distinct
phase transitions in the solid state [22,23], and the conden-
sate states are due to the electronic phase stiffness [20,24],
mechanism. Meanwhile, in the electronic bilayer systems,
those mentioned phase transitions are indistinguishable
as it was shown in references [12,21]. On the other hand,
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the inclusion of the dynamic screening and the full band
structure favors the pairing and condensation [25–27].

In this paper, we use the bilayer Hubbard model to
calculate the single-particle DOS functions in the BLG
and we examine the excitonic effects in the DOS. For the
noninteracting layers, we show the principal modifications
to the usual tight-binding single layer graphene’s DOS be-
havior (with differences between the A and B DOS struc-
tures near the Dirac’s neutrality point) and we estimate
the excitonic blue-shift values in the normal DOS for the
reasonable values of the interlayer hopping amplitude.

At finite values of the interlayer interaction parameter,
the DOS shows always the remarkable four peaks struc-
ture and a very large interband hybridization gap opens
for intermediate values of the interaction parameter. We
have found the critical value of the interlayer interaction
parameter at which the hybridization gap ΔHybr opens in
the system. We estimate the values of ΔHybr for different
strengths of the interlayer interaction parameter and for
different values of the interlayer hopping amplitude γ1.
We show the modifications of the van Hove singularity
(vHs.) peaks in the DOS when augmenting the interlayer
interaction parameter. An interesting interlayer hopping
mediated crossover, from the insulating pairing state to
the excitonic condensate state follows from our considera-
tions. Moreover, we show that at any reasonable value of
the interlayer interaction parameter W , there exist a crit-
ical value of the interlayer hopping parameter γ1 at which
the hybridization gap vanishes and the BLG pass to the
coherent excitonic condensate state. We calculate the hy-
bridization gap in the system, and we show that it becomes
larger when increasing the interaction parameter W .

Furthermore, we estimate the excitonic shift energies,
the intraband vHs. peaks separations and the values of the
DOS at the Dirac’s neutrality points for the zero tempera-
ture case. The full interaction bandwidth, considered here,
mimics different limits of correlations in the BLG, which
have been discussed only partially in the literature, where
the discussions have been restricted only to the strong in-
terlayer screening regime.

The paper is organized as follows: in Section 2, we
introduce the bilayer Hubbard model for our BLG system.
In Section 3 we give the form of the fermionic action in the
Feynman’s path integral formalism. Next, in Section 4, we
discuss the single-particle DOS in the BLG, for different
interlayer interaction regimes. In Section 5 we present the
numerical results on the excitonic effects in the normal
DOS and, in Section 6, we give a short conclusion to our
paper.

2 The interlayer Hubbard model

The Bernal Stacked (BS) BLG system is composed of two
coupled honeycomb layers with sublattice sites A, B and
Ã, B̃, in the bottom and top layers respectively, arranged
in the z-direction in such a way that the atoms on the sites
Ã in the top layer lie just above the atoms on the sites B in
the bottom layer graphene, and each layer is composed of
two interpenetrating triangular lattices. We consider the

electronic BLG structure with the equal chemical poten-
tials and equal on-site quasienergies in each layer. When
switching the local Coulomb potential between the lay-
ers, we keep the charge neutrality equilibrium across the
BLG, by imposing the half-filling condition in each layer.
The interlayer Hubbard model with the intralayer U and
local interlayer W Coulomb interaction terms is subjected
by the following Hamiltonian

H = −γ0

∑

〈rr′〉

∑

σ

(āσ(r)bσ(r′) + h.c.)

− γ0

∑

〈rr′〉

∑

σ

(
¯̃aσ(r)b̃σ(r′) + h.c.

)

− γ1

∑

rσ

(
b̄σ(r)ãσ(r) + h.c.

)−
∑

rσ

∑

�=1,2

μ�n�σ(r)

+ U
∑

r

∑

η=a,b

ã,b̃

[(nη↑ − 1/2) (nη↓ − 1/2)− 1/4]

+W
∑

rσσ′
[(n1bσ(r) − 1/2) (n2ãσ′(r) − 1/2)− 1/4] .

(1)

The first two terms describe the intralayer electron hop-
ping with the hopping parameter γ0. The summation
〈rr′〉, in these terms denotes the sum over the nearest
neighbours lattice sites in the separated honeycomb lay-
ers in the BLG structure. We kept here the small letters
a, b and ã, b̃ for the electron operators on the lattice sites
A,B and Ã, B̃ respectively. The third term corresponds
to the hopping between two different monolayers in the
BLG and the parameter γ1 is the interlayer hopping am-
plitude. We neglect the nonlocal interlayer hopping terms
because their role is essentially unimportant in the consid-
ered problem about the excitonic effects. When working
with the grand canonical ensemble, we have added also the
chemical potential terms for each layer and for each sub-
lattice. We suppose here that the chemical potentials μ�
corresponding to different layers � = 1, 2 and different sub-
lattices A,B and Ã, B̃ are the same (this is, of course, true,
if we consider purely electronic layers and we neglect the
effect of the disorder, caused by the additionally charged
impurities). It is important to mention here that the chem-
ical potentials of electrons on the nonequivalent sublattice
sites, in the same layer, get different shifts in different lay-
ers due to the stacking order of the BLG structure. Next,
n�σ(r) is the electron density operator for the fermions in
the layer � and with the spin σ. The four U -terms in the
Hamiltonian in equation (1) describe the on-site intralayer
Coulomb interactions in the BLG. The summation index η
in the U -terms, in equation (1), refers to different sublat-
tice fermions in a given layer, i.e., η = a, b, for the bottom
layer with � = 1, and η = ã, b̃, for the top layer with
� = 2. We will study the excitonic effects in the BLG at
the half-filling condition in each layer, i.e., 〈n�〉 = 1, for
� = 1, 2. The last term in equation (1), describes the lo-
cal interlayer Coulomb repulsion, and the parameter W is
the corresponding interlayer Coulomb interaction. We put
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γ0 = 1, as the unit of energy, and we set kB = 1, � = 1
through the paper.

3 The fermionic action and Dirac
representation

Here, we write the partition function of our electronic BLG
system. For simplifying the notations we will introduce the
two component fermionic fields, corresponding to different
type of fermions in the two sublattices of the graphene
monolayers: fc = (c̄, c), where c = a, b, for the layer with
� = 1 and c = ã, b̃ for the layer with � = 2. Next, the
partition function will be written as

Z =
∏

σ

∫
[DfaσDfbσ]

[DfãσDfb̃σ
]
e−S[fa,fb,fã,fb̃]. (2)

The fermionic action in the exponential, in equation (2),
is given by

S [fa, fb, fã, fb̃
]

=
∑

c=a,b

ã,b̃

SB [fc] +
∫ β

0

dτH (τ) . (3)

We have introduced here the imaginary-time variables
τ [28,29], at each lattice site r in both layers of the BLG.
The variables τ vary in the interval (0, β), where β = 1/T
with T being the temperature. The first term in equa-
tion (3) describes the fermionic Berry-terms, correspond-
ing to all fermionic flavors in the BLG system. They are
given as

SB [fc] =
∑

rσ

∫ β

0

dτ c̄σ(rτ)
∂

∂τ
cσ(rτ). (4)

Furthermore, in order to examine the excitonic effects in
the BLG, we perform the real-space linearization of the
four-fermionic terms, in equation (1). We do not present
here the details of such a procedure and we refer to our
recent work, in reference [12], where this procedure is pre-
sented in more details. For the next, we will consider the
homogeneous BLG structure, when the pairing occurs be-
tween the particles with the same spin orientations, i.e.,
Δσσ′ = Δσσδσσ′ and we can assume that the pairing gap
is real Δσ = Δ̄σ ≡ Δ. Then the excitonic pairing gap
parameter is given by

Δσσ = W
〈
b̄σ(rτ)ãσ(rτ)

〉
. (5)

Next, we pass to the Fourier space represen-
tation, given by the transformation cσ(r, τ) =
1
βN

∑
kΩn

cσk(Ωn)ei(kr−Ωnτ), where N is the total
number of sites on the η-type sublattice, in the layer �,
and we write the partition function of the system in the
form

S [ψ̄, ψ] =
1
βN

∑

kΩn
σ

ψ̄σk(Ωn)Ĝ−1
σk (Ωn)ψσk(Ωn). (6)

Here, Ωn = π (2n+ 1) /β with n = 0,±1,±2, . . . , are the
fermionic Matsubara frequencies [29]. The four component
Dirac spinors ψσk(Ωn), in equation (6), are introduced
at each discrete state k in the reciprocal space and for
each spin direction σ =↑, ↓. Being the generalized Weyl
spinors [30,31], they are given as

ψσk(Ωn) =
[
aσk(Ωn), bσk(Ωn), ãσk(Ωn), b̃σk(Ωn)

]T
.

(7)
The matrix G−1

σk (Ωn), in equation (6), is the inverse
Green’s function matrix, of size 4 × 4. It is defined as

G−1
σk (Ωn) =

⎛

⎜⎜⎜⎜⎜⎝

E1(Ωn) −γ̃1k 0 0

−γ̃∗
1k E2(Ωn) −γ1−Δ̄σ 0

0 −γ1−Δσ E2(Ωn) −γ̃2k

0 0 −γ̃∗
2k E1(Ωn)

⎞

⎟⎟⎟⎟⎟⎠
. (8)

Indeed, the structure of the matrix does not changes when
inverting the spin direction, i.e., G−1

↓k (Ωn) ≡ G−1
↑k (Ωn).

The diagonal elements of the matrix, in equation (8), are
the quasienergies

E�(Ωn) = −iΩn − μeff
� , (9)

where the effective chemical potentials μ� with � = 1, 2
are defined as μeff

1 = μ + U/4 and μeff
2 = μ + U/4 + W .

The parameters γ̃�k, in equation (8), are the renormal-
ized (nearest neighbors) intralayer hopping amplitudes:
γ̃�k = zγ�kγ0, where the k-dependent parameters γ�k are
the energy dispersions in the BLG layers. Namely, we have

γ�k =
1
z

∑

δ�

e−ikδ� . (10)

The parameter z, is the number of the nearest neigh-
bors lattice sites in the honeycomb lattice. The compo-
nents of the nearest-neighbors vectors δ�, for the bot-
tom layer 1, are given by δ

(1)
1 =

(
d/2, d

√
3/2
)
, δ

(2)
1 =(

d/2,−d√3/2
)

and δ
(3)
1 = (−d, 0). For the layer 2, we

have obviously δ
(1)
2 = (d, 0), δ

(2)
2 =

(−d/2,−d√3/2
)
, and

δ
(3)
2 =

(−d/2, d√3/2
)
. Then, for the function γ1k, we get

γ1k =
1
3

(
e−ikxd + 2ei

kxd
2 cos

√
3

2
kyd

)
, (11)

where d is the carbon-carbon interatomic distance. It is
not difficult to realize that γ2k = γ∗1k ≡ γ∗k, and we have
γ̃2k = γ̃∗1k ≡ γ̃∗k, where we have omitted the layer index �.

The form of the Green’s function matrix, given in
equation (8), has been used recently in the work of ref-
erence [12] in order to derive the self-consistent equa-
tions, which determine the excitonic gap parameter Δ
and the effective bare chemical potential μ̄ in the inter-
acting BLG system. Particularly, this last one plays an
important role in the BLG theory and redefines the charge
neutrality point (CNP) in the context of the exciton for-
mation in the interacting BLG [12]. Quite interesting ex-
perimental results on that subject are given recently in
references [32–34].
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4 The single-particle DOS

4.1 The sublattice spectral functions

In this section, we calculate the single-particle normal
DOS for the BLG system, given by the Hamiltonian, in
equation (1) and basing on the form of the fermionic ac-
tion, given in equation (6). The normal single-particle
DOS is straightforwardly defined as

ρc(ω) =
1
N

∑

k

Sc(k, ω), (12)

where the index c corresponds to the sublattice type in the
BLG layers, i.e., c = A,B, Ã, B̃, and the spectral function
Sc(k, ω), in the right hand side in equation (12), is defined
with the help of the retarded real-time Green’s function
GR
c (k, ω) [28,29]

Sc(k, ω) = − 1
π
�GR

c (k, ω). (13)

Here, we have supposed that the spin variable σ is fixed
in the direction spin-↑, being completely unimportant for
the considered here problem. In turn, the retarded Green
function GR

c (k, ω), could be obtained after the analytical
continuation into the real frequency axis, in the expression
of the respective Matsubara Green’s function Gc(k, Ωn)
(see the similar procedures in Refs. [28,29])

GR
c (k, ω) = Gc(k, Ωn)|iΩn→ω+i0+ . (14)

The explicit calculation of the thermal normal Green’s
functions Gc(k, Ωn) follows from the definition of the nor-
mal Matsubara Green’s function [29]. As usually, in the
real space, they are defined as the statistical average of
the product of an annihilation c and a creation type c̄
operators, i.e., for our fermions, we have

Gc (rτ, r′τ ′) = −〈c(rτ)c̄(r′τ ′)〉 . (15)

After transforming into the Fourier space the fermionic
operators, entering in equation (15) the local expression
of the Green’s function (for the symmetry reasons of the
action, in Eq. (6), we consider the time- and space-local
expression of the single particle Green’s function), in equa-
tion (15), is

Gc (rτ, rτ) = − 1
βN

∑

kΩn

Gc (k, Ωn) , (16)

where the Fourier transforms Gc (k, Ωn) are given by

Gc (k, Ωn) =
1
βN

〈ck(Ωn)c̄k(Ωn)〉 . (17)

In order to calculate the statistical average on the right-
hand side in equation (17), we will perform the Hubbard-
Stratanovich transformation in the expression of the
partition function. In the Dirac’s spinor notations, the

partition function in equation (2), in Section 3, will be
transformed as

Z =
∫ [Dψ̄Dψ] e

− 1
βN

∑
kΩn
σ

ψ̄σk(Ωn)Ĝ−1
σk (Ωn)ψσk(Ωn)

× e
1

βN

∑
kΩn
σ

[ 1
2 J̄kσ(Ωn)ψkσ(Ωn)+ 1

2 ψ̄kσ(Ωn)Jkσ(Ωn)]

≈ e
1
2
∑

kΩn
σ

J̄kσ(Ωn)Ĝσk(Ωn)Jkσ(Ωn)

, (18)

where the auxiliary source field vectors Jkσ(Ωn) are the
subjects of the Dirac’s spinors defined similar to the ψ-
fields, in Section 3

Jσk(Ωn) =
[
jaσk(Ωn), jbσk(Ωn), jãσk(Ωn), jb̃σk(Ωn)

]T
.

(19)
The matrix Ĝσk(Ωn) is defined as the inverse of the
matrix given in equation (8) and we have Ĝσk(Ωn) =[

2
βN Ĝ−1

σk (Ωn)
]−1

. Furthermore, the calculation of the
thermal Matsubara Green’s function, in equation (17), is
straightforward. For the sublattice-A, in the bottom layer
of the BLG, we get

δ2Z

δj̄aσk(Ωn)δjaσk(Ωn)
= −1

4
〈āk(Ωn)ak(Ωn)〉

= −βN
4

G11
k (Ωn). (20)

Then it follows that

G11
k (Ωn) = − 1

βN
〈ak(Ωn)āk(Ωn)〉 . (21)

After the inversion of the matrix given in equation (8),
the Green’s function matrix component G11

k (Ωn) takes the
following form

G11
k (Ωn) =

4∑

i=1

αik
iΩn − εik

, (22)

where the dimensionless coefficients α(1)
ik are

αik = (−1)i+1

⎧
⎨

⎩

P(3)(εik)
(ε1k−ε2k)

∏
j=3,4

1

(εik−εjk)
, if i = 1, 2,

P(3)(εik)
(ε3k−ε4k)

∏
j=1,2

1

(εik−εjk)
, if i = 3, 4,

(23)

and P(3)(εik) is a polynomial of third order in εik. Namely,
we have

P(3)(εik) = ε3ik + ω1kε
2
ik + ω2kεik + ω3k (24)

with the coefficients ωik, i = 1, . . . , 3, given as

ω1k = −2μeff
2 − μeff

1 , (25)

ω2k = μeff
2

(
μeff

2 + 2μeff
1

)− (Δ+ γ1)
2 − |γ̃k|2, (26)

and

ω3k = −μeff
1

(
μeff

2

)2
+ μeff

1 (Δ+ γ1)
2 + μeff

2 |γ̃k|2. (27)
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The quasiparticle energy parameters εik, in equation (23)
are defined as follows

ε1,2k =
1
2

[
Δ+ γ1 ±

√
(W −Δ− γ1)

2 + 4|γ̃k|2
]
− μ̄,

(28)

ε3,4k =
1
2

[
−Δ− γ1 ±

√
(W +Δ+ γ1)

2 + 4|γ̃k|2
]
− μ̄,

(29)

where we have introduced a new bare chemical potential

μ̄ =
μeff

1 + μeff
2

2
. (30)

As we will show later on, the bare chemical potential has
a fundamental impact on the DOS behavior in the BLG,
and provide the excitonic shift on the frequency axis. The
energy parameters in equations (28) and (29) define the
electronic band structure in the BLG system with the ex-
citonic pairing interaction (see also in Ref. [12]). It is not
difficult to verify that for the noninteracting BLG, i.e.,
when U = 0, W = 0 and Δ = 0, the expressions in equa-
tions (28) and (29) are reducing to the usual tight binding
dispersion relations εi = ±γ1

2 ±√(kγ0)2 + (γ1/2)2 − μ,
(with k = |γk|2), discussed in reference [35] in the context
of the real-space Green’s function study of the noninter-
acting BLG. It is important to mention that the normal
spectral functions in different layers of the BLG, coincide
with each other when interchanging the sublattice nota-
tions in the monolayers. This follows from the symmetry
of the action, given in equation (6). Particularly, we obtain

S�=2,c=ã(k, ω) = S�=1,c=b(k, ω), (31)
S�=2,c=b̃(k, ω) = S�=1,c=a(k, ω). (32)

In Figure 1, we have presented the variation of the effec-
tive chemical potential μ̄/γ0 as a function of the interlayer
Coulomb interaction parameter W/γ0. The temperature
dependence has been also shown. In the inset, in Figure 1,
we have shown the dependence of μ̄/γ0 on the local in-
tralayer Coulomb interaction parameter U , given by

μ̄(W,U, γ0, T ) = μ(W,U, γ0, T ) + κU +
W

2
, (33)

where μ(W,U, γ0, T ) is the exact solution of the chem-
ical potential in the BLG. Different fixed values of the
interlayer interaction parameters W are considered in the
picture. The more detailed discussion on the role of the
chemical potential is given in reference [12]. We see that
the behavior of the effective chemical potential as a func-
tion of W/γ0 shows a finite, very large jump at T/γ0 = 0
and the shifted CNP corresponds well with the recent ex-
perimental observations of the behavior of bilayer’s av-
erage chemical potential, given in reference [32], where a
direct measurement of the chemical potential of BLG has
been done, as a function of its carrier density n. Here, it
is important to mention that the excitonic effects in the
BLG lead to the significant shift of the double CNP in the

Fig. 1. The exact solution of the effective chemical potential,
normalized to the intralayer hopping amplitude γ0 as a func-
tion of the interlayer interaction parameter. The inset shows
the dependence of η̄ on the intralayer on-site interaction U , at
T = 0. The linear solution of the exact chemical potential μ is
used in the calculations. The temperature is set at T = 0.

BLG (see in Refs. [32–34]). Contrary, the intensity of the
function μ̄/γ0 is much higher in our case, due to the sin-
gle BLG considered here, while in the gated double BLG
measurements, discussed in reference [32], the interlayer
interaction is much weaker as compared with the double
monolayer graphene (see about in Ref. [10]), and the rea-
son for this is the effect of the finite amount of carrier
density nT induced in the top BLG reference [32].

In Figure 2, the solution for the chemical potential is
shown as a function of the intralayer Coulomb interaction
parameter U and for different values of the interlayer in-
teraction parameter W . The linear slope of the chemical
potential corresponds to the coefficient κ = 0.25, given
in equation (33). In Figure 3, the exact solution for μ is
presented for different values of the intralayer interaction
parameter U . The zero temperature case is considered in
the picture and the interlayer hopping amplitude is fixed
at the value γ1 = 0.128γ0.

4.2 The sublattice density of states

With the help of the analytical continuation, given in
equation (14) and by the use of the formula 1/(x+ iδ) =
P(1/x)−iπδ(x), we get for the single particle normal DOS
for the sublattice A

ρA(ω) =
1
N

∑

k

SA(k, ω)

=
1
N

4∑

i=1

∑

k

αikδ (ω − εik) . (34)
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Fig. 2. The chemical potential solution of the BLG normal-
ized to the intralayer hopping amplitude γ0 as a function if
the intralayer interaction parameter U . Different values of the
interlayer interaction parameter W are considered and the in-
terlayer hopping amplitude is set at γ1 = 0.128γ0. The zero
temperature limit is considered.
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Fig. 3. The exact numerical solution for the chemical poten-
tial, normalized to the intralayer hopping amplitude γ0, as a
function of the interlayer Coulomb interaction parameter and
for different values of the intralayer interaction parameter U .
The inset: the effective chemical potential μ̄, calculated for the
same values of the intralayer on-site interaction U and given
by equation (33).

Here, we can transform the summation over the wave vec-
tors, into the integration over the continuous variables, by
introducing the 2D density of states corresponding to the
noninteracting graphene layers

ρ2D(x) =
1
N

∑

k

δ(x − γk). (35)

The noninteracting DOS in the monolayer graphene be-
yond the Dirac’s approximation [36,37], can be analyti-
cally expressed in terms of the elliptic integral of the first
kind K(x) [38]. Namely, we have

ρ2D(x) =
2|x|

π2|γ0|2

⎧
⎨

⎩

1√
ϕ(|x/γ0|)

K
[

4|x/γ0|
ϕ(|x/γ0|)

]
, 0 < |x| < γ0,

1√
4|x/γ0|

K
[

ϕ(|x/γ0|)
4|x/γ0|

]
, γ0 < |x| < ∞,

(36)

where, formally, we have enlarged the domain of variation
of the argument, into ±∞. The function ϕ(x), in equa-
tion (36), is given by [36]

ϕ(x) = (1 + x)2 −
(
x2 − 1

)2

4
. (37)

After the definition in equation (37), we get for the normal
A DOS function

ρA(ω) =
∑

i,j=1,2

ρ2D [εi (ω)]αj [εi (ω)]
|Λ− [ε1 (ω)] |

+
∑

i,j=3,4

ρ2D [εi (ω)]αj [εi (ω)]
|Λ+ [ε3 (ω)] | , (38)

where the frequency dependent dimensionless parameters
εi(ω) with i = 1, . . . , 4, in equation (38), are given by the
following expressions

εi (ω) =
(−1)i+1

|zγ0|

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√(
ω + μeff

1

) (
ω + μeff

2 − γ1 −Δ
)
,

if i = 1, 2,

√(
ω + μeff

1

) (
ω + μeff

2 + γ1 +Δ
)
,

if i = 3, 4
(39)

Next, for the functions Λ∓ (x), in the denominators, in
equation (38), we have

Λ∓ (x) = ∓ 2|γ0|2x√
(W ∓ γ1 ∓Δ)2 + 4|γ0|2x2

(40)

and it is clear that |Λ− (ε1) | = |Λ− (ε2) | and |Λ+ (ε3) | =
|Λ+ (ε4) |. For the considered assumption of the half-filling
in each layer, and as the theoretical and numerical calcula-
tions show, the normal single-particle DOS is not the same
for different sublattices in the given layer with � = 1, 2 and
near the shifted neutrality points. For the next, we will
omit the layer indexes near the DOS functions notations
(due to the relations in Eqs. (31) and (32), in Sect. 3).
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Similarly, for the sublattice B, we have the following ex-
pression for the B DOS

ρB(ω) =
1
N

∑

k

SB(k, ω)

=
1
N

4∑

i=1

∑

k

βikδ (ω − εik) . (41)

The coefficients βik, in equation (41) with i = 1, . . . , 4 are
given by the following relations

βik = (−1)i+1

⎧
⎨

⎩

P′(3)(εik)
(ε1k−ε2k)

∏
j=3,4

1
(εik−εjk) , if i = 1, 2,

P′(3)(εik)
(ε3k−ε4k)

∏
j=1,2

1
(εik−εjk) , if i = 3, 4,

(42)

where P ′(3)(εik) in equation (42) is again a polynomial of
third order in εik, namely

P ′(3)(εik) = ε3ik + ω′
1kε

2
ik + ω′

2kεik + ω′
3k (43)

with the coefficients ω′
ik, i = 1, . . . , 3, given as

ω′
1k = −2μeff

1 − μeff
2 , (44)

ω′
2k = μeff

1

(
μeff

1 + 2μeff
2

)− |γ̃k|2, (45)

and
ω′

3k = −μeff
2

(
μeff

1

)2
+ μeff

1 |γ̃k|2. (46)

We see that the coefficients ω′
1k, ω′

2k and ω′
3k could be

obtained from the coefficients ω1k, ω2k and ω3k, just by
replacing the effective chemical potentials μ(1)

eff � μ
(2)
eff and

by setting simultaneously Δ = 0. Finally, for the single-
particle B DOS we get

ρB(ω) =
∑

i,j=1,2

ρ2D [εi (ω)]βj [εi (ω)]
|Λ− [ε1 (ω)] |

+
∑

i,j=3,4

ρ2D [εi (ω)]βj [εi (ω)]
|Λ+ [ε3 (ω)] | . (47)

We will examine numerically calculated DOS functions in
the next Section of the present paper.

5 Results and discussion

In the panels a and b, in Figure 4, we have presented
the plots of the A and B DOS functions given in equa-
tions (38) and (47). The zero interlayer interaction limit
is considered W = 0. In the panel a, in Figure 4, the
plots of the A and B DOS functions are presented for
the case of the zero intralayer Coulomb interaction U . It
is clear in Figure 4 that each band of the BLG, given in
equations (28) and (29), contributes with one vHs. peak
inherited from the single-layer graphene spectrum. We see
that the DOS functions, given in equations (38) and (47)

Fig. 4. The A and B sublattice DOS functions at the zero
interlayer Coulomb interaction. In the upper panel (a) the DOS
functions are shown for the zero intralayer interaction U . In the
lower panel (b) the same functions are shown for a finite value
of the interaction parameter U = 2γ0.

reproduce correctly the tight binding graphene DOS be-
havior (see in Ref. [36]) with the difference that the neu-
trality Dirac’s point is shifted toward the higher frequen-
cies, ω0 = 1.363γ0. For the realistic γ0 = 3 eV (see in
Ref. [39]), we get for the shifted frequency ω0 = 4.089 eV,
which is sufficiently large as compared with the tight bind-
ing graphene’s value. In the panel b, in Figure 4, the same
DOS functions are plotted for the case of the finite in-
tralayer interaction parameter U = 2γ0. As we see, in this
case, the separation between the vHs. peaks in the DOS is
larger, and the value of the DOS at the neutrality point ω0,
for the sublattice A, is higher than in the previous case,
given in the panel a. The position of the neutrality point
is unchanged, and we see also that the region, where the B
DOS is drastically decreasing, is much larger in the case
of the nonzero intralayer interaction parameter U �= 0.
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Fig. 5. The A and B sublattice DOS functions evolutions as
a function of the interaction parameter U (from (a) to (c), in
the picture). The zero interlayer coupling case is considered
and the interlayer hopping amplitude is fixed at γ1 = 0.128γ0.
The zero temperature case is considered.

The difference between the A and B DOS structures is
clear in the panel b in Figure 4. In Figure 5, we have
presented the DOS functions for different values of the
intralayer Coulomb interaction parameter: U = 0, U = γ0

and U = 2γ0. In all that cases the DOS functions, cor-
responding to different sublattices, are different near the
neutrality point. It is important to mention that the DOS
functions remain unchanged when U �= 0, but they are
different from the zero interaction case U = 0. The DOS
behaviors presented in Figures 4 and 5 are very similar to
the DOS structures, discussed in reference [35], apart the
shifted neutrality point. The shift effect of the neutrality
point in the DOS structures is due to the strong excitonic
effects in the BLG.

In Figure 6, we have shown the A and B DOS evo-
lutions for different values of the interlayer hopping am-

plitude γ1. The intralayer Coulomb interaction parameter
is fixed at the value U = 2γ0, and the zero interlayer
Coulomb interaction case is considered in the picture. We
observe in Figure 6 (see in the panels b and c) that the
increase of the interlayer hopping amplitude leads to a
very large number of A DOS at the neutrality point. The
vHs. peaks separations also become very large when in-
creasing the parameter γ1. In Figure 7, we have presented
the evolution of the A DOS near the neutrality point for
the same values of the interlayer hopping amplitude γ1.
The A DOS behavior near the point ω0 shows that the
interlayer hopping amplitude could lead to the existence
of the interlayer excitonic condensate states even at the
zero value of the interlayer Coulomb interaction parame-
ter. The very large A DOS value at the Dirac’s point (see
the panel c, in Fig. 6, and also in Fig. 7) is caused by the
shift of higher situated energy states in the A DOS struc-
ture toward the neutrality point ω0, and mediated by the
formation of coherent condensates states. This scenario of
the excitonic condensation at the zero interlayer coupling
is converging well with the general discussion about co-
herent excitonic density of states in the semiconducting
systems (see in Ref. [20]), where it has been shown that a
large amount of states in the DOS (without the hybridiza-
tion gap) is the sign of the coherent excitonic condensates
in these systems.

5.1 The hybridization gap in the BLG DOS

Here, we will examine the formation of the hybridization
gap in the BLG system caused by the interlayer Coulomb
interaction parameter W . For the convenience, we will fix
the value of the interlayer hopping amplitude at the value
γ1 = 0.128γ0 and the intralayer interaction parameter at
U = 2γ0. In Figure 8, we have presented the enlarged pic-
tures of the A and B sublattice DOS functions near the
neutrality point ω0. In Figure 8, we consider two, very
close, values of the interlayer interaction parameter W
and we show how the hybridization gap appear above the
critical value W = 0.133γ0 (for a given value of γ1). We
see in the upper panel a, in Figure 8, that the behav-
iors of different sublattice DOS functions are drastically
not the same near the neutrality Dirac’s point ω0 in the
DOS. As the numerical calculations show, there is a crit-
ical value of the interlayer interaction parameter, above
which the hybridization gap starts to open in the BLG
(see in the lower panel b in Fig. 8) and the bilayer system
passes to the regime of the excitonic pairing in the in-
sulating state. A very small, but finite hybridization gap
appears at W = 0.1331γ0, which is slightly higher than
the critical value W = 0.133γ0, considered in the upper
panel a, in Figure 8. In Figure 9, we have shown the A
and B sublattice DOS functions for the large value of the
interlayer Coulomb interaction parameter, corresponding
to the maximum value of the excitonic pairing gap param-
eter (see in Ref. [12]). It is clear from the structure of the
DOS functions, presented in Figure 9, that the insulating
state of the BLG is symmetric with respect to the hy-
bridization gap formation, i.e., the A andB DOS functions
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Fig. 6. The evolution of the single-particle DOS functions for different values (from (a) to (c)) of the interlayer hopping
amplitude γ1. The zero interlayer interaction and the zero temperature cases are considered. The formation of the coherent
excitonic condensate states is shown in the panel (c).

Fig. 7. The A sublattice DOS function evolution near the
Dirac’s neutrality point ω0 for different values of the interlayer
hopping amplitude γ1. The zero interlayer interaction is con-
sidered. The values γ1 = 0.05γ0 (red solid line), γ1 = 0.128γ0

(red dotted line) and γ1 = 0.5γ0 (cerulean dotted line) are
considered in the picture.

goes to zero at the same values on frequency axes on the
both sides of the hybridization gapΔHybr. It is remarkable
to note also that unlike the half-filling considered here,
the vHs. in the DOS structures, corresponding to different
particle channels in the band structure, are not symmet-
ric with respect to the Dirac’s point and the hybridization
gap. The inter-peak separations in the particle or hole
channel in the DOS become strongly asymmetric for the
finite values of the interlayer interaction parameter W .
The observed blue-shift effect of the neutrality point and
the strong asymmetries in the DOS structures are due to
the strong excitonic effects in the BLG. At any finite value
of the interlayer interaction parameter, the BLG system
is in the excitonic pairing state. On the other hand, the
excitonic condensation is impossible for the large values
of W (even at large values of the parameter γ1), because

Fig. 8. (a) The DOS functions at the critical value of the
interlayer interaction parameter Wc = 0.133γ0. (b) The forma-
tion of the symmetric hybridization gap in the DOS spectrum
above the critical value Wc: W = 1.00075Wc. The interlayer
hopping amplitude is fixed at γ1 = 0.128γ0 for both panels.

http://www.epj.org
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Fig. 9. The hybridization gap formation at W = 1.26γ0 =
3.78 eV (corresponding to the maximum value of the excitonic
pairing gap parameter Δ = 0.1867γ0 = 0.56 eV, discussed
in Ref. [12]) and for the interlayer hopping amplitude fixed
at γ1 = 0.128γ0 = 0.384 eV. The zero temperature case is
considered in the picture.

Fig. 10. The evolution of the A and B sublattice DOS func-
tions for different values of the interlayer interaction parameter
W (see the values W = 0, W = 0.133γ0, W = 0.5γ0, W = 1γ0

and W = 2γ0 in the picture). The interlayer hopping ampli-
tude is set at γ1 = 0.128γ0, and the zero temperature limit is
considered.

of the strongly hybridized states in the particle and hole
channels and the very large hybridization gap.

In Figure 10, we have shown the W dependence of
the A and B sublattice DOS functions for the interlayer

Fig. 11. The opening of the hybridization gap at T = 0. The
interlayer interaction parameter is fixed at W = 0.1331γ0 .
Different values of the interlayer hopping amplitude are
considered.

hopping amplitude γ1 = 0.128γ0 and for U = 2γ0. Five
values of the interaction parameter are indicated in Fig-
ure 10. Just for the interest, we have shown also the DOS
functions at the critical value of the interaction parameter
Wc = 0.133γ0 = 0.399 eV, above which the hybridization
gap opens in the BLG. The principal observation in Fig-
ure 10 is that the hybridization gap is increasing when
increasing the interlayer interaction parameter. This fact
is in good agreement with the principal results of the ex-
citonic pairing scenario discussed in reference [12], where
it has been shown that the interlayer coupling interaction
favors the excitonic pairing state in the BLG.

On the other hand, in Figure 11, we have shown how
the insulating gap, in the A DOS spectrum, is closing
when augmenting the interlayer hopping amplitude (the
relatively small interlayer interaction parameter is con-
sidered in Fig. 11: W = 0.1331γ0). In the inset, in Fig-
ure 11, we have shown the A DOS spectrum with the hy-
bridization gap of order ΔHybr = 0.00299γ0 = 8.97 meV.
The interlayer Coulomb interaction parameter is of or-
der W = 0.1331γ0 = 399 meV and the interlayer hop-
ping amplitude is γ1 = 0.128γ0 = 384 meV. Then, in
the picture in Figure 11, we show the A DOS near the
Dirac’s point and for three different values of the inter-
layer hopping amplitude γ1 = 0.129γ0, γ1 = 0.13γ0 and
γ1 = 0.15γ0 (from right to the left). At the very large
value of the parameter γ1 there is a large number of A
DOS at the neutrality point (see the green line in Fig. 11),
which could correspond to the formation of the interlayer
excitonic condensate states even at the non-zero value of
the interlayer interaction parameter W . Thus at the large
values of the interlayer hopping amplitude, the system
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BLG is passing from the insulating hybridized state into
the possible excitonic condensate state. This improvement
analog to this, about the excitonic condensate state in the
BLG and mediated by the parameter γ1 is also discussed
in reference [12], where it has been shown how the exci-
tonic condensation state is improved for the large inter-
layer hoppings.

Let’s mention also that the value of the excitonic shift-
frequency ω0 = 4.089 eV is very close to the absolute nu-
merical value of the effective bare chemical potential so-
lution in the BLG: |μ̄| = 1.37γ0 = 4.11 eV, and which has
been calculated in reference [12]. The important role of the
non-zero chemical potential solution on the DOS behav-
ior is discussed also in reference [40], concerning the single
layer graphene, where a Drude peak arises in the longitu-
dinal conductivity spectrum, and the DOS becomes finite
at the Fermi level. We observe also in Figure 11, that the
Dirac’s neutrality point ω0 is shifting toward the lower
frequency region (see the evolution from red to green lines
in the picture). This red-shift effect and the excitonic
shift observed in the previous pictures, presented here,
are much more significant than the shift effects discussed
in references [36,40], which are due to the inclusion of the
next nearest neighbors intra- and interlayer hoppings in
the monolayer graphene and BLG, and also differ from
the results on the single impurity problem, discussed in
reference [41]. The increase of the interlayer interaction
parameter above its critical value Wc, with the appropri-
ate highest value of the interlayer hopping (see the green
line, in Fig. 11) leads to the right shift of the Dirac’s fre-
quency ω0 in the A DOS with ω0 = 1.14126γ0 = 3.423 eV
forW = 0.1331γ0 = 0.3993 eV and γ1 = 0.15γ0 = 0.45 eV,
in comparison with ω0 = 1.393γ0 = 4.179 eV and γ1 =
0.128γ0 = 0.384 eV, corresponding to the critical value
Wc = 0.133γ0 = 0.399 eV.

It is remarkable to note also that the large values of
A DOS at the ω0 shift-points could correspond in this
case also to the finite excitonic quasiparticle lifetimes at
the given condensate state of the BLG, apart from its
artifact-significance as the sublattice DOS. This effect of
the dependence of the A DOS on the interlayer hopping
amplitude and the possible formation of the interlayer con-
densate states will undoubtedly have its impact on the
excitonic absorption spectrum in the BLG both at zero
interlayer coupling (zero applied bias) and nonzero cou-
pling cases and should be verified ulteriorly (maybe the
citations are needed). Particularly, we expect that in a
large domain of the incident photon’s energies, the BLG
absorption spectrum, at the zero applied voltage, will show
a sufficiently large absorption peak region in the case of
the large interlayer hopping amplitude γ1. In contrast, for
the finite interlayer Coulomb interaction, the A DOS has
finite values at the neutrality points in the case of the
relatively small Coulomb interactions W and relatively
high values of the interlayer hopping γ1. This blue-shift
effect, caused by the interlayer hopping amplitude, means
that the excitonic condensate states survive for the higher
values of the incident photon’s energies, thus improving
the excitonic insulator state at the large values interlayer
hopping.

6 Conclusion

We have considered the density of states in the BLG sys-
tem, by considering the bilayer Hubbard model at the half-
filling condition in each layer, and by assuming the sta-
tistical equilibrium states for each value of the interlayer
interaction parameter. The theoretical method considered
here permits to obtain the important results for the ef-
fective chemical potential in the BLG, which shows the
extraordinary close results with the recent experimental
measurements of the chemical potential in the gated BLG
and double BLG heterostructures. For the first time in
the literature, we show theoretically, how the charge neu-
trality point is changing its position when considering the
excitonic effects in the BLG system.

We have calculated the A and B sublattice DOS
functions in the BLG for different interlayer interaction
regimes and for different values of the interlayer hopping
parameter. At the zero interlayer interaction case, we have
obtained the results very similar to the usual tight-binding
DOS in the BLG, and a very large “blue”-shift of the
Dirac’s neutrality point mediated by the strong excitonic
effects in the BLG. At the zero interlayer coupling limit,
we have shown the main modifications to the usual tight-
binding DOS. We have shown that the excitonic condensa-
tion mechanism in the charge equilibrated BLG is possible
even in the case of the noninteracting layers of the BLG.
The principal tunable parameter, in this case, is the in-
terlayer hopping amplitude γ1, the large values of which
improves the excitonic condensate state. In addition, at
any finite and realistic value of the interlayer interaction
parameter, it is possible to find the critical value of the
interlayer hopping amplitude that renders the BLG into
the excitonic condensation state just by suppressing the
hybridization gap, present in the system. For example, at
the value, W = 0.1331γ0 and at γ1 = 0.128γ0 a very small
but finite hybridization gap is present in the BLG. When
slightly augmenting the parameter γ1 to γ1 = 0.129γ0, the
hybridization gap is suppressed and the system starts to
pass into the excitonic condensate regime. The insulating
excitonic state is also suppressed in this case. The prin-
cipal consequence from this consideration is the following
statement: Statement: at each fixed value of the parame-
ter γ1, there is a critical value of the interlayer interaction
parameter Wc above which the hybridization gap opens in
the BLG, and when the hybridization gap is present for
a certain value of γ1 then it is possible to find a realistic
critical value of the parameter γ1 itself, at which the hy-
bridization gap closes, rendering the BLG into the possible
excitonic condensate state. These statements are not valid
only in the case of the very large interlayer interactions,
for example at W = 2γ0, at which the very high, but
approximatively realistic (for example γ1 = 0.5γ0), val-
ues of the interlayer hopping amplitude are not capable of
suppressing the very large hybridization gap. Indeed, we
think that the charge neutrality at very large W is rather
not realistic and could not be achieved experimentally by
anyway.

One of the principal achievements, which also en-
sues from our theoretical model, is the existence

http://www.epj.org


Page 12 of 12 Eur. Phys. J. B (2017) 90: 130

of the excitonic condensate states in the BS type bilayer
graphene mediated by the interlayer hopping amplitude,
even at the finite and relatively small values of the inter-
layer interaction parameter. The density of states calcu-
lations, effectuated in the present paper, show that the
excitonic condensate and the excitonic pair formation are
fully controlled by the interlayer Coulomb interaction and
interlayer hopping. Moreover, in the limit W �= 0, there
exists an interesting inter-crossover from the hybridized
insulating gapped state to the excitonic condensate states
in the BLG, mediated by the interlayer hopping mecha-
nism. Therewith, we have shown that the passage when
W = 0, is not strictly speaking equivalent to the usual
tight-binding description of the BLG.

The different interlayer interaction regimes have been
considered in the paper, which correspond to different
screening regimes in the bilayer graphene, and which have
been discussed only partially in the known literature.
From the experimental side of the problem, and taking
into account the recent theoretical achievements on the
bilayer graphene systems [4,9–12], the Coulomb drag mea-
surements [28–30], are promising to observe the excitonic
condensation in the pure BLG (without strong disorder)
and double BLG heterostructures. For the future, the
study the excitonic effects in the hBN intercalated multi-
layer graphene G/hBN/G could have a breakthrough im-
pact in the technological applications and improvements
of these materials as the solid state systems with the suffi-
ciently large band gaps and also due to the recently grow-
ing interests in these materials for the potential intercon-
nected circuit technologies with the improved high current
capacities across these structures, approaching the pristine
graphene’s working performances.

Author contribution statement

All authors contributed equally to the paper.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

References

1. H. Leal, D.V. Khveshchenko, Nucl. Phys. B 687, 323
(2004)

2. V.-N. Phan, H. Fehske, New J. Phys. 14, 075007 (2012)
3. C.H. Zhang, Y.N. Joglekar, Phys. Rev. B 77, 233405

(2008)
4. H. Min, R. Bistritzer, J.J. Su, A.H. MacDonald, Phys. Rev.

B 78, 121401 (2008)
5. Y.E. Lozovik, A.A. Sokolik, JETP Lett. 87, 55 (2008)
6. Yu.E. Lozovik, S.L. Ogarkov, A.A. Sokolik, Phys. Rev. B

86, 045429 (2012)

7. Yu.M. Kharitonov, K.B. Efetov, Phys. Rev. B 78,
241401(R) (2008)

8. M.Yu. Kharitonov, K.B. Efetov, Semicond. Sci. Technol.
25, 034004 (2010)

9. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T.
Chakraborty, Adv. Phys. 59, 261 (2010)

10. D.S.L. Abergel, M. Rodriguez-Vega, E. Rossi, S. Das
Sarma, Phys. Rev. B 88, 235402 (2013)

11. D.S.L. Abergel, R. Sensarma, S. Das Sarma, Phys. Rev. B
86, 161412(R) (2012)
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