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Abstract. Complex systems from science, technology or mathematics usually appear to be very different
in their specific dynamical evolution. However, the concept of an energy landscape with its basins cor-
responding to locally ergodic regions separated by energy barriers provides a unifying approach to the
description of complex systems dynamics. In such systems one is often confronted with the task to control
the dynamics such that a certain basin is reached with the highest possible probability. Typically one
aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other
local minima such as the metastable compounds in materials science are of primary interest. Here we show
how this task can be solved by applying control theory using magnesium fluoride as an example system,
where different modifications of MgF2 are considered as targets. In particular, we generalize previous work
restricted to temperature controls only and present controls which simultaneously adjust temperature and
pressure in an optimal fashion.

1 Introduction

A characteristic feature of complex systems in science,
technology and applied mathematics is their highly non-
trivial dynamics that is closely related to the properties
of the energy or cost function landscape of the system
of interest [1]. Both understanding the unperturbed time
evolution of a complex system and gaining insight into its
response to external stimuli require a detailed knowledge
of the relevant features of the system’s energy landscape.
Important quantities are the stable regions of the land-
scape [2–8] and the probability flows among them [9,10],
both as function of external environmental and con-
trol parameters. These stable regions correspond to e.g.
(meta)stable chemical compounds [6,11,12], folded or un-
folded states of a protein [13–18], magnetic phases [19],
stable attractors [20], or (sub)optimal solutions of com-
binatorial optimization problems [21,22], while the flows
characterize the likelihood of transitions between stable
regions [23,24], the relaxation towards equilibrium [25,26],
and the progress of optimization algorithms [22,27]. The
determination of such regions and flows requires finding
the minima of the landscape and measuring the local vol-
ume in state space contained within the basins of the land-
scape, and furthermore the analysis of the connectivity of
the landscape including the derivation of the energetic,
entropic and kinetic barriers [10,28] that separate indi-
vidual minima and the multi-minima basins [2]. In the
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literature, one finds two complementary approaches to
identifying such landscape features: indirectly via extrac-
tion from long molecular dynamics [29–31] and Monte
Carlo simulations [32] or even from long time sequences
of experimental signals [33,34], or directly from the land-
scape itself using various global optimization and explo-
ration algorithms [23]. Of course, in practice, combina-
tions of these methods are often employed, depending on
the type of system and objective of the study.

Ideally, such global explorations of the landscape yield
a detailed (though coarse-grained) model that can ex-
plain many aspects of the dynamics of the underlying
system, in particular the observed states, phases or chem-
ical modifications, their individual stability and the tran-
sitions among them, and, last but not least, the system’s
response to external stimuli or changes in the bound-
ary conditions and constraints. A typical result of such a
global exploration is e.g. the prediction of the equilibrium
composition-pressure-temperature (x, p, T ) phase diagram
of a chemical system which depicts the thermodynamically
stable phase for each given triplet of (x, p, T ) values [35]
or in a more generalized version, the prediction of an ex-
tended phase diagram that includes metastable phases and
their lifetimes [36].

Of course, in the thermodynamic limit and for infinite
times, we should always observe the thermodynamically
stable phase for a given (x, p, T ) value in the experiment.
However, on finite time scales, it frequently proves to be
quite difficult to actually access even the global minimum.
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Unsurprisingly, the situation is even more challenging if
the target is some particular metastable modification of
the system, even though our landscape information as-
sures us of its potential existence. This is particularly no-
ticeable in the fields of materials science and solid state
chemistry, where the rational design of new compounds
and routes for their synthesis has been lacking, and only
in recent years a change from an inductive towards a de-
ductive approach to the field has been evolving [11,37,38].
The importance of achieving a high degree of control of the
chemical synthesis for our ability to develop new materials
and routes to their synthesis has been underlined in a re-
cent BRN report of the department of energy (DOE) [39].

To address this issue, we have recently begun to de-
velop a methodology [40] that employs optimal control
theory to compute an optimal schedule of the accessible
physical control parameters, which drives the system of
interest with a high probability to the desired region on
the landscape. Starting point are the available landscape
information such as the energies of the minima, the local
densities of states and the transition probabilities among
the basins as function of energy which can be measured
using e.g. the so-called threshold algorithm [41,42]. We
use this information to construct a transition probability
matrix between the basins as function of temperature, em-
ploying so-called kinetic factors [10,28]. Finally we design
optimal schedules that maximize the probability to reach
a particular basin of the energy landscape. For the last
step, we employed similar techniques as have been used for
the optimization of relaxation schedules on lumped com-
plex energy landscapes in the past; examples are optimal
schedules for global optimization algorithms [22,43–46], or
the dynamics on minimum+saddle point landscape mod-
els derived for atom clusters, with the goal to design an
optimal simulated annealing schedule to reach the global
minimum [47].

In our previous work the solid compound MgF2, which
is often compared with TiO2, served as the example. While
for TiO2 several modifications such as rutile and anatase
exist [48], MgF2 has so far only been synthesized in the
rutile modification [48] (and possibly a closely related
CaCl2 [49] structure). Moreover, simulations of thin film
growth suggest that a nano-crystalline CdI2 type modi-
fication (already predicted via early landscape investiga-
tions [23,50]) should be present that stabilizes the CaCl2
type modification against transformation into the ther-
modynamically stable rutile phase [51]. This fact leads
to a special interest in MgF2, as its anatase modifica-
tion occupies a large deep-lying basin on the energy land-
scape which is energetically only slightly above the rutile
minimum [23].

In our work on MgF2 we could show, that possibilities
exist to increase the probability to find its anatase modi-
fication. However, this earlier study was restricted to the
optimization of the temperature schedule, while in exper-
iments one frequently attempts to control the synthesis
and its transformation process by adjusting both temper-
ature and pressure [52,53]. Similarly, parallel tempering
simulations in both pressure and temperature have been

successfully employed to study the liquid-solid transition
in Lennard-Jones systems [54] and explore the landscape
of metastable alanine dipeptides [55]. Thus, in this work,
we extend our optimization to include both thermody-
namic parameters at the same time, where we will again
use the MgF2 landscape as the model system for a proof-
of-concept study.

2 The model system

The central starting point of our approach is the energy
landscape of the system under consideration, which pro-
vides the necessary information for understanding the sys-
tem’s dynamical behavior.

In the study presented below the energy landscape is
that of the solid compound MgF2. It is used in a simplified
form investigated in the past [50]. In that work, in order to
reduce the number of degrees of freedom to a manageable
size, and to allow for the many millions of energy calcu-
lations that were needed to explore the energy landscape,
MgF2 was described by a periodically repeated variable
unit cell containing two formula units of MgF2, and the
energy was computed using a simple Lennard-Jones-plus-
Coulomb potential. For further details on the potential,
we point the reader to reference [50].

2.1 Data acquisition and energy landscape

The energy of the system varies as a function of the rel-
ative atom positions and the simulation cell properties
like its volume, which we refer to as the system vari-
ables. The energy landscape which unfolds in this multi-
dimensional state space is explored by random changes
in those system variables. Here we will make use of data
which was obtained in a study [23] using the threshold
algorithm [41,42].

In this exploration method a random walker roams the
energy landscape starting from a given energy minimum.
The walker chooses a neighbor state randomly and accepts
it as the next state. The only restriction for the walk is the
requirement that a given energy value (the lid or thresh-
old) cannot be crossed from below. From a physical point
of view this corresponds to an infinite temperature walk in
that part of the state space which is below the threshold.

In addition quenches from selected starting points
along the trajectories are performed, i.e. a random walker
can only proceed to states lower in energy until he has
reached one of the local minima. In most cases the walker
returns to its initial minimum, and in this way the area
of attraction of this minimum can be mapped out. These
areas are referred to as the basins of the minima.

Such walks (with their quenches) are repeated many
times and the local energy density of states in the acces-
sible region of state space is recorded. In this way an esti-
mate for the local densities of states of the most important
basins around the minima on the energy landscape is ob-
tained. As the density of states rapidly increases with en-
ergy it is advisable to start the walks with an energetically
low threshold and increase it in steps.
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Basin 1 Basin 2

level l
level l+1

Fig. 1. The figure illustrates the threshold method to explore
the energy landscape drawn in blue. An energy threshold is
placed at a sequence of energies {Eth

� }, and the state space be-
low is explored. Within each basin local equilibrium is estab-
lished on a fast time scale. The black nodes represent coarse-
grained collections of states between successive thresholds, and
the lines show possible transitions between nodes. The basins
are only weakly coupled, and from the observed transitions
between those estimates of transition rates at the respective
thresholds can be gained. Color figure in the open-access on-
line version of this paper.

Sometimes at the end of a quench the walker reaches a
minimum different from its starting minimum which then
allows to gain information on the transition frequencies
between the different basins. Due to the energy depen-
dence of the energetic, entropic and kinetic barriers sepa-
rating the basins these frequencies change as the threshold
is increased. In addition a transition between two minima
only occurs if the threshold is energetically above a cer-
tain energy characteristic for the two minima in question
(the transition state energy). The overall procedure is vi-
sualized in Figure 1.

During the data acquisition for the MgF2 system
the lid set {Eth

� } was used, in which the thresholds are
spaced by 0.1 eV/atom in the low energy regime and by
0.25 eV/atom at higher energies and where the largest
lid is Eth

1 . For each lid and starting minimum, threshold
runs of length up to 2.5×105 Monte-Carlo steps were per-
formed, and every 5 × 104 steps, the random walker was
quenched into the nearest local minimum.

In summary, we envision the energy landscape as a
collection of minima with their respective basins. Within
such a basin local equilibrium is attained on a very short
time scale, while the transitions between minima occur on
a much longer time scale. If desired the features of the
energy landscape can be further analyzed and described
in a tree-graph representation [23], so-called transition
maps [23] or probability flow diagrams [56], and charac-
teristic regions [57].

2.2 The stratified basin model

Due to the discrete energy levels at which the thresh-
olds were placed during the data acquisition runs the
resolution of the energy dependence of the inter-basin

Basin 1
Basin j

level 1

level 2

level l

level l+1

Minimum 1

Minimum j

Fig. 2. The structure of the stratified basin model. Note that
the number of minima and their accompanying basins can vary.
The nodes depict coarse-grained collections of states, and the
lines show possible transitions between nodes. Each basin has
its minimum at a certain level (and thus at a certain energy).
The connections between a certain pair of basins has a min-
imum energy below which it is zero, i.e. no transitions are
possible.

transition frequencies is limited to the energy difference
between two subsequent thresholds. This – and the fact
that the state space of the system is by far too large for
a direct modelling – suggests to simplify the description
by a coarse-graining of the state space. However, such a
coarse-graining needs to be performed in a fashion which
preserves the dynamic features of the original system. For
details of such an approach and the potential errors made
through coarse-graining see references [25,58,59].

Thus the weakly coupled basins in the energy land-
scape need to be clearly separated entities in the resulting
coarse-grained model. In our example system MgF2, the
basins used correspond to the following six modifications
(for structural data and explanation of the notation cf.
Ref. [50]) which are abbreviated by the number in paren-
thesis: rutile (1), anatase (2), Mp1 (3), 1/2Occp (4), CdI2
(5), and 1/2BN (6).

Inside each basin the states between subsequent
thresholds are coarse-grained into one node. The result-
ing model structure is shown in Figure 2. We will refer to
this model as the stratified basin model.

In this model the nodes are denoted by a double in-
dex (j, i), where j describes the basin and i the level of
a node, where the count starts at the top energy. Below
we use imin

j for the level of the lowest node with a non-
vanishing density of states in basin j. Within each basin
each node is connected to every other, but between basins
only nodes at the same energy level communicate. The
transitions are depicted by lines in Figure 2. As noted ear-
lier, the connections between a given pair of basins j and k
have a minimum energy EG

j,k below which no transitions
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are possible, defined as the lowest energy for which either
rj,k or rk,j is non-vanishing.

2.3 Thermal relaxation dynamics

Our aim is now to describe the dynamics of the system in
contact with a heat bath at temperature T in a coarse-
grained fashion by a master equation

P(j,i)(tm+1) =
∑

k,n

G(j,i),(k,n)(T )P(k,n)(tm). (1)

The time increases in discrete steps from tm to tm+1,
where the time difference between steps is chosen such
that local thermal equilibrium within each basin is reached
in one time-step. We reach our goal by setting

G(T ) = H L(T ) , (2)

with L(T ) being the matrix establishing local thermal
equilibrium in each basin:

L(j,i),(k,n)(T ) =

{
d(j,i)(T ) if j = k and i ≤ imin

j ,

0 otherwise.
(3)

Here

d(j,i)(T ) =
d(j,i)e

− Eth
i

kBT

Zj(x)
, (4)

where Eth
i is the energy of level i,

Zj =
∑

i

d(j,i)e
− Eth

i
kBT (5)

the local partition function for basin j, and d(j,i) an ap-
propriately scaled density of states in node i of basin j.

The horizontal transition matrix H describing the
transitions between the nodes of different basins j and
k at levels i = n is given by

H(j,i),(k,n) =

{
Hi

j,k if j �= k and i = n,

0 otherwise,
(6)

with

Hi
j,k =

f i
{j,k}

d(k,i)gk
. (7)

Here f i
{j,k} ≡ f i

{k,j} are the kinetic factors controlling the
time scale of the transition rates between minima j and
k at level i. One way to visualize these kinetic factors in
the coarse-grained state space model of the landscape is
by assigning each edge at a given energy level a “carry-
ing capacity” proportional to the kinetic factor. On the
level of a microscopic model, this carrying capacity would
correspond to the number of connections between the mi-
crostates belonging to the two different basins at the en-
ergy level i. Finally, gk is the relative weight of the local

DOS in basin k in relation to the global DOS in that basin

d
(gl)
(k,i) = d(k,i)gk. (8)

The quantities d(j,i), f i
{j,k}, and gk can be obtained from

the data collected during the threshold runs. How that is
done in detail is described in our previous work [40].

3 Incorporating pressure variations
into the model

3.1 From energy to enthalpy

When extending our stratified basin model to include a
pressure dependence, one needs, in principle, to gain in-
formation for a large number of pressures on the possible
quantitative and qualitative changes in the relevant energy
landscape. For a thermal process of a pressure ensemble
the relevant quantity is the enthalpy

Ĥ = E + pV, (9)

where we used Ĥ as the symbol for enthalpy in order to
distinguish it from the matrix H and its elements. The
probability Pα to be in a microstate α in thermal equilib-
rium at temperature T and pressure p will depend on its
(potential) energy Eα as well as on its volume Vα:

Pα ∝ e
−Eα+pVα

kBT ∝ e
− Ĥα(p)

kBT (10)

with Ĥα(p) = Eα + pVα being the (potential) enthalpy of
microstate α. It is apparent that the enthalpy landscape
coincides with the energy landscape for p = 0, but the
landscape will undergo quantitative as well as qualitative
changes as the pressure increases. On the one hand the en-
thalpy value will change depending on the state space po-
sition but on the other hand the set of stable structures,
i.e. the basins, might change too.

However, such a global exploration of a multitude of
enthalpy landscapes is computationally highly expensive,
and not required for the proof-of-concept study we present
in this work. Thus, we choose a perturbative-type ap-
proach by phenomenologically modeling the modifications
of the specific MgF2 landscape as function of pressure.
This is sufficient to exhibit the major qualitative trends
in the optimal control problem that are observed when al-
lowing the pressure to vary as part of the optimal schedule.
Nevertheless, we stress that the formulae we present in the
next subsection are capable of describing the lumped dy-
namics on the full bundle of enthalpy landscapes. In par-
ticular, pressure driven first order phase transitions are
well within the domain of our general methodology.

3.2 The pressure dependence of the enthalpy
landscape

The basic assumption we make in our modeling approach
is that the same basins are present over the whole pressure
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range considered – later, we briefly outline how one pro-
ceeds if an addition or subtraction of basins is required.
Thus the main influence of the pressure change will be
a change in the enthalpy values assigned to nodes of our
model.

First we turn to the variation of the enthalpy with the
height in energy of a given configuration above the mini-
mum. On the model level the microstates coarse-grained
into the nodes of the stratified basin model all possess a
volume in addition to their energy, and technically the
question is what average volume value does one assign to
a node at a given energy level.

Physically the question can be approached by looking
at the expansion (or contraction) of the structure as func-
tion of the energy level. Typically, we are dealing with
a non-linear interaction potential among the atoms that
leads to an expansion as function of temperature. But this
approximately corresponds to an expansion as function
of the energy if we average over all configurations that
contribute to the same slice in energy of the basin under
consideration and furthermore we might use the thermal
expansion coefficient to quantify this average increase in
volume at higher energies.

Analogously, we can look at the decreases in cell vol-
ume due to the finite compressibility of the various struc-
tures. These, too, modify the energy associated with each
energy slice as function of pressure. Usually, increasing
pressure and increasing temperature work in opposite di-
rections, but, in principle, both effects can be treated by
simply adding their effects on the cell volume of the vari-
ous minimum structures.

Since the thermal expansion mostly depends on the
non-linearity in the two-body terms of the potential, which
are essentially the same for all structures, the thermal ex-
pansion coefficients can be taken as essentially the same
for all basins – the only subtlety will be the non-linearity
of the thermal expansion as function of temperature itself,
and thus as function of energy level.

In the case of the pressure susceptibility, this effect is
usually more drastic, leading to differences of up to a fac-
tor of two among the various minima. The bulk moduli at
zero pressure tend to be reasonably constant as function
of pressure, at least for a rather compact ionic solid like
the one we are considering as an example system. If one
does not have such computed values available, a qualita-
tive heuristic we have found to apply in many landscape
explorations is that the structures with the lowest densi-
ties tend to have the highest compressibility up to some
high pressure, i.e. small volume, where the repulsive term
in the interaction potential becomes crucial and all the
E(V )-curves begin to rise quite rapidly (and typically the
initially densest modifications become thermodynamically
stable).

Within the perturbative approach employed here, we
thus assign the nodes in our model pressure dependent
enthalpies

Ĥ(j,i)(p) = Eth
i + p V(j,i), (11)

where the volumes V(j,i) capture the properties of the dif-
ferent state space regions coarse-grained into the nodes.

Basin 1 Basin 4

level 2

Fig. 3. For a selected node of basin 4 this figure shows the
changes induced in the coarse-grained state space model by
our perturbative approach taken. The node is shifted in en-
thalpy when pressure is applied. This changes not only the
local equilibrium probability at a certain temperature but also
affect the transition rates between the nodes of one model level.
Color figure in the open-access online version of this paper.

For this proof-of-concept study we have chosen a linear
increase of the V(j,i) with energy above the basin mini-
mum energy for all basins with a basin dependent V(j,imin

j ).
These minimum values were chosen such that the pressure
effects to be discussed are highlighted. In particular, the
largest difference between any two minima corresponds
to an energy difference of 0.8 eV/atom at the maximum
pressure allowed. Figure 3 visualizes the effect of chang-
ing pressure on the node at level 2 of basin 4. Here the
height of the node corresponds to its enthalpy.

One further assumption we make is that the barriers
do not change qualitatively in the sense that we still can
connect basins at about the same energy values according
to the transition probabilities measured for the p ≈ 0 GPa
landscape. Clearly, the actual neighborhoods of the con-
figurations do not change, i.e., we do not change the move-
class, and the effect of the shift in energy as function of
pressure is only noticed in the correction to the Boltzmann
factor. Here, phenomenological arguments do not help us
decide to which extent subtle changes in the barrier struc-
ture at energies above the saddle points can occur – this
kind of information would only be available from threshold
runs at high pressure. However, we note that at elevated
energies the barrier structure is dominated by entropic and
kinetic barriers which are less susceptible to pressure ef-
fects than energetic ones (due to the shift of the energy of
the regions around saddle points). Thus we do not expect
large changes in the infinite-temperature transition rates
unless the basin structure of the landscape changes qual-
itatively due to the elimination/generation of important
stable regions on the landscape.

Note that, in principle, vanishing/appearing basins can
be taken into account by phantom nodes that do not par-
ticipate in the transition matrix until they become stable
regions at some pressure. Here, probability that is located
in a vanishing region is deposited in those still existing
regions that had been in contact with the vanishing one
at the previous pressure. (We note that the probability
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is essentially zero that we will use a pressure in the nu-
merical simulations that corresponds exactly to a critical
point where the first order transitions end in a continuous
second order transition.)

3.3 Building pressure dependence into the stratified
basin model dynamics

In order to incorporate the pressure dependence into the
model, we proceed in the same fashion as in our earlier
work [40]. The major change is that in the horizontal tran-
sition matrix H and in the local equilibration matrix L(T )
the role of energy is taken over by the enthalpy, and the
pressure induced shifts in enthalpy for each node are taken
care of.

When constructing the matrix L(T ) that establishes
local thermal equilibrium we now have a different equilib-
rium distribution due to the shifted enthalpies

L(j,i),(k,n)(T, p) =

{
d(j,i)(T, p) if j = k and i ≤ imin

j ,

0 otherwise;
(12)

with

d(j,i)(T, p) =
d(j,i)e

− Ĥ(j,i)(p)

kBT

Zj(T, p)
, (13)

where Ĥ(j,i)(p) is the pressure dependent enthalpy of
level i in basin j, and

Zj(T, p) =
∑

i

d(j,i)e
− Ĥ(j,i)(p)

kBT (14)

is again the local partition function for basin j.
The changes needed in H describing the originally hor-

izontal transitions between the nodes of different basins at
one level are due to the fact that because of the pressure
dependence of the energies these transitions are no longer
horizontal in energy. We thus find

H(j,i),(k,n)(T, p) =

{
H i

j,k(T, p) if j �= k and i = n,

0 otherwise,
(15)

with

H i
j,k(T, p) =

f i
{j,k}

d(k,i)gk
e−max(0,Ĥ(j,i)(p)−Ĥ(k,i)(p))/(kBT )

=
f i
{j,k}

d(k,i)gk
e−p max(0,V(j,i)−V(k,i))/(kBT ) (16)

being the transition rate between nodes of basins j and
k at level i. The additional exponential term ensures that
transitions uphill in energy are suppressed with the ap-
propriate Boltzmann factor. In order to ensure that H is
a proper transition probability matrix we have to reset
the diagonal elements such that the sums of the columns
equal one

H(k,n),(k,n)(T, p) = 1 −
∑

j �=k,i�=n

H(j,i),(k,n)(T,p). (17)

Finally we combine the two transition matrices H(T, p)
and L(T, p) to obtain

G(T, p) = H(T, p) L(T, p), (18)

which will be the basis for our structure selection process.

4 Optimal structure selection

Within the coarse-grained stratified basin model devel-
oped above, the dynamical evolution of the system is gov-
erned by a master equation for the probability to be in a
certain basin within a specific energy slice

P(j,i)(tm+1)

=
∑

k,n

G(j,i),(k,n)(T (tm+1), p(tm+1) ) P(k,n)(tm).

(19)

Note that a thermal quench at any time will lead all prob-
ability within a basin into its minimum.

4.1 Temperature- and pressure-dependent transition
rates between basins

For the structure selection we can simplify this system fur-
ther as we are mainly interested in the overall probability
to be in a basin. This information is enough to regain the
probabilities to be within the different energy strata of
that basin as on the time scale of a single step in our dy-
namics (19) thermal equilibrium is established. Thus we
introduce coarse-grained transition probabilities between
basins and the corresponding dynamics for the probability
to be in a basin j becomes

Pj(tm+1) =
∑

k,n

Gj,k(T (tm+1), p(tm+1) ) Pk(tm). (20)

The transition probabilities in equation (20) between
basins form the basis for the desired control of the sys-
tems dynamics. In Figure 4 they are shown for two dif-
ferent pressures as a function of x = exp(−0.1/T ), where
the temperature is measured in units of the energy. As in
our previous exposition we will use x instead of T , but
will still refer to it as “temperature”. The range of al-
lowed temperatures is constricted to 0 ≤ x ≤ 0.6 to insure
that the probabilities to be at energies above the highest
modeled level are negligible. This limitation of the tem-
perature corresponds to T ≤ 2271 K for the energies used
here. Likewise we restricted the range of the pressure to
be 0 ≤ p ≤ 1. Note that for p > 0 the energies are al-
ways larger than for p = 0 and thus the probabilities will
be smaller. The maximum pressure corresponds to about
128 GPa for the enthalpy difference of 0.8 eV and a rela-
tive volume/atom difference of 1 Å3.

In Figure 4, the transition probabilities between se-
lected pairs of minima are shown for the limiting pressures
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Fig. 4. For a selected number of pairings the transition rates between different basins are shown as a function of temperature
and pressure. There are several features which are important for the desired structure selection: the large variations between
forward and backward rates are strongly temperature dependent, which allows to shift the relative equilibrium probabilities by
a temperature control. In addition a pressure change can also affect the rates considerably, for instance in the (2, 4) rates an
increased pressure lowers the rates and diminishes the difference between forward and backward rate, while in the (1, 5) rates
their relative size is even inverted. Color figure in the open-access online version of this paper.

p = 0, 1 as a function of the temperature x. Several differ-
ent features can be observed. First of all it is apparent that
the transition probabilities are temperature and pressure
dependent, which is important for the desired structure
selection. As the relation between the transition probabil-
ities can be changed by varying temperature and pressure,
transitions from one minimum to another can be furthered
while others can be suppressed.

The transition rates between anatase (2) and Mp1 (3)
show an increase for larger temperatures, with a slight but
noticeable difference for the two pressure values shown.
For larger x the 2 to 3 transition is favored as compared
to the back-transition. A similar behavior can be observed
for the transitions between Mp1 (3) and 1/2Occp (4),

however, while for large pressure their ratio can be on the
order of two, for zero pressure the rates are close together.

This is different for the transitions between Mp1
(3) and 1/2BN (6), which show that the difference be-
tween rates can be quite substantial. Here a proper
temperature and/or pressure selection can certainly in-
fluence the probability flows between the two minima.

The transitions between anatase (2) and 1/2Occp (4),
and between rutile (1) and CdI2 (5), respectively, possess
a remarkable feature: with increasing pressure the ratio of
the forward and backward rates changes from above one to
below one when pressure is applied. Thus the probability
flow from one basin to the other can be reversed which
provides the desired control possibilities.
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Finally we point out that the transitions between Mp1
(3) and CdI2 (5) show a decreasing (backward) 5 to 3 rate,
which is related to the energy dependence of the density
of states in the two basins.

4.2 Optimizing the temperature and pressure schedule

Based on the model developed above we now aim at find-
ing ways to increase the probability to find the system in
a particular basin. The controls we have to achieve that
goal are the temperature and the pressure, which we can
change as the process unfolds. In technical terms, we want
to determine those temperature and pressure schedules (or
protocols) which maximize the probability to be in a pre-
scribed basin at the end of the process. The complexity of
the problem comes from the fact that we have to optimize
both controls in parallel. The process duration is fixed by
setting the number of time steps taken to a constant num-
ber M . The objective function Φ for this maximization is
linear in the final probabilities:

〈Φ〉M =
∑

j

ΦjPj(tM ). (21)

In particular, the objective Φk
j to maximize the probability

to be in minimum k, is given by

Φk
j = δj,k. (22)

We analyzed the structure selection problem for different
initial probability distributions Pj(t0). Here we show re-
sults for processes starting from thermal equilibrium dis-
tributions at the maximum allowed temperature, i.e. at
x = 0.6, and vanishing pressure.

Finding optimal schedules for temperature and pres-
sure such that the final probability to be in one of the
basins is maximized is a non-trivial problem. At each time-
step of the dynamics described by equation (20) the op-
timal values for T and p have to be chosen. This task is
achieved by the use of control theory, which provides the
needed mechanisms, see for instance [60–62]. The basic
features of its application to the case of structure selection
were already presented in [40]: at each time step during
the iterative method the temperature T (tm) and pressure
p(tm) are set such that an appropriately chosen control
Hamiltonian is maximized, which leads to a maximization
of the objective 〈Φ〉M while the constraints due to the
dynamics are observed. While the parallel optimization
of both controls leads to a considerable increase in the
numerical effort needed, the convergence features of the
algorithm did not change as compared to the case with
temperature control only.

4.3 Results

As in our previous study [40] we perform the structure
selection optimization on a reduced system containing the
four basins with the lowest minimum energy at standard

pressure: these are rutile (1), anatase (2), Mp1 (3), and
1/2Occp (4).

Of course, the ability of the process to drive the system
into the desired basin depends on the number M of time
steps available. Here we look at schedules for temperature
and pressure of length M = 30.

In Figure 5 we show the optimal temperature and pres-
sure schedule starting from a Tmax-distribution at p = 0.
The panels on the left show from top to bottom the opti-
mal schedules to maximize the probability to be in basin
rutile (1), anatase (2), Mp1 (3), and 1/2Occp (4), respec-
tively. The controls shown are x(tm) = exp−0.1/T (tm)
(open circles), where T is measured in units of the en-
ergy, and p(tm) (filled circles). On the right the corre-
sponding time evolution of the probability distributions
are presented: rutile (1, open circle), anatase (2, filled cir-
cle), Mp1 (3, open square), and 1/2Occp (4, filled square).

As we see from the figure, the controls needed for max-
imizing the probability to be in the different basins vary
considerably.

The rutile schedules require a vanishing pressure and a
slowly decaying temperature with a sharp drop to about a
third of its initial value after 60% of the time. Anatase on
the other hand needs high pressures, which were here lim-
ited to p ≤ 1, with a maximum temperature setting. Mp1,
after initial jumps in pressure and temperature, needs high
pressure and a slightly decaying temperature clearly be-
low the upper limiting value, and finally 1/2Occp shows a
sharp decay in pressure and temperature after about 40%
of the time.

Comparing the different temperature/pressure combi-
nations reveals interesting features: from all optimizations
one can easily see that the rutile basin gains probability
as soon as the pressure is low and loses as soon as the
pressure is high. This is a direct consequence of the cho-
sen volume dependence of the rutile basin. In addition low
temperatures favor the rutile basin which is expected from
its global minimum property. Comparing the anatase and
Mp1 optimization shows the importance of an appropriate
choice of temperature: while the maximum temperature
favors anatase, the intermediate temperature adds to the
probability gain of the Mp1 basin.

Another very interesting feature can be seen in the
1/2Occp optimization. The parallel drop of pressure and
temperature leads from a situation with a clear preference
for the anatase and Mp1 basins to a situation, where rutile
is gaining but, more importantly, 1/2Occp can obviously
benefit from the increased population in the anatase and
Mp1 basins established in the first part of the process.

5 Discussion and summary

The ability to steer the dynamics on the energy landscape
of a chemical system such that a specific modification
or configuration of a given chemical compound can be
synthesized is of great importance [39]. The work pre-
sented in this study constitutes a proof-of-concept for a
systematic methodology using optimal control methods in
temperature-pressure space to reach the target with high
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Fig. 5. Starting from a Tmax-distribution on the left from top to bottom the optimal temperature (open circles) and pressure
(filled circles) schedules to maximize the likelihood to be in basins rutile (1), anatase (2), Mp1 (3), and 1/2Occp (4), respectively,
are shown. On the right the corresponding time evolution of the probability distributions are presented: rutile (1, open circle),
anatase (2, filled circle), Mp1 (3, open square), and 1/2Occp (4, filled square).
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probability in a finite time. As an example system, we
employed a simplified model of MgF2, which we had stud-
ied earlier employing a much more limited control space
where only the temperature could be varied.

As in the earlier study, a coarse-grained description
of the landscape based on the energies of the minima,
the local densities of state and the transition probabilities
among the basins as function of energy is constructed: the
stratified basin model.

But now the energy is replaced by the enthalpy as func-
tion of pressure, where the underlying space of atomic con-
figurations is independent of pressure, of course. What is
affected is the shape of the minimum basins, up to the
point that as function of pressure, different stable regions
of the landscape may be present.

Modifying not only the temperature but also the pres-
sure in an optimal fashion greatly enhances our ability to
reach target structures compared to only having the tem-
perature as the control variable. This is reflected in exper-
iments, where one often prepares high-pressure modifica-
tions at standard conditions via fast pressure-quenching
of such phases at sufficiently low temperatures.

Of course, we used a highly simplified model of MgF2,
where we only concentrated on those modifications that
correspond to locally ergodic regions at standard pressure.
We did not include experimentally known high-pressure
modifications [63] that would have competed with the low-
pressure modifications at very high pressures, in order to
keep the optimal control problem manageable. As we de-
scribed above, from a technical point of view inclusion of
such additional phases that are only present for a lim-
ited range of pressures is straightforward and does not
pose any conceptual problems once data from sufficiently
many enthalpy landscapes have been collected. Since in
this work we are interested in a proof-of-concept demon-
stration, we have not performed the very large number of
such global explorations needed; instead we have employed
a perturbative approach to model the enthalpy landscape
at elevated pressures.

Nevertheless, we have used maximum temperature and
pressure values which are nowadays feasible (but not easy
to handle). The maximum temperature of about 2200 K
is certainly high, but clearly within experimental reach.
Moreover, as usual in theoretical studies such as ours,
temperature and time can to some extent be traded in
the sense, that at lower temperatures the corresponding
reaction times increase, but lead to similar results if only
(energy) barrier crossing is the aim. In that sense, the
relationship between the computational Markov-process
time and the time scale of the experiment is only one of
proportionality, where the actual value of the proportion-
ality factor is not crucial for deriving the optimal pressure-
temperature schedule.

Similarly, the maximum pressure of 128 GPa may ap-
pear to be very high, but current experiments can reach
even 750 GPa (or about 7.5 MBar) in static pressure
set-ups [64,65].

Conversely, this means that exploiting relative vol-
ume/atom differences of 0.2 Å3 to shift the system

between basins is within the current technological lim-
its. This value of 0.2–1 Å3 concurs quite nicely with the
typical volume differences between the modifications we
have investigated here, since the volume/atom Vmin at
the bottom of the respective minima basins on the em-
pirical energy landscape is found to be [50]: Vmin(rutile)
= 10.641 Å3, Vmin(anatase) = 11.502 Å3, Vmin(Mp1) =
10.169 Å3, Vmin(1/2Occp) = 10.641 Å3, Vmin(CdI2) =
11.058 Å3, Vmin(1/2BN) = 15.409 Å3.

Another very interesting question is to what extent the
assumption that the chemical system can be visualized as
reaching thermal equilibrium between two time-steps of
the optimal control procedure is realistic.

This depends, of course, on the structure of the energy
landscape and the size distribution of the basins that are
present and relevant. Experience with threshold simula-
tions such as those that have been used to obtain the data
in this study, has shown that both the relaxation times
within the basins and the escape times from the basins
show a wide size distribution. This is not surprising since
even constant temperature relaxations can exhibit a great
variety of behavior ranging from simple fast exponential
relaxations to essentially infinitely many relaxation time
scales as found e.g. in aging processes of glassy systems.

For the purpose of the modeling approach presented
here, the assumption of indeed reaching thermal equilib-
rium between two time-steps is an important one. Here,
the experience of many threshold simulations has shown
that the local density of states within a single basin is
usually sampled much faster than it takes to transfer
probability between two basins. Furthermore, this sepa-
ration of time scales is clearly an appropriate and consis-
tent assumption: if the system cannot equilibrate within a
basin, then this basin is not locally ergodic, and the whole
Markov model breaks down. But in that case, it does not
make sense to treat such an unstable basin as a stable state
of the system that can serve as a target modification, and
it should either not be included at all or assigned a phan-
tom node instead. On the other hand, once we employ
very large numbers of time steps with very short time in-
tervals in-between, then we may well reach the point that
these time intervals are comparable to the local equilibra-
tion time. However, we can still define probability flows
(and measure them in the threshold runs) that refer to
very short time scales although here we need to include
memory effects, i.e. the flow out of the current basin will
depend on from which basin we have entered the basin
of interest. In this case, we must use an extended con-
cept of a Markov-model to allow for such memory effects,
with all its implications for the optimal control problem.
Such models might also be the appropriate tools to model
and control syntheses that proceed far away from ther-
mal equilibrium. But while being a fascinating project,
we leave this for future work.

But as long as the assumption of local ergodicity of
the basins holds and thus the Markov states of the model
landscape are well-defined, the procedure we have pre-
sented can be transferred essentially one-to-one to more
complex systems and applications. By combining optimal
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control methods with information gained from global land-
scape explorations, both on the theoretical and exper-
imental side, it will be possible to design temperature-
pressure schedules that will assist the experimental solid
state chemist and physicist in improving the yield of
their syntheses of particular modifications of solid com-
pounds [66,67]. Clearly, the need to investigate not only
one energy landscape but a whole bundle of enthalpy land-
scapes increases the urgency to improve the efficiency of
the data acquisition procedures. One possible extension
may be to use the parQ-methods [68] that should allow for
a more efficient scanning of the landscape, while another
direction would be to employ combinations of recently de-
veloped robotics-inspired search algorithms [69–71] with
the threshold algorithm employed when collecting the
data for this study.
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