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Abstract. We investigate two competing contact processes on a set of Watts–Strogatz networks with the
clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N
sites, where each site i is directly linked to nodes labelled as i ± 1 and i ± 2. So initially, each node has
the same degree ki = 4. The periodic boundary conditions are assumed as well. For each node i the links
to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An
increase of the rewiring probability q influences the nodes degree distribution and the network clusterization
coefficient C. For given values of rewiring probability q the set N (q) = {N1,N2, . . . ,NM} of M networks
is generated. The network’s nodes are decorated with spin-like variables si ∈ {S, D}. During simulation
each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely,
a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of
this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S
final density nT

S on initial nodes S fraction n0
S . Then, we construct the surface of the unstable fixed points

in (C, p, n0
S) space. The system evolves more often toward nT

S = 1 for (C, p, n0
S) points situated above this

surface while starting simulation with (C, p, n0
S) parameters situated below this surface leads system to

nT
S = 0. The points on this surface correspond to such value of initial fraction n∗

S of S nodes (for fixed
values C and p) for which their final density is nT

S = 1
2
.

1 Introduction

In computational modeling, the contact processes (CPs)
are dynamic systems on discrete media, where the time
evolution of a local state towards survival or extinction of
particles is determined by the state of the direct neigh-
borhood of a lattice cell or of a network node. A simple
realization is the voter model [1], where a particle creates
another particle in its direct neighborhood. CPs have been
introduced in 1974 as a toy model of spread of epidemic
on a lattice [2,3]. Since then, they evolved to a frame for
models in different areas, from symbiotic interactions [4]
to population [5] or opinion dynamics [6]. Yet, their im-
portant role is also to inspire theoretical considerations
on non-equilibrium processes [7–9]. In both these roles,
the spectrum of particular realizations of CPs has been
remarkably enriched. In particular, the pair contact pro-
cesses have been proposed in reference [10]; there, a pair
of particles annihilate or create a neighbor particle.

The aim of this paper is to report our numerical re-
sults on competing CPs of two different kinds. As far as
we know, this case has not been analyzed, with two our
texts [11–13] as an exception. In literature, applications
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of competing CPs are of recent interest [14–16]; yet, in
all these approaches the competing processes are of the
same kind. In references [11,12], the competition has been
investigated between the voter model and the pair con-
tact process without annihilation. The role of network
topology has been analyzed by a comparison of results for
the Watts-Strogatz network [17] and the Erdős-Rényi net-
work [18], where the clustering coefficient C has been tuned
in both networks. Our motivation in references [11,12]
was to evaluate the efficiency of the pair contact process
by balancing it with the voter model of controlled effi-
ciency; the control was kept by tuning the probability p
of the one-node voter dynamics. The key result of ref-
erences [11,12] was a phase diagram on the plane (C, p);
below some critical line pc

1(C), the pair process dominates,
while above another critical line pc

2(C), the voter dynamics
prevails. Between these lines, i.e. for pc

1(C) < p < pc
2(C),

the time of relaxation was too long to get a definitive
conclusion on the stability of this or that phase. Both
critical lines have been found to depend on the network
topology.

In paper [13], preliminary results have been reported
on the competition between the invasion process [19,20]
dynamics and the Sznajd model dynamics [21,22]. The lat-
ter algorithm bears some resemblance to the pair CP [10];
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Fig. 1. Sketch of network topology for various clustering coefficients Ci. Subsequent subfigures correspond to Ci =
0.5, 0.4, 0.3, 0.2, 0.1 in typewriter order. The figures were generated with Pajek software [27].

yet, pairs do not annihilate there, and new particles
are created at the whole neighborhood of the pair. As
the result, we have got a slight dependence of the transi-
tion line in the phase diagram (C, p) on the initial condi-
tions, i.e. on the initial percentage of nodes in the state
activated by the invasion process. As we demonstrate be-
low, this result appears to be generic. The work presented
here is entirely devoted to the role of the initial conditions.
This makes the problem more complex; the plane (C, p)
to construct the phase diagram is to be substituted by the
three-dimensional space (C, p, n0

S).
The next Section 2 is devoted to the model and to the

details of our simulation procedure. Section 3 provides our
numerical results. In the last Section 4 we give a sum-
mary, supplemented by a note on a possible application of
the scheme presented here.

2 Model

2.1 Network construction

The simulations take place on networks similar to Watts-
Strogatz networks [17]. The base for network construc-
tion is one-dimensional chain of N sites, where each site i
is directly linked to nodes labeled as i ± 1 and i ± 2.

So initially, each node has the same degree ki = 4. The
periodic boundary conditions are assumed as well.

For each node i the links to sites i + 1 and i + 2
are rewired to two randomly selected nodes so far not-
connected to node i. The rewiring procedure occurs with
probability q. The examples of original and rewired net-
work are presented in Figure 1. Increasing rewiring prob-
ability q influence the nodes degree distribution and the
network clusterization coefficient. Please note however,
that rewiring procedure does not change average nodes
degree, i.e. 〈k〉 = N−1

∑N
i=1 ki = 4.

For given values of rewiring probability q the set
N (q) = {N1,N2, . . . ,NM} of M networks is generated.
The clusterization coefficient Cj for jth network is de-
fined as the average over nodes i = 1, . . . , N of the local
coefficient ci, where

ci =
2yi

ki(ki − 1)
, (1)

and ki is the degree of ith node, i.e. the number of nodes
linked to i, and yi is the actual number of links between
these ki nodes [17]. The clusterization coefficients Cj for
each networks in set N (q) do not differ more than δC =
0.01 from average values C(q) = M−1

∑M
j=1 Cj .

The clusterization coefficient for unrewired (q = 0)
network is exactly equal to Cj(q = 0) = 1

2 .
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Fig. 2. Sketch of contact rules. (a) The site S influences its
nearest-neighbor being in state D. (b) As a result the neighbor
is converted to S state. A pair of connected nodes in D state
(c) influence all pair’s neighbors which are changed to D (d).
The latter occurs with probability p.

2.2 Contact process description

The network’s nodes are decorated with spin-like variable
si ∈ {S, D}. Initially (for t = 0) the S value is randomly
assigned to the fraction of n0

S ≡ nS(t = 0) nodes. The
remaining (1−n0

S)N nodes are assumed to be in D state.
Every time step (1 ≤ t ≤ T ) the random sequence

of N nodes’ labels is created by sampling with replace-
ment. Now, network vertices are visited accordingly to
this list.

If the visited node (denoted with double ring in Fig. 2)
is marked

– as S and at least one of its neighbors is in D state
(Fig. 2a) then the state of this D node is changed to S
(Fig. 2b);

– as D and at least one of its neighbors is in D state
(Fig. 2c) then with the probability p the state of all
the nearest-neighbors of this pair is changed to D
(Fig. 2d).

The simulation time T should be long enough to ensure
reaching stationary state, i.e. dnS(t → T )/dt = 0.

3 Results

In Figure 3 the time evolution of fraction of S nodes nS(t)
are presented. For a given set of (C, p, n0

S) parameters the
results of simulation of the contact process described in
Section 2.2 are averaged over M = 103 networks realiza-
tions. These networks differ both in their topology and ini-
tial distribution of S nodes. Please note however, that for
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Fig. 3. Examples of the time evolution of nodes S den-
sity nS(t) for various initial concentrations n0

S and several
set of (C, p). The sub-figures correspond to (C, p) pairs equal
to (0.1, 0.3), (0.2, 0.4), (0.4, 0.6) and (0.5, 0.41). The orange
horizontal line indicates nS = 1

2
.
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Fig. 4. Examples of the dependence of the nodes S final den-
sity nT

S on initial nodes S fraction n0
S . The curves correspond

to various network sizes N = 500 (�), 1000 (�), 2000 (�).
The sub-figures correspond to (C, p) pairs equal to (0.2, 0.4),
(0.3, 0.5), (0.4, 0.4) and (0.5, 0.41).

unrewired network (q = 0, C = 1/2) only initial distribu-
tion of S nodes allows for distinguishing among networks.

In Figure 4 the dependence of the nodes S final den-
sity nT

S ≡ nS(t = T ) on initial nodes S fraction n0
S are

presented. The curves in Figure 4a and 4b correspond to
various network sizes N = 500, 1000, 2000. With enlarg-
ing the system size N we expect that these curves become

http://www.epj.org
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space.

more steeper and steeper tending to Heaviside’s function

nT
s

(
n0

S

) � H
(
n0

S − n∗
S

)

in thermodynamical limit, i.e. for N → ∞. The common
cross point for these curves n∗

S indicate the (unstable)
fixed point splitting n0

S parameter space into two regions:
– for n0

S < n∗
S the system evolves more often towards a

final state with all nodes in D-state [nT
S = 0];

– while for n0
S > n∗

S the systems prefers reaching final
state with all nodes in S-state [nT

S = 1].
Please note, that ordinates of these points are equal to
nT

S (n∗
S) ≈ 1

2 . This yields a convenient way for rough esti-
mation of abscissas of fixed point basing only on nT

S vs.
n0

S dependence for single network size (here N = 103).
The surface of the unstable fixed points in (C, p, n0

S)
space is presented in Figure 5. The system evolves more
likely towards nT

S = 1 for (C, p, n0
S) points situated above

this surface while points below this surface lead the sys-
tem more often to nT

S = 0. The points on this surface
correspond to such value of initial fraction n∗

S of S nodes
(for fixed values C and p) for which their final density is
nT

S = 1
2 . Of course, reaching the final concentration nT

S

of S nodes exactly equal to 1
2 is rather rare. Thus, we

estimate n∗
S as

n∗
S ≈ n−

S (0)
[
1
2 − n+

S (T )
]

+ n+
S (0)

[
n−

S (T ) − 1
2

]

n−
S (T ) − n+

S (T )
, (2)

where n±
S (T ) are the values of nT

S closest to 1
2 and obey-

ing inequality n−
S (T ) < 1

2 < n+
S (T ) while n±

S (0) are
corresponding initial concentration of S nodes leading to
these values n±

S (T ).

4 Discussion

Our numerical results indicate that the time evolution
drives the system to a homogeneous state where all
nodes belong either to S- or D-state. The boundary be-
tween the basins of attraction is a surface in the three-
dimensional space of parameters: the clustering coeffi-
cient C, the probability p of the D-process, and the initial

concentration of the S-nodes. The boundary consists of
unstable fixed points. The data shown in Figure 5 indi-
cate, that the transition between two homogeneous states
is most sharp for C = 0.5, i.e. for the Watts-Strogatz
network without rewiring. Once the rewiring introduces
some local disorder, the movement of the boundary be-
tween the S-phase and the D-phase can be stuck on lo-
cal configurations, and the related metastable states blur
the transition.

The advantage of our method of evaluation of the ac-
tivity of a contact process by counterbalancing it by an-
other contact process is that we get a stationary state
which is not a frozen absorbing state, but a result of a
dynamic equilibrium. The “another process” plays a role
of a scale, which allows to compare different processes; if
a new process appears, its comparison with a given dy-
namics allows to evaluate its efficiency with respect to all
processes which had been previously compared with it.

More generally, simulations of competing processes al-
low to evade the method of quasi-stationary states [3],
which is commonly used when a finite system is trapped
in an absorbing state (see Refs. [23–26] and references
therein). Having two processes in the game, we can distin-
guish three possible outcomes: any of the processes wins
or we have a dynamical equilibrium between them. With
the third option in hand, the first two are not necessar-
ily artifacts of the finiteness of the system. The sharp
transition between two absorbing states, reported above
for the Watts–Strogatz network, has an alternative in the
form of the dynamical equilibrium, as observed in refer-
ences [11,12], where the rules of the D-process have been
modified.

The work was partially supported by the Polish Ministry of Sci-
ence and Higher Education and its grants for scientific research
and by the PL-Grid Infrastructure.

Note added in proof. In reference [13], actually we use the in-
vasion dynamics and not the voter dynamics, contrary to the
terminology used there.
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