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Abstract. The concept of electric energy is revisited in detail for semiconductors. We come to the con-
clusion that the main relationship used to calculate the energy related to the penetration of the electric
field in semiconductors is missing a fundamental term. For instance, spatial derivate of the electrostatic
energy using the traditional formula fails at giving the correct electrostatic force between semiconductor
based capacitor plates, and reveals unambiguously the existence of an extra contribution to the standard
electrostatic free energy. The additional term is found to be related to the generation of space charge
regions which are predicted when combining electrostatics with semiconductor physics laws, such as for
accumulation and inversion layers. On the contrary, no such energy is needed when relying on electrostatics
only, as for instance when adopting the so-called full depletion approximation. The same holds for neutral
and charged insulators that are still consistent with the customary definition, but these two examples
are in fact singular cases. In semiconductors for instance, this additional energy can largely exceed the
energy gained by the dipoles, thus becoming the dominant term. This unexpected result clearly asks for a
generalization of electrostatic energy in matter in order to reconcile basic concepts of electrostatic energy
in the framework of classical physics.

1 Introduction

Interpretation of electric energy in conjunction with ther-
modynamics has been widely investigated, with a special
interest for dielectric bodies and ideal conductors [1–5].
The electric energy stored inside of a body can be ex-
pressed whether in terms of charges and potentials re-
stricted to the volume of the body [5], or in terms of fields
including contributions beyond the physical boundary of
the system, see relations (1) and (2) for linear polaris-
able systems [5]. In addition, careful considerations and
exhaustive criticisms about the validity of electrostatic
energy formulation in conductors and insulators has been
addressed in references [1,2]. Beyond the thorough litera-
ture, instructive and complete analysis of thermodynamics
of electric and magnetic fields has also been developed in
references [1,2,4,6].

While the topic of electric energy in matter seems to be
well established and widely accepted, we will bring some
evidence that this paradigm must be revisited in semicon-
ductors to say the least, resulting in a new contribution
to the well-known Helmholtz free energy arising from the
influence of the electric field.

Before discussing an instructive virtual experiment, we
revisit some fundamental relationships dealing with elec-
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trostatic energy from a general thermodynamic point of
view.

The electrical work UE that must be spent to gather
charges from infinity into a volume Ω is given by [3,5,6]:

UE =
1
2

∫

Ω

φρdΩ, (1)

where ρ is the local charge density and φ is the electric
potential (note that the potential φ must vanish at infin-
ity [5]). The integral is limited to the volume of the body
containing the charges, and in this sense, relation (1) rep-
resents the electric energy of the content of Ω (assuming
the system linear). The internal energy of electrical nature
is then expected to be implicitly contained in (1), which
is indeed how Frankl [7] analyzed the free energy stored
in the depletion region of a silicon layer.

This formulation attributes energy to electric charges.
Alternatively, adopting the electric field and displacement
vectors concepts (E = −grad(φ), div(D) = ρ, bold let-
ters hold for vectors), the electrostatic energy can also be
expressed from the electric field generated by the charges
enclosed in the volume Ω, provided that the integration is
performed over the whole space Ω∞, including matter:

UE =
1
2

∫

Ω∞

E · DdΩ. (2)
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Again, the electric field and displacement vectors in (2) do
not account for all sources in the universe; they are only
assigned to the charges located in Ω. It can be shown
that equations (1) and (2) are equivalent and represent
the electrostatic energy of those charges [5].

A generalisation of relation (2) to nonlinear polarisable
materials [1–5] is also proposed:

UE =
∫

Ω∞

⎛
⎝

D∫

0

E · dD
⎞
⎠ dΩ. (3)

Relation (3) is more general as it gives the incremental
work spent upon creating the electric field in matter and
in free space, but without any assumption on the relation-
ship between E and D, i.e. without assuming that the
medium is linear. From a thermodynamic point of view,
relations (2) and (3) represent the Helmholtz free electric
energy of the system when assuming an isothermal process
under constant deformation [1–3].

For an isotropic medium [5], the energy belongings to
the dipoles [1,2] is also included in (3) through the polar-
ization vector P that satisfies D = ε0 · E + P . Finally,
the electrostatic energy is made up of two contributions,
i.e. UE = Uf + UP , where Uf is the electric field energy,
valid in matter as in free space [2]:

Uf =
1
2
ε0

∫

Ω∞

|E|2 · dΩ (4)

whereas UP is an energy related to polarization processes
experienced by the body Ω only:

UP =
∫

Ω

⎛
⎝

P∫

0

E · dP
⎞
⎠ dΩ. (5)

In dielectrics, UP can be thought as a transformation of
electric energy in some internal energy that belongs to
the body. Obviously, this term cancels in ideal conductors
since no electric field penetrates inside.

However, concerning semiconductors, we can wonder
if UP is still the only contribution to the Helmholtz free
energy of electric nature.

In this work, we propose to analyze how the electric
energy is transferred to semiconductors, and if this still
follows the same law as for dielectrics. To the best of our
knowledge, a detailed transfer of electric energy in semi-
conductors has never been examined so far.

2 Virtual experiment with semiconductor
based capacitors

This section analyzes the work spent upon moving a semi-
conductor based capacitor plate with respect to a counter
conductor plate, and compares it with the variation of
the Helmholtz free energy as predicted from relations (1)

Fig. 1. Representation of the system of coupled capacitors
used in the virtual experiment. F represents the external force
which is applied to the variable capacitor plate.

to (3). To this purpose, we assume two semi-infinite capac-
itors, C0 and C1, with their plates connected such as in
Figure 1. Except for C1 where one electrode is a semicon-
ductor (p-type doped, without loss of generality), others
electrodes are ideal conductors. This special arrangement
makes the thermodynamic analysis self consistent as there
is no need for introducing any external voltage source. The
case of capacitors biased by means of an external voltage
source has been inspected in many details by Bobbio [1,2].

2.1 Regular derivation of the total electrostatic energy

Applying the definition of the electric energy given by re-
lation (3) and assuming that electric charges on counter
electrodes must compensate each other (we consider semi-
infinite plates), we obtain the electric energy for each ca-
pacitor system C0 and C1 (scalars consistent with the axis
orientation are used instead of vectors):

UC0 =
∫

Ω0

D0∫

0

EdDdx =
ε0
2
E2
g0g0 (6)

UC1 =
∫

Ω1

D1∫

0

EdDdx =
ε0
2
E2
g1g1 +

0∫

t

D1∫

0

EdDdx. (7)

Here Ω0 and Ω1 represent the free space between the ca-
pacitor plates, g0 and g1 are the electrodes gaps for C0 and
C1, Eg0 and Eg1 are the uniform (scalar) electric fields be-
tween the electrodes (according to Fig. 1 Eg0, Eg1 � 0)
and “t” is the semiconductor thickness (note that t is neg-
ative given the origin of the axis). In addition, since we
suppose that the polarisation of the semiconductor is lin-
ear, i.e. D = εSCE (εSC is the semiconductor dielectric
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Fig. 2. Energy representation of the conductor-vacuum-
semiconductor capacitor structure in a general case without
assuming the presence of a neutral region (EF and EFi are
respectively the Fermi and intrinsic Fermi energies).

constant), relation (7) becomes (according to Fig. 2, Eg1
is positive while ψ is negative):

UC1 =
ε0
2
E2
g1g1 +

εSC

2

0∫

t

E2dx

=
ε0
2
E2
g1g1 −

εSC

2

0∫

t

E
dψ

dx
dx

=
ε0
2
E2
g1g1 −

εSC

2

ψ0∫

ψt

Edψ, (8)

where ψ0 and ψt are the potentials evaluated at the bound-
aries of the semiconductor body such as shown in Figure 2,
which implicitly assumes the Fermi potential as reference.
We will come to this point later. Note that the last equal-
ity in relation (8) holds if the electric field takes a unique
value for a given potential. However, this could be un-
fulfilled when the potential exhibits extrema across the
semiconductor layer. In that case, the integral should be
split in different domains wherein a unique correspondence
exists between E and ψ.

Then, the total electrostatic energy UE of the capaci-
tors system is readily obtained as a function of the electric
fields and potentials in the semiconductor:

UE = UC0 + UC1

=
ε0
2
E2
g0g0 +

ε0
2
E2
g1g1 −

εSC

2

ψ0∫

ψt

Edψ. (9)

Before proceeding further, a discussion to clarify the
meaning of the potential ψ is needed.

When expressing the electric field as the gradient of a
potential, the origin for that potential is a priori not rel-
evant. However, when translating the integral over space

into an integral over the potential as in relation (8), the
potential ψ should be defined in such a way that it re-
mains consistent with the expression of the electric field.
A typical potential profile is shown in Figure 2 where the
origin for potentials is taken at the constant Fermi poten-
tial (here ψ0 < 0 and ψt > 0). But this choice could be
different and only after the link between the electric field
and the potential has been established, the origin for the
potential peculiar to relations (8) and (9) can be set.

After presenting a quite general treatment, the special
case of a uniformly doped semiconductor in which a neu-
tral region is recovered when moving away from the free
surface will be analyzed in details.

2.2 Electric work upon electrode displacement: need
for a new energy term

In this virtual experiment, before being isolated, tied elec-
trodes are pre-charged with a total average charge density
(per unit surface)QT = Q0+Q1 (see Fig. 1). Any displace-
ment dx of the semiconductor counter electrode (others
are supposed fixed) will induce a variation of the electro-
static energy for C0 and C1; as well as a mechanical work
δWF arising from the attractive electrostatic force F that
exists between the plates.

Invoking the fundamental law of thermodynamics,
when the displacement is performed at constant total
charge, i.e. no connection to any voltage source, we can
write:

δWF = −F · dx

= dUf +
∑

conductors

dUC +
∑

semiconductors

dUSC

−
∑

conductors

TCdSC − TSCdSSC. (10)

As in reference [2], we introduce the Helmholtz free energy
for each of the bodies. Relation (10) becomes:

δWF = dUf +
∑

conductors

dAC +
∑

conductors

SC · dTC

+ dASC + SSC · dTSC, (11)

where dUf is the variation of the electric field energy in
the whole space (including bodies), while dAC and dASC

are the variations of the Helmholtz free energy of the con-
ductor and semiconductor plates induced by the displace-
ment dx while maintaining constant the total charge QT .
Finally, SC and SSC represent the entropy of each sub-
system. Note that for dielectrics, the Helmholtz free en-
ergy reverts to UP [2].

Still as in reference [2], we assume that the tempera-
ture of the system is maintained fixed (TC and TSC are
equal and constant). Assuming that there is no deforma-
tion, and since the temperature is constant, no variation

http://www.epj.org
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of the Helmholtz free energy can arise in conducting bod-
ies [2], i.e. dAC = 0. Then, relation (11) simplifies into:

δWF = dUf + dASC. (12)

Bobbio [2] demonstrated that the term in the right
hand side of (12) is the electric energy as defined from
relation (3):

δWF = dUE . (13)

The link between the mechanical work and energies of
electrical nature is now in order.

The way QT will redistribute among the connected
electrodes will depend on the total charge density itself
and on the electrodes gaps, i.e. g0 and g1; as well as
on the physical nature of the plates, i.e. conductors or
semiconductors.

As discussed before, we start considering a very general
situation where the semiconductor plate is not necessar-
ily neutral at x = t (in this case, there could also be a
charge sheet layer at the contact-semiconductor interface
at x = t since the electric field must vanish for x < t). To
be consistent with further developments, we will call ψ0

the surface potential and use the notation ψs instead.
Given that connected plates share the same potential,

we have (Eg0, Eg1 � 0 and ψS − ψt � 0 (see Fig. 2):

Eg0g0 = Eg1g1 − (ψS − ψt) . (14)

Since the sum of the charge densities on each pair of tied
electrodes is fixed, we call it QT , Gauss theorem imposes
that the sum of the electric fields Eg1 and Eg0 is invariant:

δ (Eg0 + Eg1) = 0. (15)

Next, from the continuity of the displacement vector,
without presuming for any fixed charge sheet layer on the
semiconductor surface (x = 0), the electric fields across
the semiconductor/free space interface satisfy:

εSCEs = ε0Eg1, (16)

where ES is the surface electric field evaluated inside the
semiconductor at x = 0.

Differentiating (9) gives the variation of the electric
energy for the capacitors system:

dUE = (ε0Eg0dEg0g0)

+
(
ε0Eg1dEg1g1 +

ε0
2
E2
g1dg1

)

− εSC

2
d

ψS∫

ψt

Edψ. (17)

Noting that the electric field takes a unique value for a
given potential, the last term in (17) simplifies:

εSC

2
d

ψS∫

ψt

Edψ =
εSC

2
(ESdψS − Etdψt) , (18)

where ES and Et are the electric fields at x = 0 and x = t,
still inside the semiconductor.

Next, merging relations (14), (15) and (16) with (17),
the change in the electric energy can be expressed in terms
of C1 capacitor quantities only:

dUE = εSCdES (ψS − ψt) − εSC

2
(ESdψS − Etdψt)

+
(ε0

2
E2
g1dg1

)
. (19)

Finally, the force per unit area acting on the semiconduc-
tor plate as derived from the electric energy is:

FU =
dUE
dg1

= εSC
dES
dg1

(ψS − ψt)

− εSC

2

(
ES

dψs
dg1

− Et
dψt
dg1

)
+

(ε0
2
E2
g1

)
. (20)

This is what we call the ‘field energy force’ since it is
derived from the electric field and dipole energies that are
already included in relation (3).

On the other hand, the electric charge density on C1
creates an attractive force between the plates through the
Coulomb force FC . This force per unit area is the product
of the total charge density in the semiconductor times the
electric field generated by the counter electrode, which is
half the electric field in the gap since we must exclude
the contribution to the field induced by the charge itself
(FC is positive according to Fig. 1):

FC = (ε0Eg1)
1
2
Eg1 =

1
2
ε0E

2
g1. (21)

Relation (21) defines the “genuine” electrostatic force [5];
as such it should be regarded as the actual force. We
expect that the force derived from the free energy (re-
lation (20)) and the Coulomb force should be strictly
equal. However, relations (20) and (21) are actually not
equivalent.

The unexpected inconsistency between these two for-
mula is a major result per se and suggests that the defi-
nition of the electric energy as given by relation (3) does
not represent the total electrostatic energy gained by the
system.

Without loss of generality, a new contribution is intro-
duced in the Helmholtz free energy. We define this extra
quantity by AExtra. Then, the new electric energy UnewE
for the system of coupled capacitors writes:

UnewE = UE +AExtra (22)

and relation (13) becomes:

∂WF = dUnewE = dUf + dASC + dAExtra. (23)

Now, if we impose FC and FU to be equal, the extra energy
must satisfy the following differential equation:

dAExtra
dg1

+ εSC
dES
dg1

(ψS − ψt)

− εSC

2

(
ES

dψs
dg1

− Et
dψt
dg1

)
= 0. (24)
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Fig. 3. Energy representation of the conductor-vacuum-
semiconductor capacitor structure when a neutral region is re-
covered away from the free surface. The surface potential is
the potential drop inside the semiconductor (EF and EFi are
respectively the Fermi and intrinsic Fermi energies).

Integrating over g1 from −∞ to some finite value, and not-
ing that at infinity the electric field ES must vanish since
relation (14) cannot diverge, the extra energy is given by:

AExtra =
εsc
2

·
ψS∫

ψ∞
S

ES · dψ − εsc
2

ψt∫

ψ∞
t

Et · dψ

− εsc ·
ES∫

0

(ψS − ψt) · dE, (25)

where ψ∞
S and ψ∞

t are the potentials evaluated at x = 0
and x = t when the gap separation g1 goes to infinity.
These can be calculated once the physical parameters of
the semiconductor system are known. In addition, we im-
plicitly assume that AExtra = 0 when g1 → ∞. This ex-
tra energy involves only physical quantities belonging to
the semiconductor (electric fields, potentials and dielectric
constant). Then, likewise for the energy of the dipoles Up,
AExtra is also part of the semiconductor free energy.

Relation (25) expresses the additional electric energy
in a semiconductor layer. This result was not anticipated
if we concede that relation (3) was hold to account for the
energy of electric nature in matter and in free space. In
the next section, a special case where a neutral region is
recovered inside the semiconductor layer is illustrated in
details.

2.3 The case of a partially depleted semiconductor

Without loss of generality, we assume a p-type doped semi-
conductor layer with a doping density NA. An energy rep-
resentation is shown in Figure 3 (the semiconductor is set
to a lower potential with respect to the counter electrode).
In addition, we consider that the semiconductor is neutral
at x = t, and therefore Et = 0 (note that for doping den-
sities greater than 1015 cm−3, neutrality is recovered after

some micrometers only). In this case, it is quite common
to define the intrinsic Fermi potential in the neutral body
as the origin for the potentials. Therefore we have ψt = 0
and the extra energy simplifies:

AExtra =
εsc
2

·
ψS∫

0

ES · dψ − εsc ·
ES∫

0

ψS · dE

= εsc ·
⎛
⎝3

2
·
ψS∫

0

ES · dψ − ES · ψS
⎞
⎠ . (26)

Introducing the susceptibility χ = εSC/ε0 − 1 and assum-
ing the medium linear, the polarization vector can be writ-
ten P = ε0 · χ · E. From relation (5) the dipoles free en-
ergy is:

UP =
−ε0χ

2

ψS∫

0

ESdψ. (27)

Combining (26) with (27) gives:

AExtra = −εSC

(
ψSES +

3
ε0χ

UP

)
. (28)

It is instructive to define the energy contribution restricted
to the volume of the semiconductor, USC (note that this is
not the internal energy, see [1] for clarification). According
to relation (2), we have:

USC =
1
2
·

∫

ΩSC

E ·D · dx = −εSC

2
·
ψS∫

0

E · dψ. (29)

In addition to the field and dipoles energies, the new en-
ergy UnewSC still restricted to the semiconductor plate must
now incorporate the extra energy AExtra:

Unew
SC

= AExtra + USC

=
εSC

2

ψS∫

0

ESdψ − εSC

ES∫

0

ψSdE − εSC

2

ψS∫

0

Edψ.

(30)

Noting that the link between E and ψ is unique and inde-
pendent of the coordinate, using Es or E in relation (30)
makes no difference for the integrals and relation (30)
simplifies:

Unew
SC

= −εSC

ES∫

0

ψSdE. (31)

As expected, USC and UnewSC are not equivalent.
Adding to UnewSC the contribution of the remaining elec-

tric energy stored in the free space surrounding the semi-
conductor (Ω−ΩSC), the total electrostatic energy for the
system of capacitors UnewE is readily obtained:

UnewE =
1
2
·

∫

Ω−ΩSC

E ·D · dx− εSC ·
ES∫

0

ψS · dE. (32)

http://www.epj.org
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This electric energy is different from what we used ini-
tially, see relation (9). We can gain more insight about the
meaning of USC and UnewSC when relying on the standardE-
Ψ plot used to model the Metal-Insulator-Semiconductor
capacitors system [8] that links the electric field E to the
potential ψ (assuming non degenerate semiconductors):

E (ψ) = −sign (ψ)
√

2UT qNA
εSC

×
√

n2
i

N2
A

(
e
ψ
UT − ψ

UT
− 1

)
+

(
e

−ψ
UT +

ψ

UT
− 1

)
,

(33)

where ni is the intrinsic carrier density and UT is the ther-
modynamic potential (UT = kBT/q).

This representation is very adequate to explain the dis-
tinction between the ‘typical’ and the ‘new’ formulations
of electric energy restricted to the semiconductor body,
USC and UnewSC .

Basically, the new expression stated by relation (31)
represents the area (blue) above the curve in the E-Ψ plot
shown in Figure 4a, whereas the contribution given by the
standard relation (29) is representing half of the lower area
(green). When the surface potential is below the onset of
strong inversion as shown in Figure 4a, the upper area is
almost half of the bottom one, and it is likely that both
definitions converge to the same value. However, when the
surface potential is beyond the strong inversion limit as
in Figure 4b, the upper area dominates, indicating that
relations (29) and (31) are not equivalent.

3 The case of neutral and charged insulators

There are situations where the electrostatic force derived
from the electrostatic energy given from relations (1)
to (3) works correctly. We will provide some evidence that
this does happen for insulators, and more generally for
charged insulators, which are de facto traditional systems
coming along with electric energy considerations.

Substituting the semiconductor for an insulator in the
system of coupled capacitors sketched in Figure 1, we cal-
culate the Coulomb FC and energy based FU forces and
compare them. Regarding the energy stored in the capac-
itor C1, relation (7) can be rewritten in terms of the elec-
tric field in the insulator Ei (εi is the insulator dielectric
constant):

UC1 =
εi
2

0∫

t

E2
i (x)dx+

ε0
2
E2
g1g1. (34)

Introducing the local charge density in the insulator ρ(x)
and assuming that ρ(x) does not depend on the local po-
tential, integrating Poisson equation in the insulator gives:

Ei(x) =
1
εi

x∫

0

ρ (u)du + Ei (0) . (35)

(a)

(b)

Fig. 4. Electric field versus the surface potential for a p-type
doped semiconductor layer. The upper (blue) and lower (green)
areas delimited by the E-Ψ curve represent the integrals de-
fined in the first line of relation (26). Panel (a) illustrates the
case when the semiconductor is in depletion. In this case, the
upper area is approximately half of the lower one. However,
when strong inversion takes place as in panel (b), the upper
area dominates, illustrating the occurrence of the extra energy
of electric nature.

Since the charge density depends on the coordinate only,
we can express the electric field in the form:

Ei (x) = f (x) + Ei (0) , (36)

where f(x) is a function that is independent of the electric
potential.

Similarly, integration of (36) gives the potential distri-
bution in the insulator:

ψ (x) = ψ (0) −
x∫

0

f (u)du − xEi (0) . (37)

http://www.epj.org
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After rearrangement, the total electric energy UE = UC1+
UC0 can be written as:

UE =
εi
2

⎡
⎣

0∫

t

f2 (u)du+ 2Ei (0)

0∫

t

f (u)du− E2
i (0) t

⎤
⎦

+
ε0
2
E2
g1g1 +

ε0
2
E2
g0g0. (38)

Noting that integrals in the bracket of (38) do not de-
pend on the local potential, and thus on the value of the
gap g1, the force arising from the derivative of the electric
energy is:

FU =
dUE
dg1

= εi
dEi (0)
dg1

0∫

t

f (u)du− εit
dEi (0)
dg1

Ei (0)

+
ε0
2
E2
g1 + ε0Eg1

dEg1
dg1

g1

+ ε0Eg0
dEg0
dg1

g0. (39)

Additionally, connected plates must share the same po-
tential, which from relation (37) gives:

E0g0 = E1g1 + ψ (t) − ψ (0)

= E1g1 −
t∫

0

f (u)du − tEi (0) . (40)

Introducing the identity (40) in relation (39), we obtain:

dUE
dg1

= εi
dEi (0)
dg1

0∫

t

f (u)du− εi
dEi (0)
dg1

Ei (0) t

+
ε0
2
E2
g1 + ε0Eg1

dEg1
dg1

g1

+ ε0
dEg0
dg1

⎛
⎝E1g1−

t∫

0

f (u)du−tEi (0)

⎞
⎠. (41)

Again, charge conservation writes:

dEg1 = −dEg0. (42)

Similarly, the continuity of the displacement vector at the
dielectric-gap boundary gives:

εiEi (0) = ε0Eg1. (43)

Finally, using relations (42) and (43) in (41), we find
that the electrostatic force based on the electric energy
variation upon the electrode displacement reverts to the
Coulomb force between the charged capacitor plates:

dUE
dg1

= FU =
1
2
ε0E

2
g1. (44)

We can then conclude that as far as insulators are con-
cerned, there is no need to introduce any new free energy
of electric nature and the usual definition is leading to the
correct result. This apparently ‘trivial’ finding for insula-
tors could explain why the inconsistency pointed out in
semiconductors has been concealed.

4 A sufficient condition for the existence
of the additional free enerxgy

In the quest for a more general criterium, we can analyze
when the extra energy given by (26) vanishes, i.e. when
the electric energy of the capacitor system can still be
obtained from relation (3). Following former analysis, this
condition is verified as soon as FU = FC in relations (20)
and (21). Imposing this identity links surface electric fields
to potentials at front and back interfaces.

εSC
dES
dg1

(ψS − ψt) − εSC

2

(
ES

dψs
dg1

− Et
dψt
dg1

)
= 0. (45)

Additionally, when the semiconductor layer is neutral at
x = t, this condition simplifies further:

dES
ES

=
1
2
dψS
ψS

. (46)

Since there is a one-to-one correspondence between the lo-
cal electric field and the local potential, see relation (33)
for instance, this condition can also be extended to any
coordinate inside the body, leading to the differential
equation:

dE (x)
E (x)

=
1
2
dψ (x)
ψ (x)

. (47)

Solutions of (47) are readily obtained:

E (x) = C
√

−ψ (x) when ψ (x) � 0 or (48a)

E (x) = −C
√
ψ (x) when ψ (x) � 0, (48b)

where C is a positive valued integration constant.
Without loss of generality, we assume ψS � 0 as in

Figure 3 so that E(x) = C
√−ψ(x).

Making use of the Poisson equation, we find that the
charge density must be constant (and negative in our case)
in the semiconductor where the electric field is not null:

dE (x)
dx

=
−ρ (x)
ε

=
C2

2
(49)

(when ψS � 0 the same conclusion applies with a positive
charge).

Basically, for semiconductors this condition reverts to
the so-called full depletion approximation in a uniformly
doped material [8]. It imposes that the body is fully de-
pleted down to a given coordinate until it changes for neu-
trality in a step-like transition. In fact, this analysis makes
use of the Poisson equation only, discarding the Fermi-
Dirac or Boltzmann statistics, which is a quite common
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approximation for semiconductors operating in depletion
mode.

We can illustrate this result by considering that the
semiconductor layer (doped NA) in Figure 1 gets fully
depleted from the surface down to a coordinate x0, beyond
which it recovers neutrality, meaning that ψ(x0) = 0 and
E(x0) = 0. Solving the Poisson equation while assuming a
charge density −qNA (−q is the electron charge) between
[x0,0] and 0 elsewhere, the potential and electric field at
the surface are readily obtained:

ψS = −1
2
qNA
εSC

x2
0 and ES =

qNA
εSC

x0. (50)

Therefore the surface electric field and the surface poten-
tial are linked as follows:

ES =
√

2qNA
εSC

√
−ψS . (51)

Evaluation of integrals in relation (26) gives:

εSC

2

ψS∫

0

ESdψ =
εSC

3

√
2qNA
εSC

(−ψS)3/2 , (52)

εSC

ES∫

0

ψSdE =
εSC

3

(
2qNA
εSC

)−1

E3
S . (53)

Apart for the sign, these quantities are equal, implying
that the extra energy does vanishes in this case. However,
as it will be illustrated in the next section, adopting a more
consistent approach involving Fermi-Dirac or Boltzmann
statistics, which rules out this quite crude full depletion
approximation, will highlight a new energy term. The ad-
ditional energy gained by the semiconductor is then likely
to have its origin in statistical physics.

5 Some tangible quantities: energies
and forces in an ideal semiconductor
based capacitor

In order to estimate the magnitude and impact of the free
energy given by relation (26), we rely on the analytical
expression that links the surface potential to the surface
electric field in a semiconductor plate. Considering a non-
degenerate p-type doped silicon, the surface potential and
the surface electric field satisfy the following well-known
relationship, valid for depletion, inversion and accumula-
tion [8] (signs are consistent with Fig. 3):

ES = −sign (ψs)
√

2UT qNA
εSC

×
√

n2
i

N2
A

(
e
ψS
UT − ψS

UT
− 1

)
+

(
e

−ψS
UT +

ψS
UT

− 1
)
,

(54)

where UT is the thermal voltage, ni is the intrinsic carrier
density andNA is the doping concentration, other symbols
having their usual meaning.

5.1 Computation of the extra energy
in non-degenerate silicon

As already discussed, adopting the conventional represen-
tation ES (ψS) and considering only depletion-inversion
modes (positive values of the surface potential in this
case), relation (26) translates into a simple picture: AExtra
is merely half of the lower area (green) minus the upper
one (blue) (see Figs. 4a and 4b). This graphical interpre-
tation of AExtra is useful to appraise the meaning of the
‘extra energy’. For instance, according to relations (52)
and (53), the area in the upper side of the curve (blue) is
about half the area below (green) as long as the surface
potential ΨS remains below 0.7 volt (see Fig. 4a), which
is the threshold of strong inversion in our case. This is
where the potential and the electric field satisfy the full
depletion approximation to a good extent. Indeed, while
ΨS remains below 0.7 volt, holes can be neglected while
keeping only the linear term in ψs under the square root
in relation (54), leading to:

ES = −
√

2qNA/εSC

√
ψS , (55)

which is formally the same as relation (48b).
However, increasing the surface potential beyond that

limit (0.7 volt) increases the weight of the blue area
with respect to the green one (see Fig. 4b), and predicts
that the two definitions of electric energy given by rela-
tions (29) and (31) will start to deviate from one another.
In fact the amount of the additional free energy AExtra
will increase exponentially with the surface potential.

Similarly, for negative values of ΨS , i.e. accumulation
mode, we can show that the additional free energy AExtra
is never negligible whatever the value of the surface poten-
tial (the surface ‘above’ the curve is always greater than
half of the ‘bottom’ counterpart). Therefore, we anticipate
that as soon as the surface potential matches with inver-
sion or accumulation, AExtra will never be negligible. All
the more, it will be the dominant contribution to the total
electrostatic free energy.

To perceive how the Helmholtz free electric energy is
shared between the two ‘components’ AExtra and Up, we
evaluate the ratio AExtra/UP versus the surface poten-
tial for various doping densities (see Fig. 5a). The addi-
tional electric energy upon a change in the surface poten-
tial dominates when the semiconductor is set in accumula-
tion, i.e. ψS < 0 V, or above the threshold of inversion (i.e.
ψthS > 0.7 V for NA = 1016 cm−3). In inversion mode, this
‘threshold’ ψthS is shifted towards higher values when the
doping density is increased, whereas in accumulation the
doping density has almost no effect when illustrated with
respect to the surface potential. Note that before reaching
the strong inversion limit (which depends on the doping
density), the ratio AExtra/UP remains lower than unity,
meaning that the extra energy is minimized, which is ex-
pected since this is when the full depletion approximation
is satisfied to a good extent.

A somehow different representation of AExtra/UP in
terms of the charge density stored in the semiconductor
is shown in Figure 5b. Except in a limited region where
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(a)

(b)

Fig. 5. Ratio between the extra free energy AExtra and the
dipoles energy UP versus the surface potential (a) and versus
the charge density (b) in a silicon layer, for different doping
concentrations. In (b), we note that in accumulation, AExtra

is always dominant, in contrast to depletion-inversion mode
where it can have a minor contribution. At flat band, the ratio
takes a well defined value independent of the doping density.

–QSC is lower than about 10−3 C/cm2 (depletion), for
a given space charge density the energy ratio increases
with the doping level. In addition, AExtra exceeds always
UP in accumulation, which is not the case in depletion-
inversion mode where it can be relatively small, but still
never cancels. Interestingly, when the surface potential is
close to the flat band (ψS ≈ 0 V), the extra energy tends
to an asymptotic value independent of the doping density,
AExtra/UP ≈ 3εSC/ε0 · χ (about 1.09 for silicon). Then,
the additional electrostatic energy stored in a quasi neu-
tral silicon layer still represents about half of the electric
field and dipoles energies restricted to that silicon body.

5.2 Appraisal of Coulomb and energy based
electrostatic forces

The aim of this section is to illustrate the extra energy
contribution through the tangible quantity of electrostatic
force evaluated in a nanometer scale capacitor systems.

To that purpose, two values for the electrode gap of
C1 are chosen, namely 100 and 10 nm, as well as differ-
ent doping densities. Without loss of generality, for each
case we assume identical electrodes separations for g1 and
g0, respectively for C1 and C0 capacitors. Regarding the
total charge density per unit surface QT , it has been as-
signed values consistent with what is found in MOS and
MEMS devices under normal operation (note that QT is a
dummy variable used to generate charge densities, related
potentials and electric fields in C1 and C0). Solving the
set of equations involving electrostatics and semiconduc-
tors physics gives the charge densities on each capacitor
plate, as well as the surface potential in the semiconduc-
tor. Next, the ratio of the Coulomb to the energy-based
forces FC/FU (see relations (20) and (21)) are displayed
in Figures 6a and 6b for the two values of the capacitors
gap.

Considering the case where the electrodes gap
is 100 nm, Figure 6a confirms that FU does not equal FC ,
which was indeed the argument revealing some inconsis-
tency in the “regular” expression of electrostatic energy.
This mismatch gets smaller for substrate doping densi-
ties greater than 1016 cm−3. However, it is worth noticing
that the link with the extra energy is not straightforward
when comparing Figures 5a and 5b with Figures 6a and 6b
since a large amount of extra energy does not necessarily
mean a large discrepancy in the Coulomb and energy de-
rived forces. In the capacitor system, the dependence of
the force with the doping and charge density is less evi-
dent as it depends on how this energy is affected by the
electrodes separation, i.e. the derivative of the energy with
the gap g1. In addition, part of the total electric energy is
also stored between the plates.

Decreasing the gap down to 10 nm is even more signif-
icant in terms of forces deviation. Figure 6b reveals that
FC and FU can differ by nearly one order of magnitude for
a doping density of 1015 cm−3, and by a factor close to 4
for highly doped substrates. The reason why FC/FU is en-
hanced in smaller gap capacitors can be understood as fol-
lows: as far as the energy stored in free space between the
plates exceeds the energy stored inside the semiconductor,
AExtra will have a limited influence and FU will not de-
part so much from FC . This happens for relatively ‘large’
systems with a gap laying in the micrometer range. But in
nanometer scale capacitors, the electric energy stored in-
side the semiconductor becomes comparable with the elec-
tric field energy stored between the plates (in free space).
In this case, energy-based and Coulomb forces may devi-
ate significantly from one another. As rule of thumb, we
can say that as far as the gap between the plates and the
extension of non-neutral regions in the semiconductor are
in the same range, AExtra might not be negligible. This
will happen for deep sub-micrometer semiconductor based
capacitor systems.
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(a)

(b)

Fig. 6. Ratio between the electric force calculated using the
Coulomb force (FC) over the force obtained from the stan-
dard definition of electric energy (FU ), as a function of the
charge density, and for different doping concentrations. Two
values of electrode separation are addressed, namely 100 nm (a)
and 10 nm (b). These calculations reveal that the usual def-
inition of electrostatic energy is not giving the correct value.
These discrepancies are even more obvious when decreasing the
gap from 100 to 10 nm since the impact of the energy stored
in the semiconductor layer becomes enhanced in regard to the
energy stored in the free space between electrodes.

6 Generalisation to arbitrary geometries

The simple picture of an ideal semi-infinite capacitor sys-
tem revealed unambiguously the need for an additional
electric energy in matter, which has been straightfor-
wardly illustrated for ideal semiconductors layers. Here,
we propose to generalize this analysis by considering a
three dimensional semiconductor body which is separated
from an ideal conductor ‘C’ as shown in Figure 7. Likewise
in the former analysis, we connect this system to an ideal
capacitor C0, but here the idea is to transfer some electric
energy from C0 to the Electrode-Semiconductor system

Fig. 7. Representation of the system used to derive the elec-
tric energy in a semiconductor body of arbitrary shape. The
virtual capacitor is used to generate a continuously varying
voltage by means of the work done by an external force on
one electrode. The energy transfer between the ideal capacitor
and the semiconductor-outer electrode system still reveals that
an energy term is missing in the standard formulation of the
electrostatic energy.

by increasing gradually the gap between the pre-charged
capacitor plates of C0 until reaching a preset value. Basi-
cally, such a process will raise continuously the potential
VP at node P in the semiconductor while engendering a
transfer of charges between the two systems.

As in the first experiment, this method will involve
a mechanical work generated upon moving the plates
against the Coulomb force that should still satisfy the
principle of energy conservation for the whole system. The
advantage for using this setup to generate a potential is
that it relies on similar thermodynamics arguments that
have been introduced in Section 2 given that both exper-
iments share equal concepts.

6.1 Analysis of the energy transfer process

The electric energy stored in the capacitor C0 can be cal-
culated from relation (1) since we assume ideal conduc-
tors for the variable capacitor plates (no penetration of
the electric field in conductors):

UC0 =
1
2

∫

Ω

ρψdΩ =
1
2
Q (Vp − VC) , (56)

where Q is the total charge (assumed positive without loss
of generality) on the fixed electrode of C0, which should
not be mistaken with the charge density per unit area, and
VP and VC are the inner and outer electrode potentials
(see Fig. 7). Since the three dimensional semiconductor
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has a limited volume, we must also assign a finite value
to C0 otherwise any finite transfer of charges from C0 to
the semiconductor will affect neither the charge density,
nor the potential drop across C0.

The electric field between the plates and the potential
difference are given by (the sign of E is consistent with
the orientation of the x axis):

E =
1
ε0

Q

S
, (57)

Vp − VC =
x

ε0

Q

S
, (58)

where S is the area of the capacitor plates which are sep-
arated by x. Using (56), the electric field energy stored
between the capacitor electrodes is:

UC0 =
xQ2

2ε0S
. (59)

As in Section 2, we assume rigid bodies maintained at a
fixed temperature and we invoke the same set of hypoth-
esis. The mechanical work spent by applying a force F on
one electrode to increase the gap between the plates by
dx is related to the change in the electric energy of the
whole system dUE (note that the work increases the en-
ergy of the system when increasing the gap between the
electrodes since F · dx is then positive):

δWF = F · dx = dUE = dUC0 + dUΩ. (60)

Here UΩ holds for the electric energy stored in the semi-
conductor body and in free space, excluding the capacitor
C0 which is already accounted in UC0.

From relation (59), we obtain:

δWF = F dx =
Q2

2ε0S
dx+

xQ

ε0S
dQ+ dUΩ. (61)

On the other hand, an attractive Coulomb force exists
between the plates. Its module is given by:

|FC | = Q
E

2
=

Q2

2ε0S
. (62)

Under quasi-static conditions, the applied force F and the
Coulomb force FC should compensate each other. There-
fore the work spent upon moving the plate by dx is:

δWF = −FCdx =
Q2

2ε0S
dx. (63)

Then, using (61) with (63), we get:

dUΩ =
−xQ
ε0S

dQ = (VP − VC) dQSC, (64)

where QSC represents the charge in the semiconductor
body and, since the total charge on connected electrodes
is invariant (i.e. δ(QSC +Q) = 0), dQSC = −dQ.

The way dQ and dx are interrelated depends on the
interaction between the semiconductor body and the con-
ductor C. Here, what matters is that VP−VC can take any

value (provided Q is not null) by varying the distance be-
tween the electrodes. In particular, when electrodes are “in
contact” (but still “isolated” electrically), the potential
drops to zero. Therefore, using the same kind of topology
as in Section 2, we create a virtual variable voltage source
while satisfying the principle of energy conservation.

Next, relation (64) can be formally written as a func-
tion of the charge transferred to the semiconductor body:

dUΩ = VPC (QSC) · dQSC (65)

where VPC = VP − VC depends implicitly on QSC.

6.2 Derivation of the total electrostatic energy
in the semiconductor body

According to Gauss theorem, a variation in the semicon-
ductor charge reverts to a variation in the flux of the
surface displacement vector dD through the surface SSC,
where SSC consists of the combination of the outer surface
and inner semiconductor-electrode interface (see Fig. 7):

dUΩ = VPC (QSC)

⎛
⎝

∮

SSC

dD · dS
⎞
⎠ . (66)

Here dS is the unitary surface vector oriented outward for
the outer surface, and inward for the inner semiconductor-
contact interface (note that a virtual “wire” should be
created inside the semiconductor body to access the inner
contact. However, this can be made infinitesimally narrow
so that its shape will not contribute to the surface and
volume integrals that come into play with the divergence
theorem).

Since the potential VPC is constant, it can be moved
inside the integral:

dUΩ =
∮

SSC

VPC (QSC) (dD · dS). (67)

Figure 7 shows a line L joining the point P in the semicon-
ductor to the external conductor C. This line crosses the
surface S of the semiconductor at N . Since the potential
drop between P and C does not depend on the path (the
voltage drop is zero in a closed loop), we can write:

dUΩ =
∮

SSC

((VP − VN ) + (VN − VC)) · (dD · dS). (68)

In relation (68), the quantity (VN − VP ) represents the
potential drop in the semiconductor between the inner
contact and the point N at the surface (which reverts to
ψS − ψt in the case of the semiconductor layer discussed
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Fig. 8. Topological representation of the three dimensional
system involving a semiconductor with an outer electrode. The
labeled areas are those used in the divergence theorem.

in Sect. 2):

dUΩ = −
∮

SSC

ψS · (dD · dS)+
∮

SSC

(VN − VC) · (dD · dS)

= −
∮

SSC

ψS · (dD · dS)+
∮

SSC

VN · (dD · dS)

− VC ·
∮

SSC

dD · dS

= −
∮

SSC

ψS · (dD · dS)+
∮

SSC

VN · (dD · dS)

− VC · δQSC. (69)

The last integral on the right hand side of (69) can be
transformed into a field volume integral by using the di-
vergence theorem. To do so, we consider the volume in
the whole space (without C0), excluding the semiconduc-
tor, i.e. Ω−ΩSC. This consists in the volume of the semi-
conductor ΩSC, the volume of the electrode ΩC and the
volume of the connecting “tube” between them ΩConnect
introduced to ensure the continuity for the inner surface
of Ω −ΩSC (see Fig. 8).

In order to simplify relation (69), we start using the
divergence theorem:

∫

Ω−ΩSC

div (V · dD) dΩ =
∫

Ω−ΩSC

grad (V ) · dD · dΩ

+
∫

Ω−ΩSC

V · div (dD) · dΩ

(70)

leading to:∫

Ω−ΩSC

div (V · dD) · dΩ = −
∫

Ω−ΩSC

E · dD · dΩ

+
∫

Ω−ΩSC

V · dρ · dΩ. (71)

Since there is no charge in Ω − ΩSC, the second integral
in (71) vanishes, leading to:∫

Ω−ΩSC

div (V · dD) · dΩ = −
∫

Ω−ΩSC

E · dD · dΩ. (72)

Noting that Ω −ΩSC on one side, and {ΩSC, ΩC} on the
other side have opposite surface orientations, using the
divergence theorem again and noting that at infinity the
displacement vector must vanish, we have:∫

Ω−ΩSC

div (V · dD) · dΩ = −
∮

SSC

VN · (dD · dS)

−
∮

SC

VC · (dD · dS)

−
∮

SConnect

V · (dD · dS). (73)

Next, the connecting element is made infinitesimally
small, so that the last integral over SConnect in (73) can
be omitted:∫

Ω−ΩSC

div (V · dD) · dΩ = −
∮

SSC

VN · (dD · dS)

−
∮

SC

VC · (dD · dS). (74)

Noting that VC is constant on the conductor surface and
that the integral of dD over the conductor surface SC is
simply −dQSC, as imposed by the charge neutrality prin-
ciple, we can write:∫

Ω−ΩSC

div (V · dD) · dΩ=−
∮

SSC

VN · (dD · dS)+VC ·δQSC.

(75)
Using the above identity in relation (69), the incremen-
tal energy transfer from the capacitor to the rest of the
system, including free space (except C0) is:

dUΩ = −
∮

SSC

ψS (dD · dS) −
∫

Ω−ΩSC

div (V · dD) · dΩ.

(76)
Next, the total work exchanged is obtained by integrat-
ing (76) over the displacement vector while noting that
there is no charge in Ω −ΩSC:

UΩ = −
∫

D

∮

SSC

ψS · dS · dD +
∫

D

∫

Ω−ΩSC

E · dΩ · dD. (77)
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Permuting the integration sequence, we obtain:

UΩ = −
∮

SSC

∫

D

ψS · dD · dS +
∫

Ω−ΩSC

∫

D

E · dD · dΩ. (78)

The electric energy supplied by the virtual voltage source
is divided in some energy stored in free space and in the
semiconductor body. On the other hand, the electrostatic
energy in the free space Ω (excluding C0, but including
the semiconductor) is still given by relation (3).

Likewise for the analysis of the capacitor plate, the
difference in these quantities represents the additional free
energy for the body:

AExtra = UΩ − UE

= −
∮

SSC

∫

D

ψS (dD · dS) −
∫

ΩSC

∫

D

E · dD · dΩ.

(79)

Therefore, the new definition of the electric energy of a
system including an arbitrary semiconductor body is pro-
posed:

UnewE =
∫

Ω

∫

D

E · dD · dΩ +AExtra

=
∫

Ω−ΩSC

∫

D

E · dD · dΩ −
∮

SSC

∫

D

ψS · (dD · dS).

(80)

It is straightforward to see that relation (80) is the gen-
eralization of relation (32) that was developed for a pla-
nar geometry. Therefore, even though we followed a quite
different approach, we conclude that an additional free
energy created by an electric field is predicted in semicon-
ductors, and very likely in matter in general, and only in
some special cases this energy is not engendered.

We can proceed further these developments and pro-
pose an expression in terms of the local charge density. Us-
ing the divergence theorem for the surface integral of (80),
we obtain:∮

SSC

∫

D

ψS · (dD · dS) =
∫

ΩSC

∫

D

div (ψ · dD) · dΩ

= −
∫

ΩSC

∫

D

(E · dD) · dΩ

+
∫

ΩSC

∫

ρ

(ψ · dρ) · dΩ. (81)

Introducing this identity in relation (79), we find that the
energy contribution coming from the semiconductor body
takes a very simple form:

AExtra = −
∫

ΩSC

∫

ρ

(ψdρ) dΩ. (82)

At least in semiconductors, AExtra is always positive, i.e.
the internal energy is increased upon generation of non-
neutral regions.

In addition, using relation (1) (valid only if the system
is linear [5]) for the standard expression of electric energy,
we can write the new energy as a function of the potential
and charge density only:

UnewE =
1
2

∫

Ω∞

(φρ) dΩ −
∫

ΩSC

∫

ρ

(ψdρ) dΩ. (83)

Two clarifications need to be done. Firstly, the volume Ω
in (80) is used to identify the system of interest (semicon-
ductor body with outer electrode) excluding the ‘capacitor
voltage source’. But this still represents the whole space
termed as Ω∞ in relation (1), reason why it is used in
place of Ω in relation (83). Next, the meaning of the po-
tentials φ and ψ should be well understood. Whereas φ(x)
is the potential created at x by all the charges in the sense
given by relation (1) and should therefore vanish at infin-
ity, ψ(x) is the difference in the potentials between the
inner electrode P and a coordinate x inside the semicon-
ductor body (Fig. 7).

Finally, when considering isotropic media and intro-
ducing the polarization vector as in reference [2], the
different contributions to the electrostatic energy are
highlighted:

UnewE = ε0 ·
∫

Ω

∫

E

(E · dE) · dΩ +
∫

ΩSC

∫

P

(E · dP) · dΩ

−
∫

ΩSC

∫

ρ

(ψ · dρ) · dΩ. (84)

The first term represents the total energy stored in the
electric field in the whole space, including the semiconduc-
tor body. The second term represents the energy supplied
to polarize matter [1,2]. Lastly, the third term represents
the new energy AExtra.

Different expressions for the electrostatic energy with
the new definition are then obtained. Note that whereas
relations (80) and (84) generalize relation (3), relation (83)
is somewhat more restrictive as it is makes use of rela-
tion (1) and hence should be used with the same restric-
tion, i.e. for linear polarizable systems (in the sense dis-
cussed in Ref. [5]).

6.3 The full depletion approximation
in a semiconductor sphere as a case of study

We illustrate the use of generalized expressions of the ex-
tra energy in the case of a p-type doped semiconductor
sphere of radius R where the full depletion approxima-
tion is invoked. We consider a kind of semiconductor-
conductor capacitor system as shown in Figure 9. Like-
wise for the planar geometry discussed formerly, applying
a lower potential to the silicon with respect to the sur-
rounding conductive sphere will deplete the surface of the
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Fig. 9. Cross section of the spherical semiconductor body sur-
rounded by an ideal counter electrode that creates a depletion
in the inner sphere (electrical potentials are applied at the
center and on the outer conductive shell). The radius of the
semiconductor sphere is R and the radius where the transi-
tion between full depletion-neutral semiconductor takes place
is labeled r0.

semiconductor sphere from mobile carriers. In addition,
as the semiconductor is uniformly doped, there is no an-
gular dependence of any physical quantity, implying that
the Poisson equation in spherical coordinate satisfies:

1
r2

∂

∂r

(
r2
∂

∂r

)
ψ (r) =

qNA
εSC

. (85)

The full depletion approximation supposes that the core
of the semiconductor sphere remains neutral up to a ra-
dius r0, then is fully depleted from r0 to R(ψ(r0) = 0,
E(r0) = 0). Imposing these conditions to relation (85),
the potential and the radial electric field depend on the
radius r and on the parameter r0 such as:

ψ (r) =
qNA
6εSC

r2 +
qNA
3εSC

r30
1
r
− qNA

2εSC
r20 , (86)

E (r) =
qNA
3εSC

(
r30
r2

− r

)
. (87)

We are now able to evaluate the extra energy defined from
relation (79) for instance.

Concerning the surface integral, since we are consid-
ering a sphere with no angular dependence, the integral
over the surface for a given surface displacement vector
DS simplifies as:

∮

S

∫

D

ψS · (dD · dS) = 4πR2

∫

D

ψS · dD. (88)

Concerning the surface potential, this is straightforwardly
obtained from relation (86):

ψS = ψ (R) =
qNA
6εSC

R2 +
qNA
3εSC

r30
1
R

− qNA
2εSC

r20 . (89)

Next, the incremental surface displacement vector is re-
covered from relation (87):

dD (R) = qNA

(
r20
R2

)
dr0 (90)

(note that there is no dependence on the radius since DS

is defined at the surface only).
After calculations, the surface integral becomes:

∮

S

∫

D

ψS (dDdS) =
−4π
εSC

(qNA)2

×
R∫

r0

(
R2r20

6
+

1
3
r50
R

− r40
2

)
dr0

=
−2π
9εSC

(qNA)2

×
[
R5

5
−R2r30 − r60

R
+

9
5
r50

]
. (91)

Next, the second contribution is evaluated.
Still assuming that there is no angular dependence and

that the medium is linear, we have (dΩ = 4 × πr2dr):

∫

ΩSC

∫

D

E · dD · dΩ ==
1
2
· εSC ·

∫

ΩSC

E2 · dΩ

=
2 · π

9 · εSC
· (q ·NA)2 ·

R∫

r0

(
r30
r

− r2
)2

· dr

=
2 · π

9 · εSC
· (q ·NA)2 ·

(
R5

5
−R2 · r30 − r60

R
+

9
5
· r50

)
.

(92)

It is worth noticing that in (91), integration is performed
over the parameter r0, which is the radius where depletion
starts, whereas in (92) the integration is done over the
variable r from r0 to R. Comparing both terms reveals
that these integrals are equal and will cancel each others
in relation (79). Therefore, the regular definition of the
electrostatic energy remains valid when the full depletion
approximation is used even in case of the semiconductor
spheres.

So far we have carried out the analysis making of use
of fields, which was instructive to understand how these
relationships can be used in practical cases. In the next
section, we will adopt the dual charge-potential approach.

6.4 The full depletion approximation in arbitrary
geometries

As stated in relation (82), an alternative expression of
AExtra in terms of charges and potentials is possible. Here,
we can gain more insight when integrating by parts the
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inner integral of relation (82). This gives:

AExtra = −
∫

ΩSC

⎛
⎜⎝ψ (r) · ρ (r)|fi −

ψf∫

ψi

ρ (r) · dψ (r)

⎞
⎟⎠ dΩ,

(93)
where the subscript ‘i’ and ‘f ’ hold for initial and final
values of the physical quantities evaluated at the same
coordinate r .

Now, if the charge density ρ(r) at r does not depend on
the potential ψ(r), as it may happen insulators or in semi-
conductors when the full depletion approximation holds,
we have:

AExtra = −
∫

ΩSC

⎛
⎜⎝ψ (r)|fi · ρ (r) − ρ (r) ·

ψf∫

ψi

dψ (r)

⎞
⎟⎠ dΩ

= −
∫

ΩSC

[
ψ (r)|fi · ρ (r) − ρ (r) · ψ (r)|fi

]
dΩ.

(94)

It is clear that the integrand is null at each coordinate
where this assumption holds. Then, if this condition is
verified in the whole body, the integration over ΩSC is
also null.

This result generalizes the preliminary conclusions car-
ried out in former sections for planar and spherical geome-
tries. It confirms that whatever the shape, no extra energy
is needed when dealing with neutral or charged insulators,
as well as with semiconductors when adopting the full de-
pletion approximation assumption.

7 Conclusion

Following ground theoretical developments, we con-
clude on the necessity to introduce a new electric
energy contribution in semiconductors, and possibly in a

variety of materials, which, to the best of the author’s
knowledge, has never been evidenced before and is still
absent from text books. Indeed, depending on the mag-
nitude and orientation of the external electric field, such
energy may largely exceed the well-known free energy re-
lated to dipoles polarization. A generalization to three-
dimensional systems is proposed and general rules regard-
ing the need for such a correction are discussed. It comes
out that under special situations, as for instance in insula-
tors or when the full depletion approximation holds, this
energy vanishes and gives back the commonly accepted
definition of electric energy. Besides this fundamental as-
pect, we anticipate that totally neglecting this new term
is not consistent with the energy conservation principle.
Therefore, it is seems mandatory to rework some definition
of electric energy in matter in order to reconcile electric
energy with basics of electrostatics.
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