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Rados�law Szczȩśniak and Artur P. Durajskia
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Abstract. Hydrogen-rich compounds under extreme pressure are the most promising systems for search-
ing a high-temperature superconductivity. In presented paper, we report analysis of the thermodynamic
properties of hydrogenated germanium (germane, GeH4) at 220 GPa obtained within the framework of the
Migdal-Eliashberg theory. We observe that together with the increase of Coulomb pseudopotential from
0.1 to 0.3 the critical temperature decreases from 92.36 K to 52.80 K. A similar trend is also well-visible in
the case of other thermodynamic properties. Moreover, we study the influence of external pressure on the
superconducting state of GeH4. On this basis we conclude that increase of pressure from 20 to 220 GPa has
a pronounced effect on the thermodynamic stability of germane. Finally, it is proved that the properties
of the superconducting state of GeH4 differ markedly from predictions of the Bardeen-Cooper-Schrieffer
(BCS) theory.

1 Introduction

The possibility of high-temperature superconductivity in
simple elements enriched with hydrogen was theoreti-
cally predicted by Ashcroft in 2004 [1]. It was suggested
that due to the chemical precompression of hydrogen
caused by atoms of heavier elements, the hydrogen-rich
compounds can become metallic and superconducting at
considerably lower external pressure than may be nec-
essary for pure hydrogen [2]. The exploration of poten-
tial superconductivity in these compounds is thus an ob-
vious trend. A numerous theoretical and experimental
studies have been performed in the last few years [3].
From the experimental point of view, the superconduc-
tivity was found in silane (SiH4) [4], hydrogen sulfide
(H3S) [5] and hydride phosphine (PH3) [6] at high pres-
sures. Wherein the measured critical temperature (TC) of
203 K in hydrogen sulfide is among the highest over all-
known superconductors [5]. The theoretical studies have
revealed a significantly more superconducting hydrogen-
rich materials such as PtH [7,8], H2S [9], GaH3 [10,11],
ScH3 [12,13], SnH4 [14], GeH4 [15,16], NbH4 [17,18],
CaH6 [19], MgH6 [20] of which the highest critical tem-
perature equal to 263−271 K was estimated for MgH6

compound at a pressure range from 300 to 400 GPa [20].
As it turns out pressure (p) can have a very large im-
pact on the critical temperature and thermodynamics of
superconducting state. From technological point of view,

a e-mail: adurajski@wip.pcz.pl

to study the behaviour of materials as a function of very
high pressure it is necessary to use a diamond-anvil cell
in which it is possible to achieve static pressures about
260 GPa. In the case of first-principles calculations there
are no limits and, for example, the atomic metallic hydro-
gen has been studied up to a pressure of 3500 GPa [21].

In the present paper, we report the systematic and de-
tailed study of superconducting state in germane (GeH4)
at 220 GPa for a stable structure C2/c. Germane, to-
gether with silane and stannane, belongs to the group IVa
hydrides. Whilst the several experimental measurements,
have been performed to investigate the superconducting
state induced in SiH4 [4,22,23], no study on the hydrides
of heavier group IV elements such as GeH4 and SnH4 has
been attempted. So far, the theoretical studies have pre-
dicted high superconductivities with TC reaching 64 K at
220 GPa for GeH4 [15] and 62 K at 200 GPa for SnH4 [24]
(for comparison: TC = 17 K for SiH4 at 220 GPa [25]).
Moreover, some estimates show that since the atomic ra-
dius and atomic masses of Ge and Sn are larger than Si,
GeH4 and SnH4 might be easier to become a metal (at a
lower metallization pressure) than silane [26].

The paper is organized as follows. Next section con-
tains a short outline of the strong-coupling Eliashberg for-
malism. In Section 3, we present the thermodynamic prop-
erties of superconducting GeH4 at 220 GPa and we discuss
the influence of pressure on the superconducting state of
GeH4 by comparison of results obtained here with the re-
sults reported previously for GeH4 at 20 GPa (Cmmm
phase) [27]. Section 4 summarizes the obtained results.
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Fig. 1. (A) The form of the order parameter on the imaginary axis for the selected values of the temperature and the Coulomb
pseudopotential (p = 220 GPa). The full shape of the order parameter for m = 1 as the function of temperature for the selected
values of the Coulomb pseudopotential for (B) p = 220 GPa and (C) p = 20 GPa [27].

2 Eliashberg formalism

Our investigations are conducted within the framework of
the strong-coupling Migdal-Eliashberg theory of supercon-
ductivity [28], which accurately treats the electron-phonon
interaction and offers a way to exact calculate the critical
temperature, superconducting energy gap, specific heat
and thermodynamic critical field. The Eliashberg equa-
tions in the single-band case formulated on the imaginary
frequency axis take the following form [28,29]:

φn =
π

β

m=M∑

m=−M

λ (iωn − iωm) − μ�θ (ωc − |ωm|)√
ω2

mZ2
m + φ2

m

φm (1)

and

Zn = 1 +
1
ωn

π

β

m=M∑

m=−M

λ (iωn − iωm)√
ω2

mZ2
m + φ2

m

ωmZm, (2)

where φn = ΔnZn, Δn ≡ Δ (iωn) denotes the su-
perconducting order parameter and Zn ≡ Z (iωn) is
the wave function renormalization factor. Moreover, the
quantity θ denotes the Heaviside function, ωn are the
Matsubara frequencies defined in the following way: ωn ≡
(π/β) (2n − 1), where n = 0,±1,±2, . . . ,±M , and M =
1100. Symbol β denotes an inversion of temperature β ≡
(kBT )−1 and μ� represents the Coulomb pseudopotential
with a cut-off frequency ωc equals three times the max-
imum phonon frequency (ωc = 3Ωmax, where Ωmax =
331 meV [15]). In the Eliashberg equations, the Coulomb
pseudopotential is treated as a parameter that should be

fitted in order to reproduce the experimental value of crit-
ical temperature. In the case of GeH4 at 220 GPa, the ab-
sence of experimental data caused that we conducted our
calculations for a wide range of μ�, from 0.1 to 0.3. Fur-
thermore, in equations (1) and (2), λ (iωn − iωm) is a
pairing kernel for the electron-phonon interaction:

λ (iωn − iωm) ≡ 2
∫ Ωmax

0

dΩ
Ω

(ωn − ωm)2 + Ω2
α2F (Ω) .

(3)
The central quantity of the Migdal-Eliashberg theory is
the Eliashberg spectral function α2F (Ω), which expresses
the electron-phonon interaction. For GeH4 at 220 GPa
(metallic monoclinic structure of C2/c) the α2F (Ω) func-
tion was determined in paper [15] from the ab-initio calcu-
lations (Quantum-ESPRESSO package [30]) and was used
as a input element into the Eliashberg equations to deter-
mine, inter alia, TC and the temperature dependence of
the energy gap. For this purpose, in the Eliashberg equa-
tions for a fixed value of μ� we have increased the value of
temperature until we have reached the equality Δm =1 = 0
at T = TC .

3 Results and discussion

The dependence of the order parameter on the succes-
sive Matsubara frequencies for selected values of μ� and
temperature is presented in Figure 1A. It can be no-
ticed, that with the growth of temperature the maxi-
mum of the order parameter function (Δm =1) is decreas-
ing. The full dependence of Δm = 1(T ) are presented in
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Fig. 2. The real and imaginary part of the order parameter on the real axis at 220 GPa for selected values of the temperature
and the Coulomb pseudopotential. Additionally, the rescaled Eliashberg function has been plotted (40α2F (Ω)).

Table 1. Influence of Coulomb pseudopotential on the value of
critical temperature and zeroth-temperature energy gap at the
Fermi level for the hydrogenated germanium at 20 GPa [27]
and 220 GPa.

TC (K) Δ(0) (meV)
μ� 0.1 0.2 0.3 0.1 0.2 0.3

GeH4 20 GPa 54.54 39.89 31.23 9.57 6.79 5.22
GeH4 220 GPa 92.36 67.04 52.80 16.29 11.54 8.89

Figure 1B. On this basis we can notice that, for the in-
vestigated systems, critical temperature decreases from
92.36 K to 52.80 K when Coulomb pseudopotential in-
creases from 0.1 to 0.3. At this point it should be noted
that in the strong coupling systems the Allen-Dynes mod-
ified McMillan equation gives underestimate value of TC

(64 K for μ� = 0.13 [15]).

Our results for GeH4 at 220 GPa (Figs. 1A and 1B)
are supplemented with the results obtained previously for
GeH4 at 20 GPa (Fig. 1C) [27]. More precisely the effect
of pressure on the superconducting state in GeH4 com-
pound can be traced by analysing the results presented
in Table 1, where Δ(0) denotes the physical value of en-
ergy gap. The energy gap was determined on the basis
of the results from imaginary axis solutions used as a in-
put data to the Eliashberg equations defined in the mixed
representation (both on the real and imaginary frequency
axis) [29,31].

In particular based on the form of the order parameter
on the real axis, in the Eliashberg formalism, the exact
values of the superconducting energy gap can be obtained
using the following equation [29]:

Δ (T ) = Re [Δ (ω = Δ (T ))] . (4)

The results of Δ(ω), for selected values of temperature
and for fixed values of the Coulomb pseudopotential are
presented in Figure 2. We can see that for the low fre-
quencies, the zero value is taken only by the imaginary
part of Δ(ω). This proves that in the considered range of
frequencies the damping effects not exist. In the case of
real part we can observe a clear correlation with the shape
of the Eliashberg spectral function, which is plotted in the
background of Figure 2.

In the next step, we calculated the thermodynamic
critical field:

HC√
ρ (0)

=
√
−8π [ΔF/ρ (0)] (5)

where symbol ΔF = FS − FN denotes the free energy
difference between the superconducting and the normal
state [32]:

ΔF

ρ (0)
= −2π

β

M∑

n=1

(√
ω2

n + Δ2
n − |ωn|

)
(6)

×
(

ZS
n − ZN

n

|ωn|√
ω2

n + Δ2
n

)
.
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Fig. 3. The thermodynamic critical field and the free energy
difference between the superconducting and normal state as
a function of temperature for selected values of the Coulomb
pseudopotential. The results for GeH4 at 20 GPa are adopted
from paper [27].

Here, ρ (0) is the electron density of states at the Fermi
level and symbols ZS

n and ZN
n are the mass renormaliza-

tion functions for the superconducting and for the normal
state, respectively. Let us note that equation (6) can be
computed on the basis of the solutions of the imaginary
axis Eliashberg equations.

The temperature dependence of thermodynamic crit-
ical field and free energy difference is presented in Fig-
ure 3. We can observe a large variations between results
obtained for a sample at 20 GPa and 220 GPa. From the
physical point of view, the thermodynamically more sta-
ble is system at 220 GPa, because in this case the abso-
lute values of ΔF are larger than in the second case for
the corresponding values of μ�.

Also on the basis of the free energy difference, we cal-
culated the specific heat difference between the supercon-
ducting and normal states (ΔC = CS − CN ):

ΔC

kBρ (0)
= − 1

β

d2 [ΔF/ρ (0)]
d (kBT )2

. (7)

Let us note that the specific heat for the normal state
is defined as: CN = γT , where symbol γ denotes the
Sommerfeld constant: γ ≡ (2/3)π2k2

Bρ (0) (1 + λ). In Fig-
ure 4 we have results obtained for GeH4 at 220 GPa and
compared with those computed for GeH4 at 20 GPa [27].

One of the most convenient way to compare supercon-
ducting systems is to determine dimensionless ratios con-
nected with thermodynamic magnitudes: 2Δ(0)/kBTC ,
ΔC (TC) /CN (TC) and TCCN (TC) /H2

C (0). In accor-
dance with the BCS theory, the above ratios take the
universal values: 3.53, 1.43, 0.168, respectively [33,34].
However, due to the strong-coupling and retardation
effects taken into account in the Migdal-Eliashberg
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Fig. 4. The dependence of the specific heat in the supercon-
ducting (x = S) and the normal (x = N) state on the temper-
ature for selected values of the Coulomb pseudopotential. The
vertical dotted lines indicate the position of the specific heat
jump at TC .

theory, the values of dimensionless ratios, determined
in this paper, differ significantly from the predic-
tion of BCS theory. In particular, in Figure 5, we
can see the dimensionless ratios as a function of the
strong-coupling index TC/ωln for GeH4 at 20 and
220 GPa in comparison with experimental results re-
ported for other conventional superconductors [29]. The
solid lines correspond to the analytical formulas proposed
in papers [35,36]:

2Δ(0)
kBTC

= 3.53

[
1 + 12.5

(
kBTC

ωln

)2

ln
(

ωln

2kBTC

)]
,

(8)

ΔC (TC)
CN (TC)

= 1.43

[
1 + 53

(
kBTC

ωln

)2

ln
(

ωln

3kBTC

)]
(9)

and

TCCN (TC)
H2

C (0)
= 0.168

[
1 − 12.2

(
kBTC

ωln

)2

ln
(

ωln

3kBTC

)]
,

(10)
where, the average phonon frequency (ωln) is defined as:

ωln ≡ exp
[

2
λ

∫ +∞

0

dΩ
α2F (Ω)

Ω
ln (Ω)

]
.

On the basis of above formulas it can be concluded that
in the weak coupling BCS limit TC/ωln → 0 while in the
case of GeH4 at 220 GPa we have TC/ωln ∈ 〈0.11, 0.06〉.

It is clearly visible in Figure 5 that although the ob-
tained results differ significantly from the prediction of
the classic BCS theory, they are close to the general trend
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determined by the conventional superconductors. Signifi-
cant derogations were observed only in the case of GeH4

at 220 GPa for μ� = 0.1.

4 Conclusions

To summarize, we conducted the systematic study in or-
der to describe the thermodynamic properties of GeH4

in the superconducting state (under the pressure of
220 GPa). In particular, the superconducting critical tem-
perature, energy gap, free energy difference between the
superconducting and normal state, thermodynamic criti-
cal field and the specific heat were determined for a wide
range of Coulomb pseudopotential: μ� ∈ 〈0.1, 0.3〉. It was
stated, that investigated system is characterized by high
critical temperature reaching a maximal value up to 92 K
for μ� = 0.1.

In addition, our calculations suggest that the super-
conducting phase in GeH4 at 220 GPa is thermodynami-
cally more stable than in GeH4 at 20 GPa. Detailed com-
parison shows also that, due to the strong-coupling and
retardation effects, both systems take non-BCS values
of dimensionless ratios 2Δ(0)/kBTC , ΔC (TC) /CN (TC)
and TCCN (TC) /H2

C (0) but the obtained results agree
with general trend appointed by conventional super-
conductors. Future experimental explorations on the
superconductivity of this high-pressure system are highly
desirable.
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Commun. 165, 39 (2013)
28. G.M. Eliashberg, Sov. Phys. J. Exp. Theor. Phys. 11, 696

(1960)
29. J. Carbotte, Rev. Mod. Phys. 62, 1027 (1990)
30. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502

(2009)
31. F. Marsiglio, M. Schossmann, J.P. Carbotte, Phys. Rev. B

37, 4965 (1988)
32. J. Bardeen, M. Stephen, Phys. Rev. 136, A1485 (1964)

33. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106,
162 (1957)

34. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108,
1175 (1957)
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