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Abstract. We show how to compute the optical functions of wide parabolic quantum wells (WPQWs)
exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect
of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave
including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken
into account in the cylindrical approximation. The role of the interaction potential and of the applied
electric field, which mix the energy states according to different quantum numbers and create symmetry
forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h
potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing
the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have
obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change
of the direction of the applied field (F → −F), parabolic for the ground state and strongly dependent on
the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to
the states with different parity for electron and hole.

1 Introduction

The effects on optical spectra when an external electric
field is applied, known in atomic physics as the Stark ef-
fect, evolved very rapidly with the invention and devel-
opment of semiconductor nanostructures. The effects of
confinement of carriers overlap with the interaction with
the field giving rise to the new phenomenon known as the
quantum confined Stark effect (QCSE). First reported for
quantum wells by Miller et al. [1,2], the QCSE is is still
the subject of a vivid interest [3,4]. References [1–38] are
only a small collection of a very large number of papers
studying the properties of various nanostructures (quan-
tum wells, quantum dots, quantum rods, superlattices
etc.) under electric field. In most of these nanostructures
the applied electric field causes a red-shift of the posi-
tions of the lowest energy states, changes in the exciton
binding energy, and lowering the oscillator strengths of
the resonances. Here we consider QCSE in wide parabolic
quantum wells (WPQWs), of thicknesses in the growth
direction of the order of a few excitonic Bohr radii of the
well material (see, for example [39–41,43], and references
therein). The optical spectra of WPQWs show a large
number of resonances, which are due to the transitions
between confined states. The Coulomb e-h potential and
different confinements for electrons and holes cause mix-
ing of the states with different quantum (confinement)
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numbers. When additionally an electric field is applied,
states symmetry forbidden appear in the spectra. The be-
havior of the positions of the resonances is more compli-
cated than in the narrow QWs since the lower states show
a red-shift, but some higher states show a blue-shift or a
zig-zag shape, and their oscillator strengths decrease. As
in the previous paper [43], to compute the electrooptical
effects in WPQWs the RDMA will be used. As merely
shown in the past, this approach is well suited for de-
scribing the electro- and magnetooptical properties of ex-
citons in various systems, bulk and low dimensional. In
particular, it was applied for electrooptic effects in su-
perlattices [16,22,28], quantum wires [18,24], and quan-
tum dots [20–22,24,27,31]. Even if the basic equations of
the RDMA, the so-called constitutive equations, have the
same form for the mentioned systems, the way of solu-
tion is different and accounts for the specific properties
of the given system and of the phenomenon considered.
In the case of SLs, treated in references [16,22], the so-
lution accounts for the polaritonic aspect and the addi-
tional boundary conditions problem, and was obtained
in terms of the appropriate Green function. The main
effect discussed was the so-called Franz-Keldysh effect
which consists in oscillatory behavior of the optical func-
tions for excitation energy above the fundamental gap. A
similar calculation method allowing for prediction of the
Franz-Keldysh effect, was applied for the case of quan-
tum wires [18] and quantum wells for an applied electric
field parallel to the QWW axis or to the QW surface,
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respectively (for example [21]). In the case of shallow QWs
and QDs, where one observes an energetic shift of the ex-
citonic resonances, so-called Stark shift, the solution of
the RDMA equations requires different approaches. The
comparison of the effects in shallow and wide QWs will
be given below. The Stark effect in WPQWs, which we
wish to discuss in the following, is different from the elec-
trooptic effects in the above mentioned low-dimensional
systems and a different type of solution of the RDMA
equations will be applied. Here, we extend the model de-
scribed in our previous paper [43] including the electric
field and this inclusion gives rise to new phenomena, a few
examples of which will be presented. As an example, we
consider a WPQW with GaAs as the optically active layer
and Ga1−xAlxAs as the barriers, where the active layer is
of the extension of a few excitonic Bohr radii, and the
constant electric field is applied in the growth direction,
which we identify with the z axis.

Although our investigations deal with the theoretical
model of WPQW exposed to uniform electric field it is
believed that such systems are important due to their
controllability and potential applications [44]. Those in-
vestigations are very promising for high-speed, low-power
optical devices. Employing an external electrostatic field
to quantum well allows one for steering the optical prop-
erties of the system. Together with the geometric charac-
teristic of QW the external field is one of the strong mod-
ulating factor influencing the energy spectrum of charge
carriers. Due to controllability of the field the optical prop-
erties of the nanostructures can be changed on demand.
Performing the manipulations of the external interaction
on WPQW gives one possibility of an effective processing
of electrosusceptibility, which may in the future be ex-
ploited for constructing electrooptical modulators or op-
toelectronic processors operating on demand. The com-
puted shift of the resonances, quadratic Stark shift, and
changes in the oscillator strengths should be valuable for
those experimentalists who try manipulate and optimize
the properties of optoelectronic devices.

Our paper is organized as follows. In Section 2, we
present the assumptions of considered model and solve
the constitutive equation with effective electron-hole in-
teraction potential and the applied field. Next, in Sec-
tion 3, the derived solution of the constitutive equation
is used to obtain the electrosusceptibility for two cho-
sen GaAs/Ga1−xAlxAs WPQWs. Finally, in Section 4, we
present the conclusions.

2 The model

We will compute the linear optical response of a WPQW
of thickness L to a plain electromagnetic wave

Ei(z, t) = Ei0 exp(ik0z − iωt), k0 = ω/c, (1)

for energies �ω near to the fundamental gap of the well
material. A constant electric field F is applied parallel
to the z-axis. In the calculations we use the real den-
sity matrix approach (RDMA), which also includes the

effective mass approximation [24,45]. In this approach
the linear optical response will be described by a set of
coupled equations: constitutive equation for the coherent
amplitude Yν(re, rh) (ν labels the allowed interband tran-
sitions for the well material), and Maxwell’s field equa-
tion. The movement of the carriers in the z direction is
determined by one-dimensional parabolic potentials, char-
acterized by the oscillator energies �ωe, �ωh, respectively.
The amplitudes Yν determine the polarization which, in-
serted in Maxwell’s field equations, gives the electric field
of the wave propagating in the QW. Having the field we
can determine the QW electroptical functions (reflectivity,
transmission, and absorption).

Thus the next steps are the following: we formulate the
constitutive equations. The equations will be then solved
giving the coherent amplitudes Y . From the amplitudes
we compute the polarization inside the quantum well, the
electric field of the wave propagating in the QW, and the
optical functions.

The constitutive equation for the coherent ampli-
tude Y in a WPQW and with the applied homogeneous
electric field F = Fk has the form (see, for example [24])

[
Eg − �ω − iΓ + Ĥe + Ĥh +

p̂2
ρ

2μ‖
+

p̂2
‖

2M‖

+ Veh(ρ, ze, zh)

]
Y = M(r)E(R), (2)

where He,h are Hamilton operators for the one-
dimensional harmonic oscillator including the effects of
the applied electric field

Ĥeh =
p̂2

e,hz

2me,hz
+

1
2
me,hzω

2
e,hz

2
e ± eFze,h, (3)

me,hz are the electron and hole effective masses in the
z-direction, ρ =

√
(xe − xh)2 + (ye − yh)2 is the two-

dimensional e-h distance, Veh(ρ, ze, zh) is the electron-
hole interaction potential, M(r) is the transition dipole
density, which form we have assumed as:

M(r) = M(ρ, z, φ) =
M0

2πρ0
δ(z)δ (ρ− ρ0) , (4)

z = ze − zh being the relative coordinate in the z direc-
tion, ρ0 is the coherence radius (the physical meaning was
explained, for example, in Refs. [45,46]), R is the excitonic
center-of-mass coordinate, E(R) is the electric field vector
of the wave propagating in the QW, and p̂ρ, p̂‖ are the mo-
mentum operators for the excitonic relative- and center-
of-mass motion in the QW plane. In the consideration
of narrow QWs (with extension less than one excitonic
Bohr radius and arbitrary confinement shape) the follow-
ing approximation was often used. The movement in the
z-direction was decoupled from the movement in the xy
plane, and the electron-hole interaction was assumed in
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the 2-dimensional form

Veh = − 1
4πε0εb

e2

ρ
(5)

with the QW material dielectric constant εb. This approxi-
mation enabled to obtain analytical solutions for the elec-
tron and the hole wave functions, and thus the calcula-
tion of the optical properties (see for example, [24]). Such
method cannot be used in the considered case of wide
QWs (the extension of several excitonic Bohr radii) since
the e-h interaction retains its 3-dimensional character. As
was pointed in references [42,43], the direct numerical so-
lution of the constitutive equation (2) is, at the moment,
not available because of lack of the appropriate orthonor-
mal basis to use in order to decrease the dimension of
the 6-dimensional configuration space [47]. Therefore we
use the following 3-dimensional form of the interaction
potential

Veh = −S exp
[
−v (ze − zh)2 − wρ2

]
(6)

with parameters v, w appropriate for a given nanostruc-
ture, which enables to perform analytical calculations and
reproduces the basic properties of the exciton [42,43].

In the following we assume that the propagating wave
is linearly polarized in the x direction, and that the vec-
tor M has a non-vanishing component in the same di-
rection. Such polarization, in the case of the considered
below nanostructures, induces the heavy-hole and light-
hole transitions. We look for a solutions Y in terms of the
eigenfunctions ψej , ψhn of the operators He, Hh:

Y (ρ, ze, zh) = ψ0(ρ)
N∑

j,n=0

ψej(ze)ψnh(zh)Yjn

=

√
2λ√
2π
e−λρ2/2

N∑
j,n=0

ψej(ze)ψnh(zh)Yjn, (7)

where ψ0(ρ, φ) with the corresponding eigenvalue ε0
stands for the excitonic ground state, and Yjn are constant
coefficients. This Ansatz for the amplitude was explained
and justified in reference [43]. The eigenfunctions have the
form

ψej(ξe) = Neje
−ξ2

e/2Hj(ξe) = |ej〉, (8)
ξe = αeze − ae,

αe =
√
mezωe

�
, ae = − 1

2α3
e

(
2me

�2
eF

)
(9)

Eje =
�ωe

2
(2j + 1) − �ωe

8α6
e

(
2me

�2
eF

)2

(10)

with analogous expressions for the hole, where

ξh = αhzh + ah

αh =
√
mhzωh

�
, ah = − 1

2α3
h

(
2mh

�2
eF

)
. (11)

Hj(x) are Hermite polynomials andNj normalization con-
stants. Assuming that in the QW under consideration the
valence band splits into heavy- and light hole subbands,
and the conduction band is isotropic with the effective
mass me, we obtain

ah → ahH = − 1
2α3

hH

(
2mhzH

�2
eF

)

= − 1
2 ˜αhH

3

(
mhzH

μ‖H

)
F

FIH
,

ae = − 1
2α̃3

e

(
me

μ‖H

)
F

FIH
, (12)

where α̃H = αHa
∗
H and FIH is the so-called ionization

field

FIH =
�

2

2μ‖H
ea∗3H =

R∗
H

ea∗H
. (13)

Substituting (7) into equation (2), with the use of the
potential (6), the dipole density (4), and neglecting the
center-of-mass in plane motion, we obtain the following
system of linear equations for the unknown coefficients Yjn

(see Ref. [38] for details of the calculation)

(
k2

rs + ε0
)
Yrs + v0000

λ

λ+�
Yrs − λ

λ+�

∑
nj

vrsnjYnj

=
2μ‖
�2

EM0〈er|hs〉ψ0 (ρ0) , (14)

where

k2
rs =

1
R∗ (Eg + Ere + Esh − �ω − iΓ ) ,

vrsnj =
1
R∗S〈rs

∣∣∣exp
[
−v (ze − zh)2

]∣∣∣nj〉
� = wa∗2, r, s,= 0, 1, 2, . . . (15)

with the oscillator eigenvalues Ere, Esh, the effective Bohr
radius a∗, and the damping Γ . Having the coefficients Yjn,
we determine the amplitudes YH,L, the polarization in-
side the quantum well, and the mean effective dielectric
electrosusceptibility

χ =
2M0

E
ψ0(ρ0)

∑
j,n

Yjn

L/2∫
−L/2

ψej(z)ψhn(z)dz. (16)

We assume the so-called long-wave approximation and
consider E(R) in equation (2) as a constant vector with
the components (E, 0, 0).

When the electric field is absent, only states of the
same parity will give non vanishing elements 〈r|s〉. For
the field F �= 0, due to the displacement between the
electron and hole confinement eigenfunctions, all possible
combinations, for example |0e0h〉, |0e2h〉, |1e3h〉, but also
|1e0h〉 etc. have to be taken into account.
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Table 1. Band parameter values for GaAs, AlAs, and
Ga0.7Al0.3As, AlAs data from [48], for Ga0.7Al0.3As by lin-
ear interpolation. Energies in meV, masses in free electron
mass m0, ionization energies in kV/cm, γ1, γ2 are Luttinger
parameters.

Parameter GaAs AlAs Ga0.7Al0.3As
Eg 1519.2 3130 2002
me 0.0665 0.124 0.084
γ1 6.85 3.218
γ2 2.1 0.628

mh‖H 0.112 0.26
mh‖L 0.210 0.386
μ‖H 0.042
μ‖L 0.05

mhzH 0.38 0.51 0.39
mhzL 0.09 0.22 0.13
R∗

H 3.64 13.32
R∗

L 4.3 19.35
R∗

e 5.76
a∗

H 15.78 7.03
a∗

L 13.265 4.84
a∗

e 9.97
εb 12.53 11.16 12.12

FIH 2.318
FIL 3.286

3 Results for GaAs/Ga1−xAlxAs parabolic
quantum well and discussion

The calculation of the WPQW electrooptical functions
consists of several steps. First, we define the confine-
ment energies �ωe,h. To this end we choose a spe-
cific WPQW having in mind the experimental results
of Miller et al. [49]. They obtained optical spectra for
GaAs(well)/Ga0.7Al0.3As(barrier) QWs of three thick-
nesses: L = 51 ± 3.5 nm, L = 32.5 ± 3.5 nm, L =
33.6±3.5 nm. We have performed the calculations for the
thicknesses L = 51 nm and L = 32.5 nm. The confinement
parameters were obtained from the lowest energy levels of
equivalent rectangular QWs with confinement potentials
Ve,conf = 410.38 meV, Vh,conf = 72.42 meV [42], using
the band parameters from Table 1. The values a∗, R∗ are
appropriate for electrons and holes for the QW material,
and are defined as:

R∗ =
me4

2(4πε0εb)2�2
, a∗ =

�
2(4πε0εb)
me2

. (17)

The corresponding values, listed in Table 1, were obtained
by using in equation (17) the appropriate effective masses:
me for R∗

e , a
∗
e, and μ‖H,L for R∗

H , a
∗
H and R∗

L, a
∗
L; μ‖H,L

are the in-plane reduced masses for the electron-hole pair
and for the heavy- and light-hole exciton data.

The results for the confinement energy states are dis-
played in Table 2. From this energies we obtained the con-
finement energies as:

�ωe = 2Ee0, �ωhH,L = 2E0zH,L. (18)

Table 2. Confinement parameters for the WPQWs from ref-
erence [49], dimensions in nm, energies in meV.

L �ωe �ωhH �ωhL Ee0

E0zH E0zL αea
∗
H αhHa∗

H αhLa∗
L

32.5 81.66 19.74 108.4 40.83
9.87 54.2 4.21 4.95 4.76
51.5 43.56 8.46 34.4 21.78
4.23 17.2 3.07 3.08 2.68

Table 3. Confinement states accounted in computation.

|e0h0〉 → |1〉 |e0h1〉 → |2〉 |e0h2〉 → |3〉
|e0h3〉 → |4〉 |e0h4〉 → |5〉 |e1h0〉 → |6〉
|e1h1〉 → |7〉 |e1h2〉 → |8〉 |e1h3〉 → |9〉
|e1h4〉 → |10〉 |e2h0〉 → |11〉 |e2h1〉 → |12〉
|e2h2〉 → |13〉 |e2h3〉 → |14〉 |e2h4〉 → |15〉
|e3h0〉 → |16〉 |e3h1〉 → |17〉 |e3h2〉 → |18〉
|e3h3〉 → |19〉 |e3h4〉 → |20〉 |e4h0〉 → |21〉
|e4h1〉 → |22〉 |e4h2〉 → |23〉 |e4h3〉 → |24〉
|e4h4〉 → |25〉

Having the confinement parameters, we have calculated
the potential matrix elements (15). In particular, we have
an analytical expression for the element V0000 = v0R

∗

V0000 =
Sα3

eαh

α2
e + α2

h

πN2
e0N

2
h0√

c1c3
exp

(
c22
4c1

+
c24
4c3

− a2
e − a2

h

)

=
Sα3

eαh

α2
e + α2

h

1√
c1c3

exp
(
c22
4c1

+
c24
4c3

− a2
e − a2

h

)
,

(19)

where

c1 =
α2

eα
2
h

α2
e + α2

h

+ v, c2 = −2
αeαh

α2
e + α2

h

(aeαh + ahαe) ,

c3 =
α4

e

α2
e + α2

h

, c4 = −2
α2

e

α2
e + α2

h

(aeαe − ahαh) .

The above expression, and also the remaining potential
matrix elements, contain unknown parameters S and v.
We used the values S = 2.6, � = 0.154 and v = 0.5 de-
termined with the procedure described in reference [43].
Using the above parameters and taking into account the
lowest 25 confinement states (see Tab. 3) we have solved
equation (14) and obtained the coefficients Yjn from which
we have determined the induced polarization inside the
WPQW by the relation

P (z) = 2M0ψ0(ρ0)
N∑

j,n=0

ψej(z)ψhn(z)Yjn, (20)

and the mean dielectric susceptibility by equation (16).
Then, having the mean susceptibility, one can compute,
using the appropriate boundary conditions, the optical
functions (reflectivity, transmission, and absorption).

The advantage of the RDMA is that we obtain simul-
taneously the real and the imaginary part of the suscepti-
bility. The results for the the imaginary part of the mean
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Fig. 1. The imaginary part of the mean susceptibility from
equation (16), for two GaAs/Ga0.7Al0.3As WPQWs, (a) of
thickness 51 nm, (b) of thickness 32.5 nm.

susceptibility of the considered WPQWs are displayed in
Figures 1−3. In Figure 1 we show the general effect of the
applied electric field for two GaAs/Ga0.7Al0.3As WPQws.
We observe the red shift of the resonances, changes in the
oscillator strengths, and the occurrence of new resonances
due to the broken symmetry. The spectra for F = 0 agree
well with the experimental results by Miller et al. [49] and
our previous theoretical results [43]. In Figures 2 and 3
we show the obtained spectra in a more detailed form, as
compared to Figure 1.

The calculated real part (which is related to the reflec-
tivity) of the electrosusceptibility is displayed in Figures 4
and 5.

In all the cases we observe changes in the placement of
resonances, and the occurrence of new peaks attributed
to different symmetries for the electron and the hole
confinement functions. Our method allows to determine
the energy shift as a function of the applied field. We
have computed the energy shift for the lowest confinement
states. We observe the quadratic Stark shift for the lowest
state and a more complicated field-dependence for higher
states, as is displayed in Figure 6. The impact of high
electric fields is displayed in Figure 7a, where we show
the changes in the real part of the electrosusceptibility
for the applied fields up to 60 kV/cm. For high values of
the applied electric field the effects are smaller which is
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Fig. 2. The imaginary part of the mean electrosusceptibility
for the GaAs/Ga0.7Al0.3As WPQW of thickness 32.5 nm, for
different energy intervals.
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Fig. 3. The same as in Figure 2, for the WPQW of the
thickness 51 nm.
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Fig. 4. The real part of the mean electrosusceptibility for
the GaAs/Ga0.7Al0.3As WPQWs of thicknesses 32.5 nm for
different energy intervals and applied field strengths.
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Fig. 5. The real part of the mean electrosusceptibility for the
GaAs/Ga0.7Al0.3As WPQWs of thickness 51 nm, for different
energy intervals and applied field strengths.

due to the decreasing overlap of the electron and the hole
confinement functions. We also observe that the shape of
the spectra changes with the change of the direction of
the applied field. Such effects were also observed in nar-
row QWs, not only based on the III-V compounds (see,
for example, Refs. [15,29]). Finally, we show that the en-
ergy shift drastically depends on the thickness of the QW
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Fig. 6. The Stark energy shift for the lowest resonances: (a) for
the GaAs/Ga0.7Al0.3As WPQW of thickness 51 nm and (b) for
the GaAs/Ga0.7Al0.3As WPQW of thickness 32.5 nm.

(Fig. 7b), as was also observed for narrow QWs (see, for
example [7,24], and references therein). Since the confine-
ment energy depends on the QW thickness as L−2, we see
that for rectangular QWs ΔE = −CL4. The energy shift
in the considered WPQW on the Figure 7b also closely
follows this relation.

4 Conclusions

We have developed a simple mathematical procedure to
calculate the electrooptical functions of wide parabolic
quantum wells. Using the real density matrix approach
and a model e-h interaction potential, we derived an ana-
lytical formula for the WPQW electrosusceptibility, from
which another electrooptical functions can be obtained.
The presented method has been used to investigate the
electrooptical functions of GaAs/Ga1−xAlxAs WPQWs
for the case of radiation incidence parallel to the growth
direction. We have obtained the shift of the resonances,
which is the parabolic one for the ground state, but is more
complicated for the higher states, changes in the oscilla-
tor strengths and new peaks related to electronic transi-
tions forbidden for the case with absent electric field. We
also observed the dependence of the spectra on the size
of the QW and on the direction of the applied field.

http://www.epj.org
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Fig. 7. (a) The impact of high electric fields on the real part
of the electrosusceptibility (WPQW of thickness 32.5 nm).
(b) The comparison of the Stark energy shift of the two
considered WPQWs for the lowest resonance.

All the results are new and had not been contained in
the previous papers on the RDMA approach to the elec-
trooptical effects in low dimensional systems. For the cases
where the experimental data were available (for example,
for WPQWs with F = 0), we obtained a good agreement
of our theoretical results with experiment. WPQWs ex-
posed to electric fields offer new possibilities of manipu-
lating the optical properties of nanostructures and thus
are the promising systems for advanced optoelectronics.
We hope that our results may stimulate experiments on
quantum confined Stark effect in WPQWs.
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7. H.-J. Polland, K. Köhler, L. Schultheis, J. Kuhl, E.O.
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