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Abstract. In recent years, continuing efforts have been directed to revealing the effect of human behavioral
responses in the spread of infectious diseases. In this paper, we propose an implementation mechanism of
disease awareness via individual self-perception from neighborhood contact histories (NCHs), where each
individual is capable of memorizing a sequence of his infectious contacts earlier time, and adaptively
adjusting the contact rate with his neighboring individuals as a preventive strategy from risks of exposure
to infection. Both analytical and numerical results show that the NCH-based self-perceived awareness is
a simple, but efficient disease control measure, which can greatly reduce the outbreak size of infectious
diseases. We further examine the effects of a centralized disease control measure, which corresponds, for
comparison, to an NCH-independent and uniformly aroused disease awareness. We find our proposed
strategy outperforms the centralized one in a much larger and more practical range of epidemiological
parameters, which also highlight the importance of the NCH-based awareness information in guidance of
the individual protective behavior against infectious diseases.

1 Introduction

In the past decade, human societies have suffered from
more and more serious consequences of worldwide out-
breaks of communicable diseases. Mathematical epidemic
spreading models have caught a great deal of attention of
researchers, and numerous attempts have been made to
reduce the frequency and severity of large-scale epidemic
outbreaks [1–17]. Quite recently, analytically tractable in-
corporations of human behavioral factors into mathemat-
ical models for epidemics are becoming increasingly pop-
ular (for a review see Ref. [18] and references therein),
and understanding such behavioral effects on the spread
of infectious diseases is fundamental to step in appropriate
and efficient intervention strategies for disease outbreak
control.

A typical example can be found in recent studies on
disease awareness in infection dynamics [19], where a por-
tion of susceptible individuals within an infectious popula-
tion are conventionally assumed to be capable of obtaining
the cognition of contagious threats, and these individuals
are subsequently equipped with preventive behavioral in-
tention (i.e., the disease awareness) to reduce the incidence
rate of infection. Up to now, attention has been mainly
placed on the following two methodological approaches:
(i) the awareness-related information as an information
diffusion process interplaying with the infection dynam-
ics [19–25]; and (ii) the awareness-responsive behavior as
a coevolving process of adaptive networks [26–34].
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Despite the success of existing implementations, one
issue that has received relatively little attention is on a
wide class of memory-related mechanisms that incorpo-
rate non-Markovian effects into the spread of infectious
diseases [35]. In this paper we propose a self-perceived
mechanism for the disease awareness based on the neigh-
borhood contact history (NCH), assuming that individ-
uals can obtain a perception of awareness by memoriz-
ing the past contacts with other infectious neighbors,
and accordingly adjust their contact rates to reduce risks
from infection if any contacts with infective individuals
in the neighborhood were detected and recorded in their
memories.

An intuition behind this assumption is that the con-
tact history often serves as a key criterion for suspecting
the diagnosis in the epidemiology literature, sufficing to
raise awareness among (susceptible) individuals having in-
fectious contact histories. Such non-Markovian, memory-
based effects have also been widely found in many socio-
physical phenomena. For example, in opinion dynamics
or evolutionary games, individuals are usually more apt
to adopt more advantageous strategies or opinions of the
past, which are, e.g., capable of resulting higher (accu-
mulated) utilities [36–39]. Besides, another widely used
engineering application of NCHs comes from the design
of routing protocols for communication networks. Within
the framework of some more sophisticated routing algo-
rithms, every delivery node of the network can predict fu-
ture contacts using the stored NCH in its buffered memory
to optimize routing decisions [40–42].
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The remainder of this paper is organized as follows.
In Section 2, we explain our basic assumptions on an ex-
tended epidemic model equipped with the NCH-based dis-
ease awareness. In Section 3, we provide a theoretical anal-
ysis of our model using the mean-field approximation, and
the obtained results on epidemic thresholds and outbreak
sizes show that the NCH-based awareness plays an impor-
tant role in controlling and reducing the prevalence of in-
fectious diseases. To highlight the significance of the NCH-
based disease awareness, we further compare our proposed
strategy with the null model, in which the population dis-
ease awareness is assumed to be uniformly persisted un-
der the guidance of some centralized mechanism, instead
of replying on the local information of individual NCHs.
Finally, Section 4 concludes the whole work.

2 Model description

Let us start to build our model by first introducing the
classical Susceptible-Infected-Susceptible (SIS) epidemio-
logical model. Consider a population of n individuals lo-
cated at nodes of a contact network, and contacts for the
spread of infection between individuals are described as
links of the network. Each individual can only exist in one
of two discrete states: susceptible (S) or infected (I), and
the basic infection dynamics is formulated as a reaction-
diffusion-decay process:

S + I β→ 2I, I μ→S,

where β is the contact rate, and μ is the recovery rate.
Here the contact rate β describes how frequently two in-
dividuals are contacting with each other to cause potential
spread of infection.

Next, we propose a self-perceived mechanism for the
disease awareness based on neighborhood contact history
(NCH), assuming that individuals can obtain a percep-
tion of awareness by memorizing the past contacts with
other infectious neighbors, and accordingly adjust their
contact rates to reduce the risk from infection if any con-
tacts with infective individuals in the neighborhood were
detected and recorded in their memories. To incorporate
the effect of disease awareness, we assign each node vi

with an adjustable contact rate βi(t), at which node vi

makes contact with the neighboring nodes at time t, and
the adaptation of βi based on vi’s NCH is given by:

βi(t) = βi0

∏

j∈Ni

�t/Δt�∏

h=1

[1 − wi(hΔt)sj(t − hΔt)] , (1)

where βi0 is the baseline contact rate of node vi, Ni is
the neighborhood set of all the nodes connected to vi in
the network, Δt is the time step size (�·� denotes the floor
function), and sj(τ) is the state-variable of node vj , which
equals to 1 if node vj stayed infected at time τ and 0
otherwise.

Since equation (1) descriptive of the awareness mech-
anism plays a pivot role in our infection model, let us

examine some support to the reality of our basic model
assumption. First, the baseline contact rate βi0 can be
thought of as some individual vi’s susceptibility to the
infection with his/her routine interpersonal contact fre-
quency in complete absence of disease awareness. Once
aroused, the disease awareness will affect individual con-
tact patterns so that this susceptibility of him/her is re-
duced. For example, because of the onset of an infectious
disease of some family member Bob, Alice may accord-
ingly decide to wear an illness-protective mask for herself.
This awareness-related behavior can effectively cause, say,
50% reduce in her susceptibility. Additionally, if another
one of Alice’s friends, Charlie, has also caught the same
infection, Alice may further upgrade her awareness level
by reducing 50% her outdoor activities to avoid infection
risks. Note that the extent which Alice’s awareness-guided
action works against the infection’s susceptibility (e.g., a
50% reduce in βi0) is parametrized by the corresponding
weights wi(t) in equation (1). Therefore, her “equivalent”
contact rate will be lowered to βAlice → 25% × βAlice

0 . It
is a natural assumption that the effects of such disease
awareness aroused by different neighbors accumulate in a
multiplicative way, as we proposed. Here, we provisionally
assume that the state-variables sj(t) of her neighboring
individuals (Bob, Charlie, et al.) are available to Alice.
This is also a reasonable assumption when the infection
network corresponds to the household or other social and
interpersonal relationships, or there is some identifiable
infectious symptom for the community of patients1.

Noting that the aroused awareness will be ultimately
mitigated as the passage of time. Let us return to the
above example. Alice will gradually forget to wear masks
and recovers to her original frequency of outdoor activi-
ties, as long as there is no renewal of her awareness due to
latter contacts with other infectious individuals. To em-
body this fading effect of individual memory, we adopt
a decreasing sequence of positive coefficients wi(τ) which
weights the contribution of history information entered
vi’s NCH τ time steps before. Specifically, throughout the
rest of the paper, we set for all individuals

βi0 = β, wi(τ) = εe−ξτ , (2)

where ε is the parameter that adjusts the intensity of the
disease awareness, and ξ indicates the decaying rate of
individual memories. Here, we assume that each node has
an infinite length of memory, but there is no memory of
neighborhood contact events prior to time t = 0.

More precisely, the epidemiological process is speci-
fied as follows. Consider a completely susceptible popula-

1 In some case of infectious individuals lacking identifiable
symptoms, we need to address this problematic issue on the
ambiguity of epidemiological states. In contrary to a binary
version of our model (Eq. (1)), introduce a continuous-valued
state-variable sj(t) ∈ [0, 1] as the state of individual vj that can
be perceived by others. Here, sj(t) can be interpreted as the
expressibility of vj , which equals to the conditional probability
of being correctly perceived as “infected” given vj in state I.
Infection expressibility could be of much practical interest, but
is out of the scope of this paper.
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tion, and initially, the epidemiological state of all individ-
uals is set as si(0) = 0 for the entire population except
one individual who is randomly selected as a seeded case
of the infectious disease. Also, all individual memory is
cleared at the beginning of the process, and the NCH is
an empty sequence for all individuals at the initial time
t = 0. To start the hth step, every individual first recalls
his recorded NCH sequence by the end of the previous
step (by the time hΔt), and he decides an adaptive con-
tact rate βi(t) according to equation (1) for the future step
t = hΔt. Once entering the next step, during the inter-
val [t, t + Δt) every susceptible individual contacts with
his neighboring infected individuals at the contact rate
βi(t) (i.e., such an infectious contact causing the spread of
the disease (S+I → 2I) occurs with probability βi(t)Δt),
and successively, infected individuals undergo the recovery
process (I →S) at the recovery rate μ. Here we assume,
for simplicity, that the updating of epidemiological states
of all individuals is synchronous. At the end of time step
t + Δt, each individual appends the very recent neighbor-
hood contact information (i.e., states of his neighboring
individuals {sj(t)|j ∈ Ni}) to his NCH sequence. Then,
using equation (1) and this updated NCH information, he
calculates βi(t + Δt) for the next step. This process is it-
erated sufficiently many times until the population arrives
at a steady infectious density, which defines an outbreak
size ρ∞. Particularly, an eradication of the disease corre-
sponds to ρ∞ = 0.

3 Model solution

3.1 Homogeneous population structure

To visualize the impact of the NCH-based awareness
on the spread of infectious diseases, we first simulate
the preventive action of aware-bearing individuals during
the spreading process among a homogeneously structured
population. With different contact rates β and awareness
intensities ε, the corresponding final outbreak sizes ρ∞ are
plotted in Figure 1, which shows that ρ∞ decreases with
the intervention of disease awareness, whereas the criti-
cal contact rate λc (i.e., the minimal value thereof that is
required to sustain transmission and outbreak of the dis-
ease) stays unchanged for respective level of the disease
awareness of individuals.

Next, we first present a mean-field analysis for the
infection spreading process with NCH-based awareness
in homogeneous populations, and then discuss the case
of heterogeneity of connectivity between individuals in a
later section. Let ρ(t) =

∑
i si(t)/n be the relative density

of infected nodes at time t, and substituting equation (2)
into equation (1), we have the average contact rate to a
limit of weak awareness intensity (ε → 0)

β̄(t) = β

⎡

⎣1 − ε 〈k〉
�t/Δt�∑

h=1

e−ξhΔtρ(t − hΔt)

⎤

⎦ , (3)

where 〈k〉 is the average degree, i.e., the individuals’ av-
erage number of contacting neighbors in the network.
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Fig. 1. Final outbreak size ρ∞ as increasing functions of
effective contact intensity λ (=β/μ) with different effective
awareness intensities γ (=ε/ξ). The population structure is
computer-generated by Erdős-Rényi random graph model [43].
Parameters are set as: network size n = 103, average degree
〈k〉 = 10, disease recovery rate μ = 0.2 (and changing contact
rates β), memory decaying factor ξ = 0.5 (and changing aware-
ness intensities ε), and time step Δt = 1. Each data point is
obtained by averaging over 50 independent realizations.

Thus, we have the following rate equation for the infection
dynamics:

ρ(t + Δt) = ρ(t) +
{−μρ(t) + β̄(t) 〈k〉 ρ(t) [1 − ρ(t)]

}
Δt.

Taking the limit Δt → 0 leads to

ρ̇ = −μρ + β 〈k〉 ρ (1 − ρ)
[
1 − ε 〈k〉

∫ t

0

e−ξ(t−τ)ρ(τ)dτ

]
,

where the dot represents the time derivative, and going to
the continuous limit, the summation term of equation (3)
becomes φ(t) =

∫ t

0
e−ξ(t−τ)ρ(τ)dτ after a standard ap-

proximation. Differentiating φ(t) yields φ̇ = ρ − ξφ, and
at the equilibrium we have φ∞ = ρ∞/ξ. Substituting it
into the above rate equation, we obtain the outbreak size
ρ∞ satisfying

0 = −ρ∞ + λ 〈k〉 ρ∞ (1 − ρ∞) (1 − γ 〈k〉 ρ∞) , (4)

for notional simplicity, here we introduce the effective con-
tact intensity λ = β/μ as the ratio between the contact
rate β and the recovery rate μ, and the effective aware-
ness intensity γ = ε/ξ as the ratio between the disease
awareness intensity ε and the memory decaying rate ξ.

Obviously, a trivial root of equation (4) is ρ∞ = 0,
whereas our main interest focuses on another non-trivial
solution within the interval (0, 1], which is given by:

(1 − ρ∞) (1 − γ 〈k〉 ρ∞) =
1

λ 〈k〉 . (5)

One can easily verify from equation (5) the critical con-
tact rate λhom

crit = 1/〈k〉, which is the same as the well-
established epidemic threshold of SIS model on homoge-
neous networks in the absence of disease awareness [44].
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Fig. 2. Color-coded plot of the final outbreak size ρ∞ as a function of effective contact intensity λ and average degree 〈k〉
under different effective awareness intensities: (a)–(f) γ = 0, 0.05, 0.1, 0.15, 0.2, 0.25, respectively. Each data point is obtained
by averaging over 50 independent realizations on Erdős-Rényi random networks of size n = 103. Other parameters are set the
same as those in Figure 1.

And if the contact rate exceeds the threshold (λ > λhom
crit ),

we approximately have

ρ∞ =
2

1 + γ 〈k〉 +
√

(1 − γ 〈k〉)2 + 4γ/λ

λ − λhom
crit

λ
. (6)

Note that as the awareness intensity ε approaches zero
(γ → 0), equation (6) reduces to ρ∞ = (λ − λhom

crit )/λ
which yields the same result in the SIS model among ho-
mogeneous populations.

It should be pointed out that the above approximation
(Eq. (6)) does not work for large 〈k〉, and more precisely,
ρ∞ is a non-trivial root (within the interval (0, 1]) of the
following equation:

0 = −μρ∞ + (1 − ρ∞)
{

1 −
[
1 − β(1 − γρ∞)〈k〉

]ρ∞〈k〉}
.

(7)
To interpret equation (7), the effect of disease aware-
ness is modeled by a decrement in the baseline con-
tact rate β. From our model assumption (Eq. (1)), such
awareness-related effect leads to a reduced contact rate
βaware ≡ β(1 − εφ)〈k〉, noting that each individual has,
on average, 〈k〉 neighbors among a homogeneous popula-
tion, and accordingly reduces his contact rate to (1 − εφ)
times the baseline rate per each neighbor, where φ =∑�t/Δt�

h=1 e−ξhΔtρ(t − hΔt) ≈ ∫ t

0 e−ξ(t−τ)ρ(τ)dτ . Thus, the
probability of an awareness-bearing individual being in-
fected by one of his infectious neighbors 1−(1–βaware)ρ〈k〉,

where ρ 〈k〉 is the expected number of infectious neighbors
for each individual. Therefore, the rate equations become

ρ̇ = −μρ + (1 − ρ)
{

1 −
[
1 − β(1 − εφ)〈k〉

]ρ〈k〉}
,

φ̇ = ρ − ξφ, (8)

the stationary condition of which comes to equation (7).
Since the outbreak size ρ∞ has no explicit analytical

form, we carry out extensive agent-based simulations on
Erdős-Rényi random networks, as is shown in Figure 2.
Simulation results reflect the impact of the effective aware-
ness intensity γ and the average node degree 〈k〉 on the
epidemic spreading, which also agree well with the nu-
merical calculation results of equation (7). It shows that
the outbreak size ρ∞ decreases as γ is enhanced, and that
the curve of ρ∞ versus 〈k〉 presents an unimodal shape
as is shown in the inset of Figure 3. Consider the follow-
ing two extreme situations: (i) there are too few links in
a sparse network to spread an infectious disease thereon;
and (ii) there are dense links to raise a high-leveled dis-
ease aware among the population causing a substantial
reduce in individual contact rates accordingly. Thus the
topological structure in both cases inhibits the spread of
infectious diseases on networks. Therefore, ρ∞(k) shows a
single peak with only one maximum value located at an
intermediate average connectivity 〈k〉� of networks. We
further study how the effective contact rate λ and the ef-
fective awareness intensity γ affect the shapes of ρ∞, and
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Fig. 3. Single-peak location 〈k〉� of the final outbreak size ρ∞
as a function of the average degree 〈k〉 of networks. With dif-
ferent effective contact λ and awareness intensities γ, we con-
tinuously tune the link probability p (i.e., the probability of
establishing a link between each pair of nodes) of Erdős-Rényi
random networks, on which we obtain outbreak sizes ρ∞(p)
by agent-based simulations. Then the 〈k〉� = np� is identified
by picking out the maxima ρ∞(p�) of the simulation curves
of ρ∞(p), where n = 103 is the network size and other epi-
demiological parameters are set the same as those in Figure 2.
Each data point is obtained by averaging over 50 independent
realizations. (Inset) Verification of 〈k〉� by exact solutions to
equation (7). Each solid line corresponds to the exact roots of
equation (7) as unimodal functions of 〈k〉 with various aware-
ness intensities ε ∈ (0, 1] (here the effective contact intensity is
set as λ = 1), and the symbol (asterisk) in each curve corre-
sponds to the identified location 〈k〉� from agent-based simula-
tions, which is in a good agreement with the maxima location
of numerical solutions to equation (7).

Figure 3 shows a positive (negative) correlation between
λ (γ) and 〈k〉�, which is also consistent with the intuition.

3.2 Centralized versus decentralized control strategies

To highlight the role of NCH-based disease awareness as
an individual self-protection strategy in the infection pre-
vention and control, we further consider an alternative
mechanism of disease awareness with random and/or uni-
form reduction of individual contact rates independent of
the perceived NCH information. More precisely, given a
“nominal” disease awareness level γ0, we assume that the
contact rate of each individual is reduced according to
βi → βi0(1 − γ0), regardless of epidemiological states of
his/her neighbors. Since the alternative mechanism acts
as a non-informative counterpart of our proposed strat-
egy, we refer to this randomized or mean-field case as our
null model for comparison.

In an analogous manner, one can easily obtain the rate
equation as

ρ̇0 = −μρ0 + (1 − ρ0)
{

1 − [1 − β(1 − γ0)]
ρ0〈k〉

}
, (9)

the final outbreak size of which satisfies

0 = −μρ0∞+(1−ρ0∞)
{
1 − [1 − β(1 − γ0)]

ρ0∞〈k〉
}

. (10)

Here, we differentiate the null model by an additional suf-
fix “zero”. Note that the above expression for ρ0∞ follows
by substituting a reduced contact rate βaware

0 ≡ β(1 − γ0)
into equation (7).

The null model also describes a common situation of
disease awareness in many realistic scenarios. For example,
with the help of mass media release of officially recognized
surveillance reports, as well as disease warnings issued for
the entire population, the individuals who even have no
NCHs are also capable of obtaining safety-information on
the status of an infectious disease, and accordingly taking
some preventive measures [45]. The null model well corre-
sponds to the centralized disease control via a population-
leveled, uniformly aroused awareness, whereas the NCH-
based mechanism can be thought of as a decentralized
control strategy that heavily relies on local information
and individual status of infection networks.

It should be noted that in the null model, a single pa-
rameter γ0 completely controls the awareness level (and
hence the final outbreak size), but under the NCH-based
case, besides the intensity parameter γ, the awareness level
also depends adaptively on prevalence of the infectious
disease, i.e. ρ∞ itself in turn influences individuals’ aware-
ness. Therefore, the average reduction in individual con-
tact rates actually caused by the two methods under the
same parameters γ = γ0 is usually different, which may
potentially hinder a completely faithful comparison. Next
we make a provisional comparison between the two strate-
gies by examining the corresponding final outbreak sizes,
ρ∞(γ) and ρ0∞(γ0), after exerting both awareness strate-
gies with identical intensities on the same infection net-
works. Fortunately, under the situation of weak awareness
intensities (γ(γ0) 
 1), this problematic issue is greatly
mitigated. With the first-order approximation, we obtain
from equations (10) and (7) the final outbreak sizes for
both strategies

−1 + λ 〈k〉 (1 − γ0) [1 − ρ0∞(γ0)] = 0, (11)
−1 + λ 〈k〉 [1 − γ 〈k〉 ρ∞(γ)] [1 − ρ∞(γ)] = 0. (12)

Taking the limit γ0(γ) → 0 yields

ρ0∞(0) = ρ∞(0) = 1 − 1
λ 〈k〉 , (13)

where ρ∞(0)[ρ0∞(0)] stands for the awareness-absent out-
break size in the original infection network. Differentiating
equations (11) and (12) with respect to γ0(γ) at the origin,
we have

ρ′0∞(0) = − 1
λ 〈k〉 , ρ′∞(0) = − 1

λ

(
1 − 1

λ 〈k〉
)

. (14)

Therefore, under the assumption of weak awareness inten-
sity, the condition that our NCH-based strategy is superior
to the null model is given by

ρ′∞(0) < ρ′0∞(0) ⇒ λ > λcrit =
1

〈k〉 − 1
, (15)
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Fig. 4. Comparison of the NCH-based disease control strat-
egy with the null model under different effective contact in-
tensities and effective [centralized] awareness intensities γ[γ0].
The average degree of random networks is set as 〈k〉 = 6. The
curves correspond to numerically exact solutions to implicit
functions ρ∞(γ) and ρ0∞(γ0) from equations (7) and (10).
The condition equation (15) gives the critical contact intensity
λcrit = 1

〈k〉−1
= 0.2, which corresponds to the situation of two

curves being tangent at (0, ρ∞
crit) with ρ∞

crit = 1
〈k〉 ≈ 0.167. (In-

set) A perfect linear dependence of numerical values for aware-
ness intensity threshold γcrit (see text) on awareness-absent
outbreak sizes ρ∞(0). The dashed line corresponds to the ap-
proximation relation equation (17). Other topological and epi-
demiological parameters are set the same as those in Figure 1.

which indicates that only a very narrow parameter range
of the effective contact rate λ∈ ] 1

〈k〉 ,
1

〈k〉−1 [ guarantees that
the centralized disease control strategy will outperform
the decentralized one, as is shown in Figure 4. Note that
epidemiological parameters of many real-world, globally-
spread diseases are shown to be obviously above their
thresholds2, in which case it highlights the value of NCH
information in guiding the individual behavioral response
to infectious diseases, particularly when realizing a high
intensity of disease awareness is unaffordable because of a
large cost.

Besides, combining with equation (13), we can rewrite
the condition equation (15) as

ρ∞(0) >
1
〈k〉 , (16)

implying a minimal prevalence degree of the disease that is
required to maintain a comparable awareness level as the
centralizedly controlled disease awareness in homogeneous
populations.

It is also interesting to point out that the above condi-
tion bears a close resemblance to the epidemic threshold

2 E.g., the 2003 Severe Acute Respiratory Syndrome (SARS)
estimated to have a basic reproductive number R0 ∈ [2, 5],
which is deemed significantly higher than unity [46].

on homogeneous networks in form of λhom
crit = 1/ 〈k〉. We

shall see in later discussions that the quantity ρ∞(0) plays
a key role (Eq. (17)) in determining the effect of decentral-
ized control strategy in our NCH-based model compared
to that in the null cases.

At the other extreme, note that a large awareness in-
tensity under the null model will eradicate the disease,
since as γ0 increases, individuals will be equivalently dis-
connected with each other (taking a limit γ0 → 1 in
Eq. (10), we have ρ0∞(γ0) → 0). However, we have rec-
ognized that the NCH-based awareness does not change
the epidemic threshold and hence ρ∞(γ) stays positive,
no matter how intense the disease awareness is aroused.
Therefore, we find a critical intensity γ = γ0 = γcrit, be-
yond which the centralized awareness strategy starts to
be more advantageous owed to a substantial reduce in the
epidemic threshold it causes.

Note that the threshold value of γcrit sensibly increases
as the effective contact rate λ increases. It should be
noticed that a large awareness intensity can usually be
costly. For example, when λ = 0.4, a centralized dis-
ease awareness at the threshold level γcrit ≈ 0.48 (see
Fig. 4). It means that nearly a half of links are required to
be closed or “removed” from the original network, which
could be hardly achieved in real-world, feasible disease
control strategies. It also validates the effectiveness and
efficiency of our NCH-based awareness strategy in a prac-
tical parameter range with relatively high infection risks
(λ > λcrit) but comparatively low awareness intensities
(γ < γcrit).

Unlike the condition equation (15) for λcrit, the an-
alytical value of γcrit is hard to find from implicit func-
tions equations (7) and (10). But employing numerical
solutions, we find γcrit perfectly linearly related to the
awareness-absent outbreak sizes, ρ∞(0), as is shown in
the inset of Figure 4. More precisely, the critical value for
the awareness intensity γcrit is approximately given by

γcrit =

{
0, ρ∞ ≤ 1

〈k〉
ρ∞〈k〉−1
〈k〉−1 , ρ∞ > 1

〈k〉
(17)

where 〈k〉 is the average degree of the network, and
ρ∞(0) is the final outbreak size thereof with null disease
awareness.

3.3 Heterogeneous population structure

Next, let us move to non-homogeneous population struc-
tures, taking into account fluctuations in the number of
acquaintance individuals in many real social networks,
which typically exhibit the so-called scale-free feature with
heterogeneous degree distributions obeying a power law,
pk ∼ k−υ with a scale-invariant exponent υ ∈ (2, 3]. Sim-
ilarly, we have the following rate equations neglecting de-
gree correlations

ρ̇k = −μρk + βkΘ (1 − ρk)
[
1 − εk

∫ t

0

e−ξ(t−τ)Θ(τ)dτ

]
,
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Fig. 5. Analytically predicted Θ∞ (by Eq. (20)) and fi-
nal outbreak size ρ∞ (inset) as a function of effective con-
tact intensity λ with different effective awareness intensities
γ = 0 (thick solid line), 0.05 (dashed line), 0.1 (dash-dotted
line), 0.15 (dotted line), and 0.2 (thin solid lind). One can
easily verify that equation (20) reduces to the existing re-
sult Θγ→0

∞ = [λm(e1/λm − 1)]−1 to a limit of weak intensity
of awareness (ε → 0), which corresponds to the thick solid
line (γ = 0). (Inset) Analytically predicted final outbreak size
(by the mean-field rate equations Eq. (18)) ρ∞ as a func-
tion of effective contact intensity λ. The population structure
is computer-generated by Barabási-Albert scale-free network
model [47] with the node size n = 103 and the minimal node
degree m = 5. The epidemiological parameters are set the same
as those of Figure 1.

where ρk is the relative infected density among nodes
with degree k, Θ =

∑
k kpkρk/

∑
k′ k′pk′ is the proba-

bility of reaching an infectious node along a randomly
selected link. Similarly, with the variable substitution
φ(t) =

∫ t

0 e−ξ(t−τ)Θ(τ)dτ , we obtain

ρ̇k = −μρk + βkΘ (1 − ρk) (1 − εkφ) , φ̇ = Θ − ξφ, (18)

and the stationary condition of equation (18) is given by3

ρk∞ =
λkΘ∞ (1 − γkΘ∞)

1 + λkΘ∞ (1 − γkΘ∞)
, (19)

where Θ∞ =
∑

k kpkρk∞/
∑

k′ k′pk′ . Therefore, we obtain
the epidemic threshold from this self-consistent relation of
Θ∞

∂

∂Θ∞

∑
k

kpk

〈k〉
λkΘ∞ (1 − γkΘ∞)

1 + λkΘ∞ (1 − γkΘ∞)

∣∣∣∣
Θ∞=0

≥ 1,

3 Subject to a possible diverging maximum node degree in
some situations of infinite networks, the infection dynamics
(Eq. (18)) can be, analogous to equation (8), rewritten as ρ̇k =
−μρk +(1−ρk){1− [1−β(1− εφ)k]kΘ}, φ̇ = Θ− ξφ. Thus, the
stationary condition reads φ∞ = ξ−1Θ, and ρk∞ = 1 − {1 +
μ−1−μ−1[1−β(1−γΘ∞)k]kΘ∞}−1, the first-order expansion of
which is consistent with equation (19). Note that the epidemic
threshold is derived from the instability condition of the self-
consistent equation with respect to Θ∞ at the origin point,
therefore, this first-order approximation has no influence on
the result of λhet

c .

and we revisits the well-known epidemic threshold λhet
c =

〈k〉/〈
k2

〉
as the same as that in the absence of aware-

ness [48], where 〈k〉 =
∑

k kpk is the average degree, and〈
k2

〉
=

∑
k k2pk is the second moment of the degree distri-

bution, which reflects the fluctuation in numbers of neigh-
borhood contacts (adjacent links) for different nodes in the
network.

Next, we show the impact of awareness on controlling
the prevalence of infectious diseases by calculateingthe fi-
nal outbreak size ρ∞ under a given awareness intensity.
Straightforwardly, it follows from equation (19) that, com-
pared to the situation without awareness, the introduction
of a positive intensity (ε > 0) of disease awareness can de-
crease the values of Θ∞, ρk∞, and hence the outbreak size
ρ∞ as well.

However, it has difficulty finding the explicit and exact
solution to equation (19) given an arbitrary degree distri-
bution of networks. Especially, as a standard model of
network topologies capturing the heterogeneity of connec-
tivity patterns, we concentrate on Barabási-Albert scale-
free networks, whose degree distribution reads a power
law pk ∼ k−υ with the exponent υ = 3. From the self-
consistent relation with the assumption of weak awareness
intensity, we approximately obtain after some calculations
(see Appendix A)

Θ∞ =
r1 − 1
γm

[
e

r1−r2
(λr1+γ)m − 1

]−1

, (20)

where m is the minimum degree of the network and r1,2 =
1±

√
1+4γ/λ

2 .
Based on equation (20), we can use (without proof) the

following approximation relation to estimate the outbreak
size

ρ∞ ∼ e
r1−r2

(λr1+γ)m , (21)

noting that if the disease awareness is absent (γ → 0),
it revisits the well-known result ρ∞ ∼ e1/λm [44]. As is
shown in Figure 6, we numerically verify the approximate
result on the final outbreak size, which is close to exact
solutions. The numerical results obtained by agent-based
simulations are also plotted in Figure 7, which provides a
more comprehensive view of the effect of our NCH-based
awareness mechanism on controlling the prevalence of in-
fectious diseases.

To further examine how contact patterns affect final
endemic prevalence, we observe the individual incidence
rate (i.e., the probability of being infected per unit time),
which describes how likely an individual is infected by
others, as is shown in Figure 8. Under the mean-field ap-
proximation, the average incidence rate of individuals with
degree k is given by αk∞ = [1 − β(1 − γΘ∞)k]kΘ∞ . We
also numerically show that those hub-like individuals –
who have a large number of neighbors – usually evolve to
a sharpened contact rate (Fig. 8), because a large amount
of infectious contacts as their NCH information are gath-
ered to arise a high-leveled disease awareness. This could
be analogous to the targeted immunization strategy of
infection networks [49], and as a result, the most likely

http://www.epj.org
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Fig. 6. Semi-logarithmic plot of analytically predicted out-
break size ρ∞ as a function of the ratio a = γ/λ between
the effective awareness γ and the effective contact inten-
sity λ. The symbols in the plot (e.g., boxes, triangles, etc.)
correspond to values of ρ∞ with different parameter pairs
(γ, λ) ∈ (0, 0.1] × (0, 2], respectively, where the exact solu-
tions to the self-consistent equation with respect to Θ∞ are
numerically solved and inserted into equation (19) to calculate
ρ∞ =

∑
k pkρk∞. The solid lines correspond to the first order

approximation relation ρ∞ ≈ exp [(r1 − r2)/λm (a + r1)] with
r1,2 = 1/2 ±√

1 + 4a/2, which agree well with the exact solu-
tions. Both topological and epidemiological parameters are set
the same as those of Figure 5.

Fig. 7. Color-coded plot of the final outbreak size ρ∞ as a
function of effective contact intensity λ and effective aware-
ness intensity γ. Both topological and epidemiological param-
eters are set the same as those of Figure 5. Each data point is
averaged over 50 independent realizations.

infected individuals typically have, on average, an inter-
mediate number of neighbors in heterogeneous networks,
which is also consistent with our previous results of ho-
mogeneous networks (see Fig. 3).
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Fig. 8. Incidence rate of infection αk∞ as unimodal functions
of individual node degree k in steady endemic states. (Inset)
The degrees k� of individuals with the highest average inci-
dence rate αk� . Parameters are set as: network size n = 104,
average degree 〈k〉 = 10, and effective contact intensity λ = 1.

4 Conclusion

In this paper, we have proposed a memory-based mecha-
nism for implementing disease awareness in the epidemic
spreading on networks, where the neighborhood contact
information is utilized by individuals to estimate risks
from being infected, and accordingly, a preventive strategy
is adopted based on these neighborhood contact histories
of individuals. The proposed strategy is very simple: the
more frequently and recently an individual has encoun-
tered with infectious individuals, the less likely he will
contact with others, i.e., the perceived disease awareness
from the individual’s NCH results in a decrement in his
contact rate to reduce the risk of exposure.

In our devised framework, active contacts (between in-
fectious spreaders and susceptible spreadees) are mem-
orized by those susceptible individuals, which cause a
self-isolation-like effect due to the disease awareness
mechanism. Within a practical range of relatively low
awareness intensities, our NCH-based decentralized strat-
egy are more advantageous than the centralized one in
mitigating the final outbreak size of the disease, unless its
epidemiological parameter stays at a very slightly super-
critical level. Our findings also highlight the significance of
the NCH-information in adaptive mechanisms of the dis-
ease awareness. Besides, there are many other conceivable
strategies of utilizing individual memories to guide human
behavioral response to better protect against threats from
infectious diseases. These issues deserve further study.

This work was partially supported by Research Program
KFKT-2012101 from Key Laboratory of Universal Wireless
Communications (Beijing University of Posts and Telecommu-
nications), Ministry of Education, People’s Republic China,
and the National Natural Science Foundation (No. 61304156).
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Appendix A: The derivation of Θ∞
for Barabási-Albert scale-free networks

In the Appendix we present a detailed derivation of the
approximate solution (Eq. (20)) to the following self-
consistent equation with respect to Θ∞

Θ∞ =
∑

k

kpk

〈k〉
λkΘ∞ (1 − γkΘ∞)

1 + λkΘ∞ (1 − γkΘ∞)
, (A.1)

where the node degree distribution of a Barabási-Albert
scale-free network is given by pk ∼ k−υ with the power-
law exponent υ = 3.

To facilitate the computation, we regard the degree
distribution as a continuous function p(k) = 2m2/k3 on
an interval [kmin, kmax], where kmin and kmax are the max-
imum and minimum node degree of the network, respec-
tively, and the constant factor m = (k−2

min − k−2
max)−1/2

works for normalization. Therefore we have the average
degree 〈k〉

〈k〉 =
∫ kmax

kmin

kp(k)dk =
∫ kmax

kmin

2m2

k2
dk = 2

k−1
min − k−1

max

k−2
min − k−2

max

,

and substituting into equation (A.1) yields

Θ∞ =
λΘ∞

k−1
min − k−1

max

∫ kmax

kmin

dk

k

1 − γkΘ∞
1 + λkΘ∞ (1 − γkΘ∞)

.

With variable replacement y = 1− γkΘ∞ for the integra-
tion part, the self-consistent equation comes to

k−1
min − k−1

max

λ
=

∫ 1−γkminΘ∞

1−γkmaxΘ∞

dy

(y − 1)
ay

y2 − y − a

= ln
kmax

kmin
+

a + r1

r1 − r2
ln

γkminΘ∞ + r1 − 1
γkmaxΘ∞ + r1 − 1

− a+r2

r1−r2
ln

1−r2−γkminΘ∞
1−r2−γkmaxΘ∞

, (A.2)

where a = γ/λ and r1,2 = 1±√
1+4a
2 . Here, we used the

following identity relation

ax

(x − 1)(x2 − x − a)
=

A

x − 1
+

B

x − r1
+

C

x − r2
,

with coefficients A = −1, B = a+r1
r1−r2

and C = − a+r2
r1−r2

.
To make further simplification, we rewrite equa-

tion (A.2) as

k−1
min − k−1

max

λ
=

a + r1

r1 − r2
ln

γΘ∞ + k−1
min(r1 − 1)

γΘ∞ + k−1
max(r1 − 1)

− a + r2

r1 − r2
ln

k−1
min(1 − r2) − γΘ∞

k−1
max(1 − r2) − γΘ∞

,

and under the assumption of weak awareness intensity
ε 
 1, the second term in the rhs expression can be

neglected, since it is an infinitesimal of higher order than
the first term. Thus equation (A.2) simplifies to

k−1
min − k−1

max

λ
=

a + r1

r1 − r2
ln

γΘ∞ + k−1
min(r1 − 1)

γΘ∞ + k−1
max(r1 − 1)

.

Taking the limit kmax → ∞, we have

1
λm

=
a + r1

r1 − r2
ln

[
1 +

r1 − 1
γmΘ∞

]
, (A.3)

noting that the normalization constant m = kmin reduces
to be the minimum degree of the network. Thus from equa-
tion (A.3) one can readily obtain

Θ∞ =
r1 − 1
γm

[
e

r1−r2
λm(a+r1) − 1

]−1

, (A.4)

which is the same as equation (20).
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