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Abstract. We investigate the newly discovered supersolid phase by solving in random-phase approximation
the anisotropic Heisenberg model of the hard-core boson 4He lattice at zero temperature. We include nearest
and next-nearest neighbor interactions and calculate exactly all pair correlation functions in a cumulant
decoupling scheme. We demonstrate the importance of vacancies and interstitials in the formation of the
supersolid phase. The supersolid phase is characterised by strong quantum fluctuations which are taken
into account rigorously. Furthermore we confirm that the superfluid to supersolid transition is triggered
by a collapsing roton minimum however is stable against spontaneously induced superflow, i.e. vortex
creation.

PACS. 05.30.Jp Boson systems – 67.80.-s Quantum solids – 67.80.bd Superfluidity in solid 4He, supersolid
4He – 75.10.Jm Quantized spin models

1 Introduction

The counterintuitive idea of a superflow in a solid,
later coined supersolidity was firstly conjectured in 1969
by Andreev [1] and in 1970 seized by Leggett and
Chester [2,3]. From a theoretical point of view, super-
solidity is a state of matter characterised by simultane-
ous off-diagonal (ODLRO) and diagonal long range order
(DLRO). It was speculated that such a phase exists be-
cause vacancies and other defectons are non-localised and
will Bose condense at sufficiently low temperature. Still
most physicists remained critical of the notion as several
experiments failed to produce any evidence of this state.
Finally in 2004 Kim and Chan [4,5] measured a tiny super-
flow in solid helium at temperatures below T = 0.2 K, ex-
pressed by non-classical rotational inertia in a torsional os-
cillation experiment, and thus proved the existence of the
supersolid state. This landmark experiment rekindled vast
interest in the supersolid state and subsequently many
new theories and numerical quantum Monte-Carlo calcu-
lations supporting the existence of supersolidity were pro-
posed. However the true nature of the supersolid phase
still remains obscure. Numerous follow-up experiments
managed to shed light on the matter but the relevance of
3He impurities and especially the nature of the unconven-
tional normal solid to supersolid transition resembling the
2D Kosterlitz-Thouless transition is still being debated.

Recent experiments [6] raised new questions as it was
found that the supersolid phase exhibits a hysteresis,
where the superfluid signal depends on the chronology
of variation of temperature and in the amplitude of the
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rotational oscillation. An other recent experiment [7] de-
tected a change in the elastic properties of solid helium.
The change of the elastic moduli bears a remarkable re-
semblance with the supersolid signal.

However, despite sophisticated numerical methods and
advanced theories such as vortex liquids [8] and superglass
states [9] we believe that there remains a gap in the range
of theories of the supersolid phase. In this paper we in-
tend to fill this gap and present a theory of supersolidity
in a quantum lattice gas (QLG) model beyond classical
mean-field. We follow the approach of Liu and Fisher [10]
and map the QLG model to the anisotropic Heisenberg
model. The method of Green’s functions proved to be very
successful in the description of ferromagnetic and anti-
ferromagnetic states and we use this method to investi-
gate the supersolid phase which corresponds to a canted
anti-ferromagnetic phase.

The emergent third order Green’s functions in the
random-phase approximation (RPA) are broken down us-
ing the cumulant decoupling to yield a closed set of equa-
tions. Quantum fluctuations at zero temperature result in
vacancies and interstitials present even at zero tempera-
ture and in the supersolid phase the net vacancy density
is therefore non zero. The supersolid phase is character-
ized by Bose condensation of the vacancies as well as the
interstitials and thus both will contribute to superfluidity.
Interestingly, the major contribution comes from vacan-
cies. Also, our model confirms propositions that the super-
fluid to supersolid transition is triggered by a collapsing
roton minimum [11,12]. Nonetheless our solution shows,
contrary to earlier results that this transition is stable
against spontaneously induced superflow.
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The paper is organized as follows: in Sections 2
and 3 we introduce the generic Hamiltonian of a bosonic
many body system and discretize it to a quantum lattice
gas model. This model is equivalent to the anisotropic
Heisenberg model in an external field and we will identify
the corresponding phases. In the following two sections we
derive basic thermodynamic properties relevant at zero
temperature and discuss the excitation spectrum of the
spin waves in the superfluid and the supersolid phases.
The relevance of quantum fluctuations is discussed in Sec-
tion 7, where we provide justification of results briefly re-
ported elsewhere [13]. Finally in the last two sections we
discuss key properties of the supersolid phase and their
occurrence within the example of three different sets of
coupling constants.

2 Generic Hamiltonian

Apart from possible 3He impurities the supersolid
Helium-4 state is a bosonic system and the generic
Hamiltonian for such systems in the language of second
quantisation is given by:

H =
∫
d3xψ†(x)

(
− 1

2m
∇2 + μ

)
ψ(x)

+
1
2

∫
d3xd3x′ψ†(x)ψ†(x′)V (x− x′)ψ(x)ψ(x′) (1)

where ψ†(x), the particle creation operator and ψ†(x) , the
corresponding destruction operator obey the usual bosonic
commutator relations. Hamiltonians in three dimensions
such as in equation (1) are not solvable even for elemen-
tary potentials V (x) such as the Dirac delta distribution.
Therefore we are induced to introduce further approxima-
tions. An approximation which proved particularly suc-
cessful for the description of liquid Helium is know as the
Quantum Lattice Gas model and was first introduced by
Matsubara and Matsuda [14].

In the quantum lattice gas model one works with a
space lattice of discrete lattice points rather than the con-
tinuum. This approximation shows to be very useful for
the supersolid state as the spacial discretization of the
this model serves as a natural frame for the crystal lat-
tice of (super)-solid helium. This procedure significantly
simplifies the problem of breaking translational invariance
symmetry for states that exhibit diagonal long range or-
der. In this way this model gives the easiest possible access
to analyze states that exhibit both diagonal and off diago-
nal long range order simultaneously. Also in this model no
specific knowledge of the density distribution of the atoms
is needed.

According to Matsubara and Tsuneto [15] the generic
Hamiltonian equation (1) in the discrete lattice model
reads:

H = μ
∑

i

ni +
∑
ij

uij

(
a†i − a†j

)
(ai − aj) +

∑
ij

Vijninj

(2)

here uij are non-zero for nearest neighbor and next nearest
neighbor hopping and otherwise zero. The values of unn

and unnn are such that the kinetic energy is isotropic up
to the 4th order. In the case of a BCC lattice (two inter-
penetrating SC lattices) the matrix elements are given by:

unn =
2
3

1
4ma2

unnn =
1
3

1
4ma2

. (3)

As atoms do not penetrate each other there can exist only
one atom at a time on a lattice site and consequently a†
and a are the creation and annihilation operators of a hard
core boson commuting on different lattice sites:

[a†i , a
†
j ]− = [ai, aj ]− = [ai, a

†
j ]− = 0 (i �= j) (4)

but obey the anti-commutator relations on identical sites:

[a†i , a
†
i ]+ = [ai, ai]+ = 0[

ai, a
†
i

]
+

= 1. (5)

Equation (2) is the Hubbard model in 3 dimensions for
hard core bosons. Due to the unusual statistics of hard
core bosons, there does not exist a Wick’s theorem for
their operators and the common formalism of pertubative
field theory is not applicable. Hence in the following chap-
ter we transform the model to an equivalent spin model
namely the anisotropic Heisenberg model.

3 Anisotropic Heisenberg model

It is well known that the operators of hard-core bosons
obey the same SU(2) algebra as spin S = 1/2 particles
do. Therefore it is feasible to replace the creation and an-
nihilation operators by spin operators.

a†j = Sx
j − iSy

j

aj = Sx
j + iSy

j

nj =
1
2
− Sz

j . (6)

It is easily apprehensible that the usual lie algebra for
spin 1/2 particles preserves the mixed commutation/anti-
commutation relations for hard-core bosons. This substi-
tution transforms the hard-core bosonic Hubbard model
into a spin model:

H = μ
∑

i

(
1
2
− Sz

i

)

+
∑
ij

uij

(
1 − Sz

i − Sz
j − 2Sx

i S
x
j − 2Sy

i S
y
j

)

+
∑
ij

Vij

(
1
4
− Sz

i

2
− Sz

j

2
+ Sz

i S
z
j

)
. (7)
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B

A
Fig. 1. The BCC lattice consists of two interpenetrating SC
sub-lattices. In the perfect solid phase one sub-lattice (i.e. sub-
lattice A) serves as a lattice of on-site centers and is occu-
pied while sub-lattice B represents the empty interstitial and
is vacant.

If we adjust the notation to conform with the usual stan-
dards of spin models, it becomes evident that the resulting
Hamiltonian is the anisotropic Heisenberg model :

H = −hz
∑

i

Sz
i −

∑
ij

J
‖
ijS

z
i S

z
j

−
∑
ij

J�
ij (Sx

i S
x
j + Sy

i S
y
j ) (8)

with:

J
‖
ij = −Vij

J�
ij = 2uij

hz = μ−
∑

j

J�
ij +

∑
j

J
‖
ij . (9)

The Hubbard model as well as the anisotropic Heisenberg
model are defined on a discrete lattice and one may ask
to what extend a specific choice of lattice geometry will
affect the physical properties of the system. While the
quantitative results certainly depend on the lattice geom-
etry we can safely assume that qualitative properties, such
as phase transitions and critical constants will not change
for different lattices as long as no frustration effects are
evoked. Therefore we may safely chose, in order to avoid
unnecessary complications, a simple lattice geometry and
an obvious choice are two interpenetrating simple cubic
sub-lattices which together form a BCC lattice, see Fig-
ure 1. Defining two sub-lattices gives us the possibility
to establish the DLRO of solids in a natural way: sub-
lattice A represents the centers of the 4He ions, hence it
coincides with the ion lattice. Sub-lattice B defines the
interstitial, the space in-between those atomic centers. In
the liquid phases of course the occupation number on both
sub-lattices is equal as there is no spacial density varia-
tion. Table 1 charts the the various magnetic phases and
identifies the corresponding phases of the 4He system. Ac-
cording to the spin configurations we call the four mag-
netic phases ferromagnetic, canted ferromagnetic, canted

Table 1. Possible magnetic phases and the corresponding
phases of the Hubbard model. All Phases are defined by their
long range order. The columns, from left to right, are the spin
configurations, magnetic phases, ODLRO, DLRO and corre-
sponding 4He phases, respectively.

↑↑ FE No No Normal liquid

↗↗ CFE Yes No Superfluid

↗↙ CAF Yes Yes Supersolid

↑↓ AF No Yes Normal solid

anti-ferromagnetic and anti-ferromagnetic phases which
we abbreviate by FE, CFE, CAF and AF. The order pa-
rameters, m1 for off-diagonal long range order and m2 for
diagonal long range order in the magnetic system are de-
fined by:

m1 = 〈Sx
A〉 + 〈Sx

B〉
m2 = 〈Sz

A〉 − 〈Sz
B〉. (10)

In the following we will use these order parameters to iden-
tify the phases within the classical mean-field approxima-
tion as was derived by Matsuda and Tsuneto [15] and
extended to finite temperature by Fisher and Liu [10] as
well as in the novel random-phase approximation.

4 Green’s function

The anisotropic Heisenberg model in an external field is,
not least due to absence of O(3) symmetry difficult to
solve. However, in the context of supersolidity, investigat-
ing the CAF phase, it has been solved in a classical mean-
field approximation [10,15]. The anisotropic Heisenberg
Hamiltonian in the classical mean-field approximation is
obtained by substituting the spin-1/2 operators with their
respective expectation values:

HMF = −hz(〈Sz
A〉 + 〈Sz

B〉) − 2J‖
1 〈Sz

A〉〈Sz
B〉

− J
‖
2 (〈Sz

A〉〈Sz
A〉 + 〈Sz

B〉〈Sz
B〉)

− 2J�
1 〈Sx

A〉〈Sx
B〉 − J�

2 (〈Sx
A〉〈Sx

A〉 + 〈Sx
B〉Sx

B〉),
(11)

where J‖
1 = q1J

‖
i∈Aj∈B , J‖

2 = q2J
‖
i∈Aj∈A , J�

1 = q1J
�
i∈Aj∈B

and J�
2 = q1J

�
i∈Aj∈A, q1 = 6 and q2 = 8 are the number of

nearest and next nearest neighbors. Although the classical
mean-field theory is quite insightful and gives an accurate
description of the variously ordered phases its fails to take
quantum fluctuations and quasi-particle excitations into
account. Hence, in order to overcome these shortcomings
we derive a fully quantum mechanical approximation and
solve the anisotropic Heisenberg model in the random-
phase approximation which is based on the Green’s func-
tion technique. At zero temperature the retarded and
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advanced Tyablikov [17,18] commutator Green’s function
defined in real time are:

Gμν
ijRet

(t) = −iθ(t)〈n0|[Sμ
i (t), Sν

j ]|n0〉
Gμν

ijAdv
(t) = iθ(−t)〈n0|[Sμ

i (t), Sν
j ]|n0〉 (12)

here |n0〉 is the normalized Heisenberg ground state, μ
and ν are elements of {x, y, z} and i and j denote the lat-
tices sites. The most successful technique of solving many
body Green’s function involves the method of equation of
motion which is given by:

i∂tG
xy
ijRet

(t) = δ(t)〈[Sx
i , S

y
j ]〉 − iθ(t)〈[[Sx

i , H ], Sy
j ]〉

i∂tG
xy
ijAdv

(t) = δ(t)〈[Sx
i , S

y
j ]〉 + iθ(−t)〈[[Sx

i , H ], Sy
j ]〉.

(13)

The commutator [Sx
i , H ] can be eliminated by using the

Heisenberg equation of motion giving rise to higher, third
order Green’s functions on the RHS. In order to obtain
a closed set of equations we apply cumulant decoupling
procedure and as a consequence the third order Green’s
functions split into product terms of single operator ex-
pectation values and second order Green’s functions. The
cumulant decoupling [20] is based on the assumption that
the last term of the following equality is negligible:

〈ÂB̂Ĉ〉 = 〈Â〉〈B̂Ĉ〉 + 〈B̂〉〈ÂĈ〉
+ 〈Ĉ〉〈ÂB̂〉 − 2〈Â〉〈B̂〉〈Ĉ〉
+ 〈(Â− 〈Â〉)(B̂ − 〈B̂〉)(Ĉ − 〈Ĉ〉)〉. (14)

This decoupling scheme leads to a closed set of six equa-
tions that determine the six Green’s functions, corre-
sponding to three spin components on two sub-lattices.

The cumulant decoupling sheme introduces mean-
fields of the spins operators which have to be calculated
in a self-consistent manner. The Green’s functions gives
us the possibility to calculate a set of two self-consistency
equations. However, in the supersolid and superfluid case
the off-diagonal long range order; i.e. non-zero transversal
fields 〈Sx

A〉 and 〈Sx
A〉 increase the degrees of freedom in

number by two and therefore analytical properties of the
commutator Green’s functions pose two additional con-
straints on the spin-fields given by:

hz + 2〈Sz
A〉(J‖

2 − J�
2 ) + 2〈Sz

B〉J‖
1 = 2J�

1

〈Sx
B〉

〈Sx
A〉

〈Sz
A〉

hz + 2〈Sz
B〉(J‖

2 − J�
2 ) + 2〈Sz

A〉J‖
1 = 2J�

1

〈Sx
A〉

〈Sx
B〉 〈S

z
B〉. (15)

These equations are quite important and also hold in
the classical mean-field approximation, where the state
of the system is defined by these equations together with√〈Sx

A〉2 + 〈Sz
A〉2 = 1

2 and
√〈Sx

B〉2 + 〈Sz
B〉2 = 1

2 . Equa-
tion (15) also determines possible second order phase tran-
sitions as was shown my Matsuda and Tsuneto [15]. The
normal fluid to superfluid (FE-CFE) second order transi-
tion is located at:

hz
FE−CFE = J�

1 + J�
2 − J

‖
1 − J

‖
2 . (16)

transition
CAF AFCFE−CAF

Magnetic Field h

CFEFE

z

Fig. 2. The possible mean-field phases of the anisotropic
Heisenberg model on a bipartite lattice with external field hz.

For the normal solid to supersolid (CAF-AF) the classical
mean-field approximation yields:

hz
CAF−AF =

√
(−J‖

1 + J
‖
2 − J�

2 )2 − (J�
1 )2 (17)

and the critical magnetic field hz (corresponds to the
chemical potential μ in the language of the QLG) for the
superfluid to supersolid (CFE-CAF) transition is:

hz
CFE−CAF =

J
‖
1 + J

‖
2 − J�

1 − J�
2

J
‖
1 − J

‖
2 − J�

1 + J�
2

×
√

(−J‖
1 + J

‖
2 − J�

2 )2 − (J�
1 )2. (18)

For a particular choice of coupling constants all four
phases will exists when, see Figure 2:

hz
FE−CFE > hz

CFE−CAF > hz
CAF−AF . (19)

The three equations for the critical fields, equa-
tions (16)–(18), are derived for in classical mean-field ap-
proximation. However as equation (15) also holds in the
random-phase approximation these values give a good in-
dication where the actual transitions take place. Never-
theless, due to depletion of the spin-fields caused by quan-
tum fluctuations the actual values are slightly lower, see
Section 8.

5 Thermodynamic properties

In the first section we have seen that the grand-canonical
QLG Hamiltonian, where the number of particles are vari-
able corresponds to the canonical anisotropic Heisenberg
Hamiltonian with fixed number of spins. Therefore there
exists following relation between any thermodynamic po-
tential defined in the QLG model and the anisotropic
Heisenberg model:

ΘQLG − μN = ΘHeisenberg (20)

here Θ refers to an arbitrary thermodynamic poten-
tial. The self-consistency equations, derived in the pre-
vious sections, determine the spin fields of the anisotropic
Heisenberg model in the various phases, but in regions
of hz where more than one solution may exist, we have
to compare internal energies to select the true ground
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state. Intuitively, we might want to compute the inter-
nal energy by calculating the expectation value of the
Hamiltonian as:

H = hz
∑

i

〈Sz
i 〉 +

∑
ij

J
‖
ij〈Sz

i S
z
j 〉

+
∑
ij

J�
ij (〈Sx

i S
x
j 〉 + 〈Sy

i S
y
j 〉) (21)

where the correlation functions can be derived from the
corresponding Green’s functions, equation (12). Unfortu-
nately this approach will yield incorrect and inconsistent
results as the Green’s function derived with the cumu-
lant decoupling is not an exact solution of the anisotropic
Heisenberg Hamiltonian but rather the solutions of an un-
known, effective model, which is an approximation of the
Heisenberg model. As we do not know the exact form of
this effective model we have to resort to fundamental ther-
modynamic relations to integrate the energy. At T = 0
following equality holds:

∂U

∂hz
=

〈Sz
A〉 + 〈Sz

B〉
2

. (22)

This equation allows us to determine if the critical fields
given by equations (16)–(18) really refer to second or-
der phase transitions. As the z-component of the spin
is decreased in the canted ferromagnetic phase due to
the onset of the transversal field this phase is energet-
ically favorable over the ferromagnetic phase. Similarly
the canted anti-ferromagnetic phase has lower energy than
the anti-ferromagnetic phase as the total magnetization in
z-direction in the canted anti-ferromagnetic phase is some-
what higher due to the increasing influence of the ferro-
magnetic term hz

∑
i S

z
i . Hence, the phases as depicted in

Figure 2 are real.
Unfortunately equation (22) only allows one to deter-

mine the energetically favourable state when the possi-
ble transition point is known, such as in second order
phase transitions. But we can not use the relation to de-
termine possible first order transitions and unfortunately
this shortcoming is only resolvable by extending the for-
malism to finite T.

Thermodynamic relations connect various macroscopic
quantities and we will use them to obtain observable prop-
erties. Although the external magnetic field hz in the spin
model is an observable the corresponding quantity in the
QLG model, namely the chemical potential is not. There-
fore we are interested to attain a formula for the pressure
associated with a certain chemical potential. The relation-
ships is most easily derived from the following Maxwell
relation:

(
∂P

∂μ

)
T,V

=
(
∂N

∂V

)
T,μ

=
#lattice sites

V
(1 − ε) (23)

where ε := 〈Sz
A〉 + 〈Sz

B〉. These are the basic thermody-
namic properties that we will use in the further discussion
and in principal all other properties can be derived from
the internal energy U .

ε k

[000] [100] [110] [111] [000]

Fig. 3. Excitation spectrum of the anisotropic Heisenberg

model with J�
1 = 1.498K, J�

2 = 0.562K, J
‖
1 = −3.899K and

J
‖
2 = −1.782K for the supersolid phase (solid line and dashed

line) at hz = 0.65 and the superfluid phase (long dashed line)
at hz = 7.46. Here [000], [100], [110], [110] refer to the various
points of the first Brillouin zone.

6 Excitation spectrum

The excitation spectrum in the ferromagnetic phase as
well as in the anti-ferromagnetic phase feature the well
known, gaped magnon excitation with quadratic k depen-
dence in the k → 0 limit. In the canted ferromagnetic
(superfluid) phase the spin-wave excitation spectrum is
comprised, due to spontaneously broken U(1) symmetry,
of the gapless linear Goldstone phonons.

Additionally the canted anti-ferromagnetic (super-
solid) phase exhibits a second branch which accounts for
the broken translational symmetry. This second branch
goes quadratic with k in the long wavelength limit and
has a gap:

Δ = [J�
1 2(J‖

1 − J
‖
2 + J�

2 )〈Sx
A〉2〈Sx

B〉2

+ J�
1

2
(
〈Sx

A〉2 + 〈Sz
A〉2

〈Sx
A〉

〈Sx
B〉3 +

〈Sx
B〉2 + 〈Sz

B〉2
〈Sx

B〉 〈Sx
A〉3

+ 2〈Sx
A〉〈Sx

B〉〈Sz
A〉〈Sz

B〉)] 1
2 . (24)

In Figure 3 the quasi-particle excitation spectrum is plot-
ted for the superfluid (CFE) and the supersolid (CAF)
phases. In the supersolid (CAF) phase the excitation en-
ergy reaches zero at the edge (point [100]) of the first
Brillouin zone. The corresponding spin-waves refer to
oscillations with a π-phase shift between different sub-
lattices. Hence, on a single sub-lattice the spin-wave
looks like a zero wave-number mode. It was recently sug-
gested [11] that the superfluid to supersolid transition is
triggered by a collapsing roton minimum. This assump-
tion is supported by the present model; here the transition
to the supersolid phase takes place when the excitation
spectrum goes soft at [100]. The dispersion relation in the
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superfluid (CFE) phase is given by:

ω(k) = 2{(J�
1 (γ1(k) − 1) + J�

2 (γ2(k) − 1))

× [〈Sz〉2(J�
1 (γ1(k) − 1) + J�

2 (γ2(k) − 1))

− 〈Sx〉2(J�
1 + J�

2 − J
‖
1 γ1(k) − J

‖
2 γ2(k))

]
}1/2,

(25)

where γ1(k) and γ2(k) denote the standard lattice gener-
ating functions of a BCC lattice. From this equation we
can see that the energy possibly goes to zero at [100] (cor-
responds to γ1(k) = −1 and γ2(k) = 1) when the following
condition is fulfilled:

J�
1 + J�

2 + J
‖
1 − J

‖
2 < 0. (26)

Hence we obtained a further condition (supplementary to
Eq. (18)) for the existence of the superfluid to supersolid
transition.

Equation (25) allows for the existence of a second re-
gion of the reciprocal space where the dispersion relation
might go soft. For γ1(k) = 0 and γ2(k) = −1 which corre-
sponds to [111] we obtain following condition:

−2J�
2

J�
1 + J�

2 + J
‖
2

> 0. (27)

It was also conjectured that the superfluid phase in the
vicinity of the superfluid to supersolid transition is un-
stable against spontaneously induced superflow and su-
perflow associated with vortices. Therefore we investigate
how the present model reacts to induced superflow. A net
superflow is either given by a moving condensate which
results in a gradient of the phase of the wave-function, or
equivalently by a moving environment while the conden-
sate stays at rest. The latter is obtained by an additional
term in the Hamiltonian:

H1 =
∫
d3xψ†(x)(ivn · ∇)ψ(x) (28)

which corresponds to following term in the anisotropic
Heisenberg model:

H1 =
∑
ij

J×
ij (Sx

i S
y
j − Sx

j S
y
i ) (29)

here the nearest and next-nearest neighbor cross coupling
constant are anti-symmetric J×

ij = −J×
ji and are zero for

directions perpendicular to the motion of the environ-
ment vn. The term yields an additional matrix M1 in he
random-phase approximation:

M1 = (J×
1 (k) + J×

2 (k))

⎛
⎝ 〈Sz〉 0 0

0 〈Sz〉 0
−〈Sx〉 0 0

⎞
⎠ . (30)

The matrix is reduced to dimension 3 × 3 because we are
only interested in the superfluid phase only where no dif-
ference between the two sub-lattices is made. The cross

coupling terms J× are given by:

J×
1 =

∑
aAB

J×
AB exp(ikaAB)

J×
1 =

∑
aAA

J×
AA exp(ikaAA), (31)

where aAA and aAB are the lattice parameters correspond-
ing to A and B lattice sites. The dispersion relations, given
by the eigenvalues of the total matrix M+M1, are altered
in the following way:

ωk → (J×
1 (k) + J×

2 (k)) + ωk (32)

in the k → 0 limit this accounts for a tilt of the dis-
persion curve toward the motion of the environment; the
quasi-particle energy in the direction of the motion vn is
lowered while the energy for particles travelling in oppo-
site directions is lifted. From the definition of the lattice
generating functions γ1(k) and γ2(k) and equation (31) we
see that J×

1 (k) = J×
2 (k) = 0 for k where γ1(k) = −1 and

γ2(k) = 1. Hence the roton dip that triggers the superfluid
to supersolid transition is not affected by the superflow.
The situation is likewise for the roton minimum at [111]
where γ1(k) = 0 and γ2(k) = −1. Also here the cross cou-
plings J×

1 and J×
2 become zero and the stability is not

affected by induced superflow.

7 Quantum fluctuations at zero temperature

As presented in reference [13] quantum fluctuations are
important to study as they can lead to the understanding
of the physical origin of the different phases. At zero tem-
perature there are no thermal fluctuations present in the
system and all fluctuations will stem from quantum me-
chanical effects. The mean-field approximation as derived
in the beginning of the paper is a classical approxima-
tion and as such it does not display quantum fluctuations.
This is expressed by a constant spin magnitude of 1/2
over all phases at zero temperature. In the anisotropic
Heisenberg model quantum fluctuations are a result of
non-vanishing pair correlations 〈Sμ

i S
ν
j 〉−〈Sμ

i 〉〈Sν
j 〉 of near-

est and next nearest neighbors. Consequently, as random-
phase approximation takes those correlations accurately
into account we expect quantum fluctuations which are
expressed in a depletion of the total spin magnitude as
can be seen in Figure 4. In the ferromagnetic phase the
total spin is 1/2 and thus there are no quantum fluctua-
tions present. This is expected as the ferromagnetic phase
is governed in the hz → ∞ limit by an effective single
operator, and hence the classical Hamiltonian:

H =
∑

i

hzSz
i . (33)

The spin depletion is strongly pronounced in the CFE
and CAF phases where transversal components account
for additional fluctuations. We also see that in the CAF
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Fig. 4. The total spin magnitude at zero temperature is shown
for all four phases, for the cases J�

1 = 1.498K, J�
2 = 0.562K,

J
‖
1 = −3.899K and J

‖
2 = −1.782K, main plot and J�

1 = 0.5K,

J�
2 = 0.5K, J

‖
1 = −2K and J

‖
2 = −0.5K, inset, respectively.

The mean-field solution gives always the horizontal dotted line.
In RPA the total spin is depleted due to quantum fluctuations.
For the supersolid (CAF) phase the RPA gives a difference
between the sublattices A and B (solid and dashed lines main
plot). For details, see text.

phase the spin magnitude is different on the two sub-
lattices. This indicates that next nearest neighbor inter-
actions are dominant and balancing nearest neighbor in-
tegrations are slightly suppressed. Therefore we assume
that in the canted anti-ferromagnetic phase the two sub-
lattices do slightly decouple. This interpretation is sup-
ported by the spin-wave excitation spectrum in the canted
anti-ferromagnetic phase. We have seen that there exists
a zero frequency mode, where the spins on different sub-
lattices are π-phase shifted. Hence this spin-wave which
couples both sub-lattices carries no energy.

8 Discussion

8.1 Case 1

In this section we will discuss the properties of the super-
solid phase using the example of two sets of coupling con-
stants. As we are interested in describing real systems we
may ask what sets of parameters are physical and which
set exhibits the best fit to 4He. Physically, the transver-
sal constants J� ought to be positive as they correspond
to the kinetic energy. In quantum lattice gas models usu-
ally J�s are chosen so that the kinetic energy is isotropic
up to 4th order giving the best possible approximation
to the continuum limit. However in the supersolid phase
the Hamiltonian may be regarded as an effective model
and therefore we refrain from this restriction. The in-
teractions between the helium atoms are controlled by
van-der-Waals forces and their repulsive nature at very
short distances determines negative nearest neighbor in-
teraction J

‖
1 , evoking anti-ferromagnetic ordering in the

spin language. The corresponding Lennard-Jones poten-
tial is short ranged and therefore it is sufficient to only
consider nearest and next nearest neighbor interactions.
Liu and Fisher chose coupling constants in order to fit the
model to the actual phase diagram of Helium-4. As the su-
persolid phase had not been discovered experimentally at
this time they investigated the possibility of a supersolid
phase existing.

It is widely accepted that the lambda transitions falls
into the universality class of the XY-model, which is
a limiting case of the anisotropic Heisenberg model. In
the same way we believe that the anisotropic Heisenberg
model is capable of covering the essential properties of
the supersolid phase. Nevertheless the present model will
fail to appropriately map 4He over the complete range
of temperature and pressure as various properties such
as variability of the lattice constant and lattice vibration
modes (phonons) are not taken into account in this model.
Therefore we abstain from fitting the solutions of random-
phase approximation to the phase diagram of real 4He but
merely choose two sample sets to study key properties of
the supersolid phase.

The first set of parameters is given by:

J�
1 = 0.5K

J�
2 = 0.5K

J
‖
1 = −2K

J
‖
2 = −5K. (34)

In the classical mean-field this set of parameters exhibits
all four phases where the corresponding critical magnetic
fields are given by equations (16)–(18). and yield re-
spectively: hz

FE−CFE = 3.5, hz
CFE−CAF = 2.0207 and

hz
CAF−AF = 0.86608. In the classical mean-field as well

as in the random-phase approximation the transitions are
determined by equation (15), which shows that hz roughly
scales with Sz

A and Sz
B. Therefore we expect that the

transitions in the random-phase approximation due to de-
pletion of the spin magnitude are slightly lower. The ac-
tual values are: hz

FE−CFE = 3.5, hz
CFE−CAF = 1.96 and

hz
CAF−AF = 0.857.

The second set we have chosen was extensively studied
by Liu and Fisher and their parameters are given by:

J�
1 = 1.498K

J�
2 = 0.562K

J
‖
1 = −3.899K

J
‖
2 = −1.782K. (35)

Again the transition points are slightly lower (except for
the FE-CFE transition) for the random-phase approxi-
mation and yield: hz

F−CFE = 7.741(7.741), hz
CFE−CAF =

1.0071(1.0577) and hz
CAF−AF = 0.3963(0.41716), where

the numbers in parentheses are the values derived by
the classical mean-field approximation. Figure 5a depicts
the relation between the external field of the anisotropic
Heisenberg model and the pressure in the QLG as given by
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Fig. 5. (a) shows the relation between pressure in the QLG
model and the external magnetic field in the anisotropic
Heisenberg model. The pressure is normalized with respect
to the critical pressure Pc marking the supersolid to super-
fluid transition. The dashed line refers to set 1: J�

1 = 1.498K,

J�
2 = 0.562K, J

‖
1 = −3.899K and J

‖
2 = −1.782K and the

solid line to set 2: J�
1 = 0.5K, J�

2 = 0.5K, J
‖
1 = −2.0K and

J
‖
2 = −0.5K (b) depicts the internal energy of the model as a

function of the pressure for set 1 (dashed line) and set 2 (solid
line).

equation (23). The pressure on the y-axis is renormalised
so that 1 corresponds to the critical pressure Pc of the su-
perfluid to supersolid transition, given by roughly 20 atm
in Helium-4. High magnetic field corresponds to low pres-
sure and vice versa. Negative magnetic fields correspond
to high pressures that do not have physical validity in the
quantum lattice gas. Therefore the maximal pressure cor-
responds to zero magnetic fields.

In Figure 5b we plotted the internal energy of the
anisotropic Heisenberg model which corresponds to the
conjugated potential U [μ] = U − μN per volume of
the QLG model which is minimized at zero temperature.
In Figure 6 we plotted the superfluid order parameter 〈ψ〉
as a function of the pressure in the superfluid and super-
solid phase for both sets of parameters. The order parame-
ter displays its maximum value in the vicinity of the tran-
sition to the superfluid phase and evidently approaches
zero at the NS-SS transition. The superfluid order param-
eter on the on-site sub-lattice associated with vacancies is
higher than the one on the interstitial sub-lattice. While
this effect is strongly pronounced in Set 1, where the order
parameter of the vacancies is around 37 times the order
parameter of the interstitials near the SS-NS transition,
in Set 2 the Bose condensation of the vacancies is only
marginally higher (1.3 times) than of the interstitials. Yet
we observe that in this model Bose condensation appears
in the vacancies as well as in the interstitials though the
major contribution comes from the vacancies. In Figure 7
we have the density of vacancies, the interstitials and the
difference of both, the net vacancy density plotted as a
function of the pressure in the supersolid and normal solid
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Fig. 6. Magnitude of the superfluid order parameter 〈ψ〉 in
the supersolid and superfluid phase. Long dashed line refers
to the on-site sub-lattice A while the dashed line refers to the
interstitial sub-lattice B. The dotted line is the average of both.
(a) refers to set 1 and (b) to set 2 (see text).

phases. We see that in the normal solid phase the num-
ber of vacancies and interstitials stays finite. This is due
to quantum fluctuations and consequently the number of
vacancies have in addition to thermal activation a second
contribution resulting from quantum mechanical effects.
Nevertheless the number of vacancies and interstitials ap-
pear in equal numbers and the net contribution in the
normal solid is zero. This is different in the supersolid
phase where a surplus of vacancies accounts for a positive
net vacancy density. As we decrease the pressure in the
supersolid phase both the vacancy density and the inter-
stitial density increase. However, the vacancy density in-
creases faster, leaving a net vacancy density which reaches
its maximum at the phases transition between the super-
solid and the superfluid. Interestingly the net vacancy den-
sity varies nearly linearly with the pressure as the solid line
in Figure 7 shows.

8.2 Case 2

In the section on the excitation spectrum we have seen
that the spin-wave energy at [100] of the first Brillouin
zone goes soft exactly when the superfluity to supersolid
phase transition occurs. Additionally, for coupling con-
stants that fulfill condition equation (27) there exists a
second minimum at [111] which can collapses. Following
set of constants fulfill this condition:

J�
1 = 0.5K

J�
2 = 0.5K

J
‖
1 = −2K

J
‖
2 = −1.5K. (36)

According to equation (16) there is one (normal fluid to
superfluid) transition in the system:

hz
FE−CFE = 4.5 (37)
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Fig. 7. Density of vacancies (dashed line), density of inter-
stitials (long dashed line) and the difference of both, the net
vacancy density (solid line) in the normal solid (for P/Pc > 1)
and the supersolid phases (below 1). (a) refers to set 1 and (b)
to set 2 (see text).

beneath this line classical mean-field approximation pre-
dicts a CFE (superfluid) phase that extends down to
hz = 0 as due to the relatively large negative J‖

2 the solid
phase does not acquire a sufficiently low free energy to
be the true ground state. The random-phase approxima-
tion however draws a slightly different picture. Analogous
to the classical mean-field solution the random-phase ap-
proximation also yields a phase transition near hz = 4.5.
But unlike the classical mean-field solution, the super-
fluid phase here does not survive all the way down to
hz = 0. Due to the particular choice of parameters the
superfluid phase becomes unstable at around hz = 2; i.e
the quasi-particle spectrum turns imaginary at γ1(k) = 0
and γ2(k) = −1 ([111]), as Figure 8 shows. The dashed
line in this figure shows the excitation spectrum under an
induced superflow vs. The roton minimum is not affected
by this superflow and hence the superfluid phase is not
destabilised by an spontaneously induced superflow. Inter-
estingly beyond this line no other stable phase exists in the
random-phase approximation; there is no set of spin fields
〈Sx

A〉, 〈Sx
B〉, 〈Sz

A〉 and 〈Sz
B〉 that solves the self-consistency

equations of the random-phase approximation. Therefore
we conclude that there must exist a ‘novel’ phase that is
not covered by the random-phase approximation on a bi-
partite lattice and we will leave the detailed discussion of
this phase to future work.

9 Conclusion

In this paper we analysed the supersolid phase in the three
dimensional quantum lattice gas model. Through transfor-
mation to the anisotropic Heisenberg model in a external
field we were able to employ the well-established tech-
nique of real-time Green’s functions for spin systems. The
series of infinite order Green’s functions as it appears in

ε k

[000] [100] [110] [111] [000]

Fig. 8. Excitation spectrum (solid line) in the superfluid phase

for J�
1 = 0.5K,J�

2 = 0.5K, J
‖
1 = −2K J

‖
2 = −1.5K just before

the phase become unstable due to a collapsing minimum at
[111]. Induced superflow alters the spectrum (dashed line) but
does not affect the minimum.

the equation of motion was truncated by applying cumu-
lant decoupling and the resulting random-phase approxi-
mation accounts for linear spin-waves. We are the first to
apply this method to the canted anti-ferromagnetic phase
entailing a set of 6 algebraic equations. The innate self-
consistency equations inhere a 3 dimensional numerical
integral over the k-space. By introducing a two dimen-
sional density of states the integral was reduced to two
dimensions where the lattice generating functions serve as
new integration variables. In the said integral the DOS is
the only quantity that depends on the structure of the lat-
tice. Hence, once the DOS is computed for a certain lattice
geometry the further calculation remain unaltered. There-
fore our method is widely applicable and easily adjustable
to various magnetic systems where canted phases are in
the center of interest. This also holds for 2 dimensional
lattices where linear spin waves are expected to yield a
reasonable approximation.

The random-phase approximation takes quantum fluc-
tuations into account and consequently in this solution
the solid phase exhibits vacancies and interstitials at zero
temperature. Yet in the normal solid phase the vacancies
and the interstitials occur in equal number, thus yielding
a zero net vacancy density. In the supersolid phase this
balance shifts in favour of the vacancies giving rise to a
finite positive net vacancy density at zero temperature.
Our data also shows that vacancies as well as interstitials
Bose condense and hence both contribute to superfluidity.
Nevertheless the Bose condensation is stronger expressed
in the vacancies thus giving the major contribution to su-
persolidity.

Furthermore the present approach confirms sugges-
tions that the superfluid to supersolid transition is trig-
gered by a collapsing roton minimum. However our re-
sults show that this roton dip is not affected by Galilean
transformation and hence the superfluid phase is stable
against spontaneously induced superflow. Additionally we
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find that for a narrow regime of parameters a second ro-
ton minimum collapses. Beyond this point does not exist
a stable phase in the bipartite random-phase approxima-
tion and is thus beyond the model. The prospect of future
work looks promising. The formalism is easily extendable
to finite temperatures as shown in reference [22], where
we investigated the properties of the supersolid phase at
finite T. In particular the temperature dependence of the
net vacancy density and the behavior of the specific heat
across the supersolid to normal solid transitions is of par-
ticular interest.
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