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Abstract. A model describing the dynamics related to the spreading of non-lethal infectious diseases in a
fixed-size population is proposed. The model consists of a non-linear delay-differential equation describing
the time evolution of the increment in the number of infectious individuals and depends upon a limited
number of parameters. Predictions are in good qualitative agreement with data on influenza, which is taken
to be a representative type of non-lethal infectious disease.

PACS. 87.23.Cc Population dynamics and ecological pattern formation

1 Introduction

The dynamical laws governing the spreading of infectious
diseases among a closed population are of interest mainly
in the field of medical science. However, owing to the stir-
ring of public opinion generated by the diffusion of lethal
viruses, social issues are also to be considered. Indeed,
much attention has been lately devoted to the study of
the HIV virus, given its strongly lethal character, so that
traditional mathematical models [1,2] have been modified
according to the characteristic features of this illness [3,4].
More recently, SARS has had a great social and economic
impact in the whole world [5].

Even the most common non-lethal viral infections as,
for example, influenza, are cause of some social distress,
given their periodic appearance and their potentiality of
being harmful to the weak exposed population. Classic
models [6] give a fairly good description of the time evolu-
tion of infectious diseases. Most of the assumptions made
in this traditional type of approach greatly simplify the
analysis of the complex problem of the spreading of such
illnesses among a certain number of individuals. However,
in order to give account of the great variety of responses to
the same viral infection and to distinguish among different
social habits of different individuals, a network approach
can be adopted [7,9]. The topological issues addressed by
the network approach are very important per se, since
they find application in other fields, such as, for example,
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sociology [10]. In addition, they are useful in describing,
more realistically, the problem and in defining the limits
of validity of traditional models.

In the present work, we propose, under the same
basic hypotheses of traditional models, a modified SIR
(Susceptible-Infectious-Recovered) model. The time evo-
lution of non-lethal infectious illnesses in a community of
highly mobile individuals or, equivalently, in a population
with different species uniformly distributed over the ob-
servation landscape, will be analyzed.

The paper will be organized in two main parts. In the
first part we reconsider the equations governing the time
evolution of SIR models by assuming that an individual,
infected at time t, recovers after an interval of time τ ,
which is taken to be the same for every population mem-
ber. The interaction between the S-I species is taken to
be regulated by a constant statistical parameter π, while
other horizontal cross-interactions are neglected. The time
interval in which the S-species population is monitored is
assumed to be small, in such a way that the total num-
ber of individuals can be thought to be constant over the
entire observation period.

In the second part of the present paper the result-
ing non-linear delay-differential equations [11] for the in-
crement in the number of infected individuals are solved
by standard numerical routines. The duration of the dis-
ease as a function of a rescaled interaction parameter π̂ is
plotted for different initial numbers of infectious individu-
als µ̃0 and for different population sizes. Disease-free and
epidemic regimes for the infectious disease, as also found
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by means of traditional approaches [6], are defined by in-
troducing the cross-over value π̂c of the effective interac-
tion parameter. Conclusions are drawn in the last section,
where further developments of the modified model are also
discussed.

2 The model

Let us consider a fixed size population of individuals, sub-
divided in three distinct species: Susceptible (S-species);
Infectious (I-species); Recovered (R-species). Assume that
the mobility of each individual is such to cause a complete
interaction among all members of the community within
one monitoring time interval ∆t. Equivalently, one might
also assume that the members of each species are uni-
formly distributed, at any time t, over the observation
landscape. Under this hypothesis we can take the number
of new infections ∆µA, due to a non-lethal virus, to be
given by the following relation [1]:

∆µA = πµ (t)σ (t)∆t, (1)

where µ (t) and σ (t) are the number of infectious and sus-
ceptible individuals at time t, respectively, and where π is
the effective infection rate. A slight different meaning is to
be attributed to the statistical exchange parameter π, de-
pending whether we are observing highly mobile individ-
uals or uniformly distribute species over the entire land-
scape. In the present model, indeed, we shall introduce a
recovery time interval (or infectious period) τ , taken to
be equal for all individuals. This quantity acts as a ref-
erence time scale, so that, in the case of highly mobile
individuals, π is representative of the effectiveness of the
interaction between the S- and the I- species in a time τ ,
while it accounts also for the number of these interactions
in the same interval of time in the case of uniform distri-
bution of the three species. By now defining ρ (t) as the
total number of recovered individuals at time t, we may
write:

N = µ (t) + σ (t) + ρ (t) , (2)

where N is the total constant number of members in the
community.

Let us now subdivide the time interval [0, +∞) into
contiguous sub-intervals In = [(n − 1) τ, nτ ], where n is a
positive integer. For t ∈ In, we define the number of indi-
viduals belonging to the S-, I- and R- species, respectively,
as follows:

σn (t) = σn−1 ((n − 1) τ ) − an (t) , (3a)

µn (t) = µn−1 ((n − 1) τ ) + an (t) − an−1 (t − τ ) , (3b)

ρn (t) = ρn−1 ((n − 1) τ ) + an−1 (t − τ ) , (3c)

where the function an (t) counts the number of infected
individuals in In, up until time t, starting with a null
initial count at t = (n − 1) τ , i.e., for each lower bound of
the interval In, so that:

an ((n − 1) τ) = 0, (4a)
an (nτ ) = µn (nτ ) . (4b)

Notice that the term an−1 (t − τ ) counts the num-
ber of individuals that get infected in the interval
[(n − 2) τ, (t − τ)] ⊆ In−1. These individuals recover in
the time interval [(n − 1) τ, t] ⊆ In. In order to describe
the dynamics of the population of the I-species, we also
consider the number of individuals which recover in the
interval ∆t, so that the variation in the number of in-
fected ∆µn in this time interval is given by the following
expression:

∆µn = πµn (t)σn (t)∆t

− [an−1 (t − τ + ∆t) − an−1 (t − τ)] , (5)

where the second term represents the number of individ-
uals getting infected in the interval [t − τ, t − τ + ∆t] ⊆
In−1 and recovering in the interval [t, t + ∆t] ⊆ In.

For ∆t � τ , we thus have:

µ̇n (t) = πµn (t)σn (t) − ȧn−1 (t − τ ) , (6)

where the dot on top of the variable stands for its
time derivative and where n ≥ 2, n being an inte-
ger. For n = 1, equation (6) reduces to the following
µ̇1 (t) = πµ1 (t)σ1 (t), being an (t) defined only for posi-
tive integer indices. Equation (6) thus shows that the dy-
namical problem can be described by means of a collec-
tion of non-linear coupled differential equations, each one
defined on a time interval of length τ . However, we can
postulate the existence of a function m : �+

0 → �+
0 , which

is continuous over the time domain �+
0 and whose restric-

tion on the time intervals In is given by the following
expression:

mn (t) = mn−1 ((n − 1) τ ) + an (t) . (7)

Notice that the requirement of continuity of the global
function m (t) is fulfilled if the functions mn (t) are con-
tinuous over In. Indeed, by equation (4), we have that, at
the common point tn = (n − 1) τ of the contiguous time
intervals In−1 and In, equation (7) gives mn ((n − 1) τ ) =
mn−1 ((n − 1) τ ). Continuity of the function m (t) can
thus be fully proven by exhibiting the single functions
mn (t), after we have solved the problem.

Before finding and solving the differential equation for
the function m (t), let us consider what follows. First of
all notice that, since µn (nτ) = an (nτ ) by equation (4b),
for n ≥ 2 we can write:

mn (nτ ) = mn−1 ((n − 1) τ ) + an (nτ )
= mn−1 ((n − 1) τ ) + µn (nτ ) . (8)

We might extend the validity of the above expression to
n = 1, by defining the following zero-index functions in
the interval I0 = [−τ, 0]:

m0 (t) = µ0 (t) =
{

µ̃0 for t = 0
0 for − τ ≤ t < 0,

(9)

σ0 (t) =
{

N − µ̃0 for t = 0
0 for − τ ≤ t < 0,

(10)

ρ0 (t) = 0 for − τ ≤ t ≤ 0, (11)
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where µ̃0 is the initial number of infected individuals. At
t = 0 these functions reproduce the correct initial condi-
tions of the problem and are compatible with the form of
the differential equation given by equation (6) for n = 1.

We now find the time evolution of the functions mn (t)
for n ≥ 1. Making use of equations (3a)–(3c) and consid-
ering the definition of the zero-index functions above, we
first rewrite equation (6) in terms of the functions an (t)
for n ≥ 1 as follows:

ȧn (t) = π [µn−1 ((n − 1) τ ) + an (t) − an−1 (t − τ )]
× [σn−1 ((n − 1) τ) − an (t)] . (12)

By now solving for an (t) in equation (7) in terms of the
functions mn (t) and by substituting in equation (12), we
have:

ṁn (t) = π [mn (t) − mn−1 (t − τ )] [N − mn (t)] . (13)

In deriving the above equation we have made use of the
following relations:

mn−1 ((n − 1) τ )−mn−2 ((n − 2) τ )−µn−1 ((n − 1) τ) = 0,
(14)

σn−1 ((n − 1) τ ) + mn−1 ((n − 1) τ) =
σn (nτ ) + mn (nτ) = N. (15)

Equation (14) follows directly from equation (8), while
equation (15) can be proven to be valid since, by definition
of σn (t) (Eq. (3a)) and of mn (t) (Eq. (7)) , we may write:

σn (nτ) + mn (nτ ) = σn−1 ((n − 1) τ)
+ mn−1 ((n − 1) τ ) = σn (t) + mn (t) . (16)

Given that the above relation should be valid also for
n = 1 and for t = 0, we have

σn (t) + mn (t) = σ0 (0) + m0 (0) = N, (17)

thus proving the statement in equation (15).
We can now built up a global solution m (t), by solving

the dynamical equation given in equation (13) in all con-
tiguous intervals In = [(n − 1) τ, nτ ], for n = 1, 2, 3, ...,
starting from n = 1 and proceeding for increasing integer
values of n. For each step, the functions σn (t), µn (t), and
ρn (t) which can be considered as the restrictions of global
functions σ (t), µ (t), and ρ (t) on the interval In, can be
found by the following inverse relations:

σn (t) = N − mn (t) , (18a)

µn (t) = mn (t) − mn−1 (t − τ ) , (18b)

ρn (t) = mn−1 (t − τ ) . (18c)

3 Solutions and results

In the present section we shall proceed to solve the non-
linear delay-differential equations for the functions mn (t)

(Eq. (13)) in sequence and shall discuss the results. Let
us then start by the first time interval I1. In this case we
need to solve the logistic equation

ṁ1 (t) = πm1 (t) [N − m1 (t)] , (19)

with initial conditions m1 (0) = µ̃0. We can thus immedi-
ately write down the solution to equation (19) [12]

m1 (t) =
µ̃0N

µ̃0 + (N − µ̃0) e−πNt
, (20)

while the functions σ1 (t), µ1 (t), and ρ1 (t) can be found
by means of equations (18a)–(18c).

In the time interval I2, the differential equation in
equation (13) takes the following form

ṁ2 (t) = π [m2 (t) − m1 (t − τ )] [N − m2 (t)] . (21)

Solution to the above equation can now be sought by uti-
lizing the expression for m1 (t) in equation (20) and by
using the initial condition

m2 (τ) = m1 (τ) =
µ̃0N

µ̃0 + (N − µ̃0) e−πNτ
· (22)

The same procedure can be used, iteratively, for n = 3,
4, 5, ..., until a satisfactory picture of the global solution
m (t) is obtained.

Before presenting the outcome of the numerical inte-
gration, we might notice that, by defining the following
normalized quantities:

ξ =
t

τ
; �
m =

m

N
; �
π = πNτ, (23)

equation (13) can be cast in the form

d

dξ
�
mn (ξ) = �

π
[

�
mn (ξ) − �

mn−1 (ξ − 1)
] [

1 − �
mn (ξ)

]
.

(24)
In equation (24) the role of the parameters π, N , and τ
in the present model is clarified. Indeed, the dynamical
behaviour of the system appears to be independent from
the infectious period τ and from the population size N ,
since, from equation (24), the quantities τ and N simply
rescale the infection rate π. We thus expect a universal be-
haviour of the observed experimental data, independently
from the population size and for the recovery time in-
terval τ . The only significant parameters in the universal
curves are the effective interaction parameter �

π , which
in traditional models is referred to as contact number,
and the initial percentage of infected individuals p0 = µ̃0

N .
As far as the duration of the infection is concerned, how-
ever, we shall see, in what follows, that the population
size does play a role in determining the lower limit of the
function �

µn (t) = µn(t)
N . We also notice that, by defini-

tion of the number of individuals in each species in equa-
tions (18a)–(18c) and by equation (24), we get:

�
σ (ξ) = �

σ (0) e
−�

π
ξ∫
0

�
µ (λ)dλ

, (25)
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Fig. 1. Time dependence of the function
�
m (ξ) for p0 = 0.01

and for two different values of the effective interaction param-
eter: (a)

�
π = 0.95; (b)

�
π = 3.5.

which gives the residual percentage of susceptible individ-
uals �

σ (ξ) not yet infected at normalized time ξ in terms
of the total count of infected individuals, normalized to
the N , up to ξ.

The integration of equation (24) is performed by stan-
dard numerical routines. In Figures 1a, 1b we report, for
two different values of �

π, the time evolution of the func-
tion �

m (ξ), in order to detect its continuity properties.
In Figures 2a, 2b and in Figure 3 we show the functions
µ, σ, and ρ normalized to N , which we indicate as �

µ,
�
σ,

and �
ρ , respectively, versus the normalized time ξ = t

τ ,
for p0 = 0.01. In Figures 2a, 2b we have chosen a sta-
tistical parameter �

π equal to 0.95, while in Figure 3 we
have taken �

π = 3.5. From these time-evolution curve, we
first notice, starting with Figures 1a, 1b, that �

m (ξ) is a
monotonically increasing function and attains character-
istic s-shape for �

π > 1. In fact, in Figure 1a, obtained
for p0 = 0.01 and �

π = 0.95, no clear inflection point
can be detected in the curve, while in Figure 1b, obtained
for p0 = 0.01 and �

π = 3.5, an inflection point can be
clearly seen in the interval 1 < ξ < 2. We also notice that,
in correspondence to this feature, the model predicts a
disease-free regime for �

π < 1. In the particular case of
Figures 2a, 2b, where �

π = 0.95, the infection is present
in the community for a rather long time, while the num-
ber of infected individuals is low at any instant of time. A
different behavior can be seen when �

π = 3.5, for exam-
ple, as in Figure 3, where an epidemic regime is detected.
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Fig. 2. (a) Dynamical evolution of the normalized number of

individuals belonging to the S-, I-, R-species for
�
π = 0.95 and

for p0 = 0.01. The variable on the vertical axis is representative
of the functions

�
µ,

�
σ , and

�
ρ , which are respectively graphed

with dashed, dash-dotted and full lines. (b) a magnification of
the lower portion of the graph in (a).
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Fig. 3. Dynamical evolution of the normalized number of in-
dividuals belonging to the S-, I-, R-species for

�
π = 3.5 and for

p0 = 0.01. The variable on the vertical axis is representative
of the functions

�
µ,

�
σ , and

�
ρ , which are respectively graphed

with dashed, dash-dotted and full lines.

Indeed, in this case, the percentage of infected individuals
reaches rather high values, even though not all individuals
get infected in the interval of duration of the disease.

An interesting result is found when we let the popula-
tion size N vary. As said in the previous section, one can
argue that the dynamics of the phenomenon is not affected
by the parameter N , since this extensive quantity col-
lapses into the rescaled parameter �

π after normalization.
One cannot exclude, however, that observable quantities,
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Fig. 4. Duration T of the infection as a function of the value of
the effective interaction parameter

�
π for (a) p0 = 0.01 and for

(b) p0 = 5 × 10−3. The curves are obtained for various values
of the population size N (from bottom to top, alternating full
and dot lines: N = 103, 104, 105, 106).

like, for example, the duration of the malady expressed in
terms of normalized time, would be independent of N . In-
deed, by considering �

π fixed, if N is increased, one needs
to decrease the product πτ , which describes the average
number of infected people in the normalized time inter-
val

�

I n = [(n − 1) , n], n ≥ 1. In this way, the duration of
the malady spreads over a longer normalized time inter-
val. Numerically this result is obtained by adjusting the
lower level of the normalized number of infected individu-
als when deciding at what instant of time the disease ends.
Indeed, let us suppose that the population size is N0, then
the duration of the malady is determined by intersecting
the curves �

µ = �
µ (ξ) and �

µ = 1
N0

, and by looking at the
instant of time at which intersection of the two curves
occurs. Therefore, if we consider the parameter �

π fixed,
but consider two population sizes, say N1 and N2, with
N1 < N2, then we need to intersect the curves �

µ = 1
N1

and �
µ = 1

N2
with the same solution �

µ = �
µ (ξ) of the dy-

namical equation (24). Let us assume that intersections
occur, respectively, at normalized times ξ1 and ξ2. Given
that the curve �

µ = �
µ (ξ) decreases to zero for ξ 	 1, one

can finally argue that ξ1 < ξ2, as it appears from Fig-
ures 4a, 4b, where the duration of the infection versus the
value of the statistical parameter �

π is shown for p0 = 0.01
and p0 = 5 × 10−3, respectively. In these figures various
values of the population size N have been used and we no-
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Fig. 5. (a) Abscissa and (b) ordinate of the maximum points
appearing in the time evolution curves of the percentage of
infectious individuals. These values have been numerically de-
termined and are reported in terms of the effective interac-
tion parameter

�
π for (bottom to top): (a) p0 = 10−2, 5 ×

10−3, 10−3, 5 × 10−4; (b) p0 = 10−4, 5 × 10−3, 10−2, 2.5 ×
10−2, 5 × 10−2, 0.1, 0.2.

tice that, for increasing values of the population number,
by keeping fixed �

π and p0, the duration of the infection
increases.

In Figures 5a and 5b the abscissa and the ordinate,
respectively, of the maximum points in the �

µ vs. ξ curves
are reported as a function of �

π for three different values of
the initial percentage of infections p0. In Figure 5a a clear
landmark of the two different regimes, the disease-free
regime and the epidemic one, is the abrupt crossover from
a plateau in the ξMax vs. �

π curves to a monotonously
decreasing behaviour. This crossover appears around the
value �

π ∼= 1, coherently with what noted before. This
type of behaviour is well-known from standard epidemio-
logical theories [6], where the basic reproductive number
R0, defined as the average number of secondary infections
caused by the introduction of a single infected individ-
ual into an entirely susceptible population, is considered.
Epidemic outbreaks are expected to appear, according to
traditional models, if R0 > 1. As for the present model,
the transition between the two regimes, clearly detected
in the ξMax vs. �

π curves shown in Figure 5a, is also de-
tectable in the �

µMax vs. �
π curves reported in Figure 5b.

In the latter case, however, the rather sharp knee in the
curves at low values of the initial percentage of infections
disappears for higher values of p0, meaning that there
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Fig. 6. Critical effective interaction parameter
�
πc as a

function of the percentage of initially infected individuals.
The points are numerically determined by reporting the val-
ues of

�
π at which the ξmax vs. p0 curves shows deviation

from disease-free behavior, characterized as a plateau in Fig-
ure 5a. The full-line curve is determined through a best-fit
procedure and is given by the following functional relation:
f(p0) = 0.9934(1 +

√
p0).

cannot be a clear definition of the two regimes if there
is a relevant percentage of individuals infected at the time
of invasion.

In order to see more closely how the cross-over
value �

πc varies with the initial percentage of infected in-
dividuals, in Figure 6 we show a set of numerically evalu-
ated points which give, for certain values of p0, the value
of the interaction parameter leading to transition from the
disease-free to the epidemic regime. The full-line curve is
obtained by a best fit procedure and follows a square-root
law.

As a final comment we notice that the bell-shaped
curve for the percentage of infected individuals is in
good qualitative agreement with observed data for in-
fluenza [13]. Influenza, indeed, can be taken to be a rep-
resentative type of non-lethal infectious disease abiding
to the assumptions of the present model: it does not dis-
tinguish very much individuals for their age or sex and
thus not drastically hinder the mobility of the infectious
individuals.

4 Conclusion

We have developed an analytic model to describe the time
evolution of non-lethal infectious diseases in a fixed-size
population of N individuals. The population consists of
S-, I-, R-species (respectively, susceptible, infected and re-
covered species). In the model a recovery time τ is intro-
duced. This parameter acts as a delay time in the result-
ing non-linear delay-differential equations for the model.
It has been noted that τ not only induces a natural way
of normalizing the time variables, but also determines a
time scan in the model, in such a way that a sequence of
differential equations has to be found, one for each time
interval In = [(n − 1) τ, nτ ], with n ≥ 1. In order to solve
more adequately these equations, a continuous variable
m (t) is introduced. The time evolution of the restriction
of m (t) on the time interval In = [(n − 1) τ, nτ ], denoted
as mn (t), is described by the dynamical equation found

for that interval of time. The number of individuals be-
longing to the S-, I-, and R-species are expressed in terms
of the functions mn (t), for each time interval In, with
n ≥ 1. The complete evolution of the species is obtained
by gluing these partial solutions together.

We notice that the present model is different from the
classic SIR model [6] since, in equation (6) a time delay is
explicitly considered in order to properly count the num-
ber of individuals which recover at time t after having
been infected at time t − τ . As we have also noticed in
the previous sections, the introduction of the delay time τ
changes the mathematical structure of the problem. More-
over, this feature is useful to describe the spread of the ill-
nesses at the time of invasion, in such a way that the only
necessary parameters for the model are the effective con-
tact rate �

π and the initial percentage of infected individ-
uals p0. Owing to the reduction in the number of parame-
ters, the threshold characteristics can be directly deducted
from the dynamical behaviour of the system and, vicev-
ersa, the infectious disease history can be directly inferred
when these parameters are known. Furthermore, this al-
lows us to define a universal dynamics for these types of
diseases in terms of a limited number of parameters, but
does not exclude that the population size may play a role
in determining observable quantities like, for example, the
duration of the infection. Indeed, when the latter quantity
is plotted against the parameter �

π, one notices different
quantitative behaviour in the curves for different values
of N . This behaviour can be interpreted by recalling the
definition of the parameter �

π itself and appears because of
the need of defining a lower level for the normalized value
of the fraction of infected individuals, below which the
infection ceases to be present in the community. A clear
distinction between two types of regimes, epidemic and
disease-free, is attained by reporting the normalized value
of the time at which the maximum in the curve of the per-
centage of infectious individuals appears. The cross-over
value �

πc of the effective interaction parameter is deter-
mined numerically in terms of the initial percentage of
infected individuals p0. The bell-shaped curves describing
the time evolution of the number of infections in the epi-
demic regime are seen to be in good qualitative agreement
with available data on influenza. In medical and social sci-
ence the model can find application as follows. Since our
model present a universal behaviour, the disease dynamics
can be studied in a small community, in order to obtain
the relevant parameter �

π. It can then be generalized to a
larger population of individuals, in order to adopt appro-
priate measures, which are to be induced by a political
type of action.

In future works we shall gradually increase the degree
of complexity of this modified classic model, by first con-
sidering a SEIR model with a fourth species (Exposed
or E-species), defining an incubation time q for the par-
ticular illness considered. Successively, we shall take ac-
count of the lethal character of some infectious diseases
by introducing an additional parameter giving the aver-
age percentage of individuals subsiding after infection and
by allowing the population size to depend on time.
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