Skip to main content
Log in

Optimization of robustness of complex networks

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2005

Abstract.

Networks with a given degree distribution may be very resilient to one type of failure or attack but not to another. The goal of this work is to determine network design guidelines which maximize the robustness of networks to both random failure and intentional attack while keeping the cost of the network (which we take to be the average number of links per node) constant. We find optimal parameters for: (i) scale free networks having degree distributions with a single power-law regime, (ii) networks having degree distributions with two power-law regimes, and (iii) networks described by degree distributions containing two peaks. Of these various kinds of distributions we find that the optimal network design is one in which all but one of the nodes have the same degree, k 1 (close to the average number of links per node), and one node is of very large degree, \(k_2 \sim N^{2/3}\), where N is the number of nodes in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, H. Jeong, A.-L. Barabási, Nature (London) 406, 378 (2000)

    Article  ADS  Google Scholar 

  2. V. Paxon, IEEE/ACM Trans. Networking 5, 601 (1997)

    Article  Google Scholar 

  3. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  4. D.S. Callaway, M.E.J. Newmann, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  5. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)

    Article  ADS  Google Scholar 

  6. R. Cohen, D. ben-Avraham, S. Havlin, Structural Properties of scale free networks, Chap. 4 in Handbook of Graphs and Networks, edited by S. Bornholdt, H.G. Schuster (Wiley-VCH, New York, 2002)

  7. Note that we study here optimization of the case when the same network is subject to random failure or targeted attack but not combined random failure and targeted attack on the same network

  8. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Faloutsos, P. Faloutsos, C. Faloutsos, Computer Communications Rev. 29, 251(1999)

    Article  Google Scholar 

  10. A.-L. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)

    Article  ADS  Google Scholar 

  11. A. Broder, R. Kumar, F. Maghoul, P. Raghaven, S. Rajogopalan, R. Stata, A. Tomkins, J. Wiener, Computer Networks 33, 309 (2000)

    Article  ADS  Google Scholar 

  12. H. Ebel, L.-I. Mielsch, S. Bornholdt, Phys. Rev. E. 66, 128701 (2002)

    Google Scholar 

  13. S. Redner, Eur. Phys. J. B 4, 131 (1998)

    Article  ADS  Google Scholar 

  14. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000)

    Article  ADS  Google Scholar 

  15. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and the WWW (Oxford University Press, Oxford, 2003)

  16. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach\/ (Cambridge University Press, 2004)

  17. In order to keep \(\langle k \rangle\) constant, as we change \(\lambda\) we also must change m, the minimal number of links a node can have. Note that the value of m decreases as we increase \(\lambda\)

  18. We obtain similar results for other values of \(\langle k \rangle\)

  19. P. Erdös, A. Rényi, Publications Mathematicae 6, 290 (1959)

    Google Scholar 

  20. P. Erdös, A. Rényi, Publications of the Mathematical Inst. of the Hungarian Acad. of Sciences 5, 17 (1960)

    Google Scholar 

  21. B. Bollabas, Random Graphs (Academic, London, 1985)

  22. L. Braunstein, S.V. Buldyrev, R. Cohen, H.E. Stanley, Phys. Rev. Lett. 91, 168701 (2003)

    Article  ADS  Google Scholar 

  23. A.X.C.N. Valente, A. Sarker, H.A. Stone, Phys. Rev. Lett. 92, 118702 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paul.

Additional information

Received: 20 January 2004, Published online: 14 May 2004

PACS:

89.20.Hh World Wide Web, Internet - 02.50.Cw Probability theory - 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions

An erratum to this article is available at http://dx.doi.org/10.1140/epjb/e2005-00385-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, G., Tanizawa, T., Havlin, S. et al. Optimization of robustness of complex networks. Eur. Phys. J. B 38, 187–191 (2004). https://doi.org/10.1140/epjb/e2004-00112-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00112-3

Keywords

Navigation