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Abstract 20Ne can be considered as a double-magic 16O
core nucleus surrounded by four nucleons, the constituents
of an α-like quartet. Similar to other nuclei (212Po, 104Ti,
etc.) with a quartet on top of a double-magic core nucleus,
significant α-like correlations are expected. Correlations
in the ground state of 20Ne are investigated using differ-
ent approaches. The quartetting wave function approach
(QWFA) predicts a large α-like cluster contribution near the
surface of the nuclei. The Tohsaki-Horiuchi-Schuck-Röpke
(THSR) approach describes α-like clustering in nuclear sys-
tems. The results of the QWFA in the Thomas-Fermi and
shell-model approximation are compared with THSR calcu-
lations for the container model. Results for the α formation
probability and the rms radii are shown.

1 Introduction

The liquid-drop model of nuclei, which can be considered as
a simple version of a local density approach, reflects impor-
tant properties of nuclear structure, for example the famous
Bethe-Weizsäcker mass formula. Other properties such as
the occurrence of magic numbers are explained by the shell
model, which considers nucleonic quasiparticle states, and
many properties of nuclei, including pairing, are studied in
this approach, see e.g. the fundamental book by Ring and
Schuck [1]. However, the description of correlations, in par-
ticular of α-like clusters in nuclei, requires going beyond the
quasiparticle approach.

a e-mail: gerd.roepke@uni-rostock.de (corresponding author)

The nucleus 212Po shows a significant α-like correlation
in the skin region [2–4]. It can be assumed that it consists
of a double-magic, relatively stable 208Pb core nucleus sur-
rounded by an α-like cluster. This α-like quartet experiences
a potential pocket for the center-of-mass (c.m.) motion out-
side a critical radius rcr where it can exist as a quasi-bound
state. Its intrinsic structure is dissolved at smaller distances
when the nucleon density of the core nucleus exceeds a crit-
ical value ncr = 0.03 fm−3. The reason for this is the Pauli
principle, which applies to the nucleons that form the α parti-
cle. Their mutual interaction is blocked in the dense medium
of the nucleons of the core nucleus that occupy the Fermi
sphere in momentum space. This is a consequence of the
antisymmetrization of the full many-fermion wave function
of the entire nucleonic system. The α particle, which is pre-
formed in a near-surface pocket, can escape from the 212Po
nucleus by tunneling. The calculations were performed using
the quartet wave function approach (QWFA). It was found
that the calculated α decay half-life agrees well with the
observed data [3,4].

A similar behavior is expected for other nuclei consisting
of a double magic core nucleus and an additional α cluster.
Calculations were performed for 104Te (100Sn + α) [5]. The
observed half-life of α decay was successfully reproduced in
QWFA for 104Te as well as for additional α-decaying nuclei
[6]. Improvements of the quartet model have been made in
Refs. [7,8], see also [9,10]. Using QWFA, the influence of
α-like clustering in nuclei on the nuclear symmetry energy
was analyzed in Ref. [11].

Another nucleus, consisting of a double-magic core
nucleus surrounded by an α-like cluster, is 20Ne (16O + α). In
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this work, we present calculations within QWFA and com-
pare them with other approaches. A main result is the pre-
formation fraction of α-like clusters and the point rms radius
which are determined by the wave function including corre-
lations. We compare the Thomas-Fermi approximation with
shell model calculations.

A consistent description of quartetting (α-like correla-
tions) has recently been developed in the framework of
the Tohsaki-Horiuchi-Schuck-Röpke (THSR) approach [12].
This approach provides an excellent description of low-
density 4n nuclei such as 8Be, the Hoyle state of 12C and
excited states of 16O, but has also been applied to more com-
plex nuclei such as 20Ne [13–15] as well as 4n nuclei with
additional nucleons [16,17]. Recently, calculations for 20Ne
were performed by Bo et al. [18] using the two-parameter
container model. A review on microscopic clustering in light
nuclei was presented in Ref. [19].

In this work, we also compare the two approaches. Heavy
nuclei with a large number of nucleons like 212Po are not
yet computable with the THSR approach. The QWFA pro-
vides better results for heavier nuclei where a mean-field
approach for the core nucleus is more justified. For 20Ne,
both approaches are feasible. The comparison of the results
for the quartetting wave function approach and THSR cal-
culations allows a better understanding of the description of
correlations in nuclear systems.

We study the c.m. motion of a quartet {n↑, n↓, p↑, p↓} as
a new collective degree of freedom and compare the wave
functions for both approaches, the QWFA and the THSR
approach. Instead of an uncorrelated Fermi gas model for
the cluster environment, an improvement of the quartet wave
function approach is investigated to achieve a consistent
description of cluster formation in a clustered medium.

After a brief explanation of the QWFA in Sect. 2, we carry
out calculations using the Thomas-Fermi approach in Sect. 3.
Calculations with the shell model are shown in Sect. 4. Com-
parisons with the THSR approach are discussed in Sect. 5,
and concluding remarks are made in Sect. 6.

2 The quartet wave equation

The treatment of the interacting many-nucleon system
requires some approximations which can be obtained in a
consistent way from a Green’s function approach. The quar-
tetting wave function approach [2,20] considers the wave
function Ψ (r1r2r3r4) of the quartet (spin and isospin vari-
ables are dropped) which obeys the in-medium wave equation

[E4−ĥ1−ĥ2−ĥ3−ĥ4]Ψ (r1, r2, r3, r4)

=
∫
d3r′1 d3r′2〈r1r2|B̂(1, 2) V̂N−N |r′1r′2〉Ψ (r′1, r′2, r3, r4)

+
∫

d3r′1 d3r′3〈r1r3|B̂(1, 3) V̂N−N |r′1r′3〉Ψ (r′1, r2, r′3, r4)

+four further permutations, (1)

with the single-quasiparticle Hamiltonian (single-nucleon
shell states |n, ν〉)

ĥi = h̄2 p̂2
i

2m
+ [1 − f̂νi ] Vmf

νi
(r̂), (2)

where

f̂ν =
occ.∑
n

|n, ν〉〈n, ν| (3)

denotes the phase space which, according to the Pauli prin-
ciple, cannot be used for an interaction process of a nucleon
with an intrinsic quantum state ν = σ, τ . In addition to the
nucleon-nucleon potential V̂N−N , the nucleon-nucleon inter-
action terms also contain the blocking operator B̂(1, 2) =
[1− f̂1 − f̂2] for the first term on the r.h.s. of Eq. (1), and cor-
responding expressions for the other 5 terms. The mean-field
potentialVmf

νi
(r̂) contains the strong core-nucleon interaction

V ext(r) as well as the Coulomb potential of the core nucleus.
It is considered as an external potential. The Pauli blocking
terms, which are given by the occupation numbers f̂ν , are
not easy to treat as will be explained below. The mean-field
approach treats the motion within the cluster independent of
the motion in the surrounding medium, and neglects any cor-
relations between the two. If such further correlations exist,
clusters with a larger number of nucleons are formed. This
concept is known from the shell model at the one-particle
level, for pairing at the two-particle level. We first discuss
here the motion of four nucleons under the influence of an
external potential.

A main aspect of the cluster approach is the introduc-
tion of the center-of-mass (c.m.) motion R as new collective
degree of freedom, and s j = {S, s, s′} for the intrinsic motion
(Jacobi-Moshinsky coordinates). As shown in [2], the nor-
malized quartet wave function Φ(R, s j ),∫

d3R
∫

d9s j |Φ(R, s j )|2 = 1, (4)

can be decomposed in a unique way (up to a phase factor),

Φ(R, s j ) = ϕintr(s j ,R) Ψ c.m.(R) (5)

with the individual normalizations
∫

d3R |Ψ c.m.(R)|2 = 1, and
∫

d9s j |ϕintr(s j ,R)|2 = 1 (6)

for arbitrary R. The intrinsic state φintr(R, s j ) can be repre-
sented as a superposition of the eigenstates of the intrinsic
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cluster Hamiltonian. Here we only consider the ground state,
i.e. the α-like cluster, if it exists.

The Hamiltonian of a four-nucleon cluster can be written
as

H =
(

− h̄2

8m
∇2

R + T [∇s j ]
)

δ3(R − R′)δ3(s j − s′j )

+V (R, s j ;R′, s′j ) (7)

with the kinetic energy of the c.m. motion of the cluster,
and the kinetic energy T [∇s j ] of the internal motion. The
interaction V (R, s j ;R′, s′j ) contains the mutual interaction
Vi j (ri , r j , r′

i , r
′
j ) between the quartet particles as well as the

interaction with an external potential (for instance, the mean-
field potential of the core nucleus), with strict fulfillment of
the Pauli principle.

For the c.m. motion we have the wave equation

− h̄2

8m
∇2

RΨ c.m.(R) − h̄2

4m

∫
d9s j

×ϕintr,∗(s j ,R)[∇Rϕintr(s j ,R)][∇RΨ c.m.(R)] −
− h̄2

8m

∫
d9s jϕ

intr,∗(s j ,R)[∇2
Rϕintr(s j ,R)]Ψ c.m.(R)

+
∫
d3R′ W (R,R′)Ψ c.m.(R′)=E Ψ c.m.(R),

with the c.m. potential

W (R,R′) =
∫

d9s j d
9s′

j ϕ
intr,∗(s j ,R)

[
T [∇s j ]

×δ3(R − R′)δ9(s j − s′j ) + V (R, s j ;R′, s′j )
]
ϕintr(s′j ,R′).

(8)

For the intrinsic motion we find the wave equation

− h̄2

4m
Ψ c.m.∗(R)[∇RΨ c.m.(R)][∇Rϕintr(s j ,R)]

− h̄2

8m
|Ψ c.m.(R)|2∇2

Rϕintr(s j ,R)

+
∫

d3R′ d9s′
j Ψ

c.m.∗(R)

×
[
T [∇s j ]δ3(R − R′)δ9(s j − s′j )

+V (R, s j ;R′, s′j )
]
Ψ c.m.(R′)ϕintr(s′j ,R′)

= F(R)ϕintr(s j ,R). (9)

Both the c.m. and intrinsic Schrödinger equations, Eqs.
(8) and (9), respectively, are coupled by contributions con-
taining the expression ∇Rϕintr(s j ,R). This expression van-
ishes in homogeneous matter, and we recover the in-medium
Schrödinger equation for α clusters in matter without exter-
nal potential. Then, the eigenvalue F(R) of Eq. (9) represents
the bound state energy of the α particle which is shifted in
dense matter because of Pauli blocking.

The contribution of the gradient terms was recently inves-
tigated by Yang et al. [11]. It can be shown that the second
term of Eq. (8) vanishes. In the present work, we neglect the
contributions of the gradient terms. This corresponds to a
local density approximation, as is often used in many-body
theories.

3 Quartets in nuclei in Thomas-Fermi approximation

3.1 Mean field for the c.m. motion

We would like to emphasize that in general non-local interac-
tions are possible. In particular, the Pauli blocking considered
in the following is non-local. To simplify the calculations,
local approximations are often used,

W (R,R′) ≈ W (R)δ3(R − R′),
W (R) = W ext(R) + W intr(R). (10)

W ext(R) = Wmf(R) is the contribution of external poten-
tials, here the mean field of the core nucleons. The interaction
within the cluster according Eq. (9) gives the contribution
W intr(R). We give a short description, for details see Refs.
[20–22].

If we know the nucleon densities of the core nucleus, the
mean fields can be easily calculated. The mean-field con-
tribution Wmf(R) is obtained by double folding the density
distribution of the core nucleus and the intrinsic density dis-
tribution of the quartet at c.m. position R with the interaction
potential of the nucleons. An α-like Gaussian density distri-
bution was assumed for the bound quartet. For the sake of
simplicity, we only consider the spherically symmetric case
here and restrict ourselves to S-waves for the c.m. motion,
so that the dependence on the vector R is replaced by that on
the absolute value R.

For the Coulomb interaction we calculate the double-
folding potential

VCoul
α−O(R) =

∫
d3r1

∫
d3r2ρO(r1)ρα(r2)

e2

|R − r1 + r2| .
(11)

The charge density of the α nucleus according to

ρα(r) = 0.2114 fm−3 e−0.7024 r2/fm2
(12)

reproduces the measured rms point radius 1.45 fm. For the
density distribution of 16O, the expression [23]

nWS
B,O(r) = 0.168 fm−3

1 + e(r/fm−2.6)/0.45
(13)

was given which reproduces the rms point radius 2.6201 fm,
or Gaussians [20]. The convolution integral (11) is easily

123



   89 Page 4 of 16 Eur. Phys. J. A            (2024) 60:89 

evaluated in Fourier representation and gives for the param-
eter values considered here [20]

V Coul
α−O(R) = 16 × 1.44

R
MeV fm (14)

×
[
Erf(0.7683 R/fm) − 0.9097 (R/fm) e−0.2274 R2/fm2

]
.

For the nucleon-nucleon contribution to the mean field, a
parametrized effective nucleon interaction (distance s)

VN−N (s/fm) = c exp(−4s)/(4s) − d exp(−2.5s)/(2.5s)

(15)

can be used which is motivated by the M3Y interaction [24],
s denotes the distance of nucleons. The parameters c, d are
adapted to reproduce known data, see [2–4] for the case of
a lead core nucleus. For the oxygen core nucleus, parameter
values c, d are given below in Eq. (23). As also known from
other mean-field approaches, we fit the mean field parameter
to measured data. The nucleonic contribution VN−N

α−O (R) to
the mean field is calculated in analogy to Eq. (11) replacing
the Coulomb interaction by the nucleon interaction (15). With
both contributions, the mean-field part of the cluster potential
is

W ext(R) = Wmf(R) = V Coul
α−O(R) + VN−N

α−O (R). (16)

The local approximation W intr(R), Eq. (10), for the
intrinsic contribution to the effective c.m. potential is more
involved. It contains the binding energy of the cluster taking
into account the Pauli blocking of the surrounding matter.
The local density approximation neglects any gradient terms
so that homogeneous-matter results can be used.

The intrinsic wave Eq. (9) describes in the zero density
limit the formation of an α cluster with binding energy Bα =
28.3 MeV. In homogeneous matter, the binding energy is
reduced due to Pauli blocking. The shift of the binding energy
is determined by the baryon density nB = nn + n p and the
asymmetry δ = 2n p/nB −1. For the c.m. momentumP = 0,
the Pauli blocking term depends on the baryon density nB

[2,20] as

W Pauli(nB, δ) ≈ 4515.9 MeV fm3nB

−100935 MeV fm6n2
B(1 + δ2)

+1202538 MeV fm9n3
B(1 + 3δ2). (17)

This approximation formula applies to the density range
nB ≤ ncrit = 0.02917 fm−3. In particular, the bound state
is dissolved and merges with the continuum of the scattering
states at the critical density ncrit (introduced as Mott density).
A more detailed discussion of this ansatz for the Pauli block-
ing term will follow below, see Sect. 4. For the intrinsic wave
function of the quartet, we can assume an α-like Gaussian
function to describe the bound state. The width parameter of
the free α particle is only weakly changed when it approaches
the critical density, see Ref. [2].

Fig. 1 Effective potential WTF(R) for the center of mass motion of
the quartet on top of 16O. The Thomas-Fermi model has been used. The
formation of a pocket is shown

Below the critical density, nB ≤ ncrit , the intrinsic poten-
tial

W intr(R) = −Bα + W Pauli[nB(R)], nB ≤ ncrit (18)

results in a local density approximation. The intrinsic energy
of the quartet for densities above the critical density is a
minimum if all four nucleons are at the Fermi energy (ideal
Fermi gas), for symmetric matter and nB ≥ ncrit

W intr(R) = 4EF [nB(R)], (19)

with

EF (nB) = (h̄2/2m)(3π2nB/2)2/3. (20)

3.2 Thomas-Fermi rule and results for 20Ne in local density
approximation

The quartetting wave function approach for 20Ne in local
density approximation has been considered in Ref. [20]. We
are presenting some results for the effective potential W (R),
see Fig. 1. To this purpose, we use empirical data from the
nuclei involved.

The mean-field contribution W ext(R) (16) is given by the
double-folding Coulomb and N − N potentials. Empirical
values for the densities of the α particle (12) and the 16O core
nucleus (13) are known from scattering experiments, such as
the rms radii, so that the Coulomb interaction VCoul

α−O(R) (14)

as well as the nucleon-nucleon interaction VN−N
α−O (R) can be

calculated.
With respect to W intr(R), the local density approxima-

tion is also very simple: There are two regions separated by
the critical radius rcrit = 3.302 fm in which the density of
the 16O core nucleus (13) has the critical value nB(rcrit) =
ncrit = 0.02917 fm−3. We obtain −Bα +W Pauli[nB(rcrit)] =

123



Eur. Phys. J. A            (2024) 60:89 Page 5 of 16    89 

4EF [nB(rcrit)], and the bound state merges with the contin-
uum of scattering states.

For R > rcrit , the intrinsic part W intr(R) contains the
bound state energy −28.3 MeV of the free α particle, which
is shifted due to Pauli blocking. At rcrit the bound state merges
with the continuum, so that we have the condition (symmetric
matter)

W (rcrit) = W ext(rcrit) + 4EF (ncrit) = μ4, (21)

the intrinsic wave function changes from a bound state to
four uncorrelated quasiparticles on top of the Fermi sphere
(the states below the Fermi energy are already occupied).

For R < rcrit , the Fermi energy 4EF [n(R)] appears
in addition to the mean-field contribution W ext(R). In the
Thomas-Fermi model, for a given potential W ext(R) the
density is determined by the condition that W ext(R) +
4EF [nB(R)] remains a constant, here μ4. We find the effec-
tive potential WTF(R), which is continuous but has a kink at
rcrit . It is an advantage of the Thomas-Fermi model that the
condition WTF(R) = μ4 = const applies to the entire range
R < rcrit , independently of the shape of the mean-field poten-
tial W ext(R) and the corresponding density distribution. We
analyze this property in the following section.

While the Coulomb part of the external potential as well as
the intrinsic part of the effective potential WTF(R) are fixed,
the two parameters c, d in Eq. (15) for the N − N part of the
external potential can be adjusted such that measured data
are reproduced. In the case of heavy nuclei that are α emit-
ters, such as 212Po [2], two conditions can be formulated:
i) For α emitters, the normalized solution of the c.m. wave
equation (neglecting the decay) gives the energy eigenvalue
Eα = Etunnel. This eigenvalue should correspond to the mea-
sured energy after decay, which is given by the Q value.
ii) This value Etunnel should coincide with the value μ4. In
the context of the local density approach, this is the value
that the four nucleons must have in order to implement them
into the core nucleus. We denote this condition

Eα = μ4 (22)

as the Thomas-Fermi rule [20]. With both conditions, the
parameter c, d for the double folding N − N interaction
potential are found, and values for the preformation factor
and the half-life of the α decay were determined for heavy
nuclei, see Ref. [2–4], where further discussions were made.

In contrast to the α decay of 212Po where the Q value can
be used to estimate the chemical potential μ4 [2], the nucleus
20Ne is stable. However, we can use the additional bonding
in the transition from 16O (B16O = 127.619 MeV) to 20Ne
(B20Ne = 160.645 MeV) by adding the four nucleons. The
difference fixes the position of the in-core effective potential
μ4 = B16O − B20Ne = −33.025 MeV.

Another condition is that the solution of the Schrödinger
equation for the four-nucleon c.m. motion in the effective

Fig. 2 Wave function for the c.m. motion of the quartet. A prefactor
(4π)1/2R is introduced so that the integral over R of the squared quantity
is normalized to 1. The solution for the Thomas-Fermi model ψTF

c.m.(R)

(red, dashed) is compared with the non-interacting shell-model cal-
culation ψ2s4 (R) (blue). The shift of the maximum is caused by the
formation of a pocket, see Fig. 1. Dotted line: rcrit = 3.302 fm

potential W (R) gives the energy eigenvalue Eα,bound at this
value −33.025 MeV, so that the energy eigenvalue of the α-
like cluster coincides with the Fermi energy μ4 (the Thomas-
Fermi rule, see also the discussion in Ref. [3]). Both condi-
tions are used to fix the parameters c, d. The values

c = 4650 MeV fm and d = 1900 MeV fm (23)

have been found [20].
The resulting effective potential WTF(R) (18) for the cen-

ter of mass motion of the quartet is shown in Fig. 1. One can
see the formation of a pocket near the surface caused by the
formation of an α-like cluster. The sharp kink at the critical
radius rcrit = 3.302 fm is a consequence of the local approx-
imation for the Pauli blocking term. A smooth behavior is
expected if the finite extension of the α-like cluster is taken
into account so that the kink generated by the local density
approximation is smeared out.

The wave function for the quartet center-of-mass motion
ψTF

c.m.(R) is found as a solution of the Schrödinger equation,
mass 4m, with the potential WTF(R). The energy eigenvalue
is −33.025 MeV. A graph of (4π)1/2R ψTF

c.m.(R) is shown in
Fig. 2. As a result, in Ref. [20] the rms point radius 2.864 fm
for 20Ne was calculated which is in good agreement with the
experimental rms point radius of 2.87 fm. The normalization
is 4π

∫ ∞
0 R2ψ2

c.m.(R)dR = 1. Integrating from 0 to rcrit =
3.302 fm, the part of the quartet where the internal structure is
the product of free states, comes out at 0.3612. The remaining
part where the internal structure is given by an α-like bound
state is 0.6388.

A further discussion of optical model description and
double-folding potential is given in Appendix A. Note that
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Fig. 3 Normalized wave function ψ2s(r) for the Woods-Saxon poten-
tial (24). For comparison, the harmonic oscillator wave function
ψHO

2s (r), Eq. (25), is also given, where the potential parameter aHO

is chosen so that ψ2s(0) coincides. The scaling function fscal(r) gives
a complete coincidence of both wave functions

the standard approaches of optical model potentials have a
diverging repulsive potential below rcrit .

3.3 Discussion of the Thomas-Fermi rule Eα = μ4

The condition Eα = μ4 (22) is a consequence of the Thomas-
Fermi model, which applies to infinite matter: an additional
nucleon with given spin and isospin can be introduced at the
corresponding chemical potential μσ,τ . At zero temperature,
this coincides with the corresponding Fermi energy (plus
the potential energy). For finite system such as nuclei, the
energy levels of the single-nucleon states are discrete. If we
add a nucleon to the core nucleus in which all the single-
nucleon states below a certain energy are occupied, the next
free single-nucleon state that is free has a distance to the
chemical potential. This means, under these considerations,
the quartet cannot be introduced at μ4 but at a higher value
Eα > μ4 which is now a new parameter. This aspect has been
worked out already in [4]. We do the same here for 20Ne.

We need an alternative condition to determine the param-
eters c, d avoiding the Thomas-Fermi rule (22). For com-
parison, in the case of 212Po the values c = 11032.08, d =
3415.56 (MeV fm) are found when the Thomas-Fermi rule
is avoided, see Tab. I of Ref. [3]. Our results (23) using
the Thomas-Fermi rule are very different when compared
to these values for 212Po. Let’s discuss what would follow
if the potential parameters c, d were closer to the values for
212Po. The α decay energy Qα was introduced as the dif-
ference between the binding energy of the mother nucleus
(212Po) and the binding energies of the daughter nuclei
(208Pb and α). Similarly, we have −4.7298 MeV, so that
the energy eigenvalue of the Schrödingier equation comes
out as E0

α − Qα = (−28.296 − 4.7298) MeV=−33.025
MeV. As a second condition, we use the results for 212Po.
If d = 3415.56 MeV fm remains the same for 20Ne, the
energy eigenvalue −33.025 MeV of the Schrödingier equa-
tion is reproduced with c = 10623 MeV fm. This results in
the value μ4 = −32.388 MeV and Pα = 0.72 follow. If we
take c = 11032 MeV fm from Po, we get d = 3513.46 MeV
fm as well as μ4 = −32.12 MeV and Pα = 0.74.

We reproduce a large preformation factor Pα in both
cases. In contrast to the Thomas-Fermi model, the condition
Eα = μ4 is not valid. The value of μ4 is not below Eα as
expected from the shell model consideration, but Eα < μ4.
This means that it is energetically more favorable for the
nucleus to form correlated quartets instead of remaining in
uncorrelated single-nucleon (shell model) states. This can be
seen from the THSR calculations, in which the core nucleus
16O also shows α-like correlations, see Sect. 5.1 and there
Fig. 8.

4 Shell model calculations

4.1 Comparison with the harmonic oscillator model

The local density approximation (Thomas-Fermi model) is
not able to describe the nuclear structure of the core nucleus.
In particular, the Thomas-Fermi rule must be replaced by a
more microscopic approach, see [2–4]. However, the behav-
ior of the effective c.m. potential which remains almost con-
stant within the core nucleus, is also interesting in the case
that shell model states are used. A first attempt was made in
Ref. [20] with harmonic oscillator states. The results of the
simple Thomas-Fermi model, in particular the approximate
constancy of the c.m. quartetting potential in the core nucleus
and the Thomas-Fermi rule, can be verified. However, the
harmonic oscillator potential is not realistic for nuclei, espe-
cially near the surface of the core nucleus where α-like quar-
tets are formed. We present here calculations with more real-
istic potentials (units MeV, fm), see also [25]. The intrinsic
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nucleon-nucleon interaction W intr(R), which is suppressed
due to Pauli blocking, is not considered in this Sect. 4.1.

A more systematic way to find a suitable simple basis of
single-particle states is to use the Woods-Saxon potential [26]
for Z = N , see Ref. [22],

VWS(r) = V0(1 + 3κ/A)

1 + exp[(r − R0A1/3)/a] (24)

with V0 = −52.06 MeV, κ = 0.639, R0 = 1.26 fm,
a = 0.662 fm. The normalized solution ψ2s(r) for the 2s
state is shown in Fig. 3, eigenvalue E2s = −9.162 MeV. For
comparison, the harmonic oscillator wave function

ψHO
2s (r) = −

(
aHO

π

)3/4

e−aHOr2/2
(
aHOr2 − 3

2

)(
2

3

)1/2

,

(25)

is also shown, where the parameter aHO = 0.31047 fm is
chosen so that the values coincide at r = 0. A scaling of
the r -axis is considered to make both coincide, ψHO

2 s (r ′) =
ψ2 s(r)/(1+0.0024719 r). (The amplitude correction is nec-
essary to reproduce the correct value of the minimum). This
defines the relationship r ′ = fscal(r) shown in Fig. 3.

Neglecting any intrinsic interaction, the 2s wave functions
can be used to construct the quartet wave function

Φ2s4 (R,S, s, s′) = ψ2s(rn,↑) ψ2s(rn,↓) ψ2s(rp,↑) ψ2s(rp,↓).

(26)

The wave function for the c.m. motion follows as (Jacobi-
Moshinsky coordinates R,S, s, s′ [20])

ψ2s4(R) =
[∫

d3Sd3sd3s′|Φ2s4(R,S, s, s′)|2
]1/2

. (27)

The evaluation of the 9-fold integral in (27) is very time-
consuming. An approximation can be given comparing with
the solution for the harmonic oscillator [20]

�
cm,HO
2s4 (a, R) = |ψHO

2s4 (R)|2 =
( a

π

)3/2
e−4aR2

× 1

10616832
(24695649 + 14905152 aR2 + 354818304 a2R4

−876834816 a3R6 + 1503289344 a4R8 − 1261699072 a5R10

+613416960 a6R12 − 150994944 a7R14 + 16777216 a8R16).

(28)

The parameter a′′ = 0.287038 fm can be chosen to repro-
duce the value at R = 0 (three-fold integral). The scaling
R′′ = fscal(R) + 0.174 (eR/2.924 − 1) fulfills normalization
and improves the asymptotic behavior for large R, so that
�cm

2 s4(R) ≈ �
cm,HO
2 s4 (a′′, R′′). A plot of (4πR2)1/2ψ2s4(R) is

shown in Fig. 2. The normalization
∫ ∞

0 4πR2ψ2
2s4(R)dR =

1 holds.

Fig. 4 The c.m. potential W2s4 (R), Eq. (29), compared with the
Woods-Saxon potential of the quartet

We reconstruct the effective potential from the wave func-
tion ψ2s4(R) = (�cm

2s4(R))1/2 [20]. If we restrict us to s states

(l = 0) and introduce u2s4(R) = (4π)1/2Rψ2s4(R), we have

W2s4(R) − E2s4 = h̄2

8m

1

u2s4(R)

d2

dR2 u2s4(R). (29)

The result is shown in Fig. 4.
We conclude from this: The effective c.m. potential W (R)

remains almost constant within the core as expected from
the Thomas-Fermi model. The value E2s4 = −36.65 MeV
is near to the estimate μ4 = −33 MeV from the Thomas-
Fermi rule. It is slightly increasing near the surface, possibly
because the quartet is not localized at a point, but smeared
out, so that it “feels” the weakening of the potential near
the surface. Another reason could be the gradient terms in
Eq. (8), which are neglected here. A similar behavior was
also observed for the harmonic oscillator potential in [20].
In contrast to the harmonic oscillator, where the effective
potential increases with R, the behavior near the surface is
now more realistic. The weakening of the Thomas-Fermi rule
has been shown in Refs. [2–4,20].

4.2 Intrinsic interaction and Pauli blocking

We have introduced an effective c.m. potential W (R), which
describes the influence of the environment (here the core
nucleus) on the c.m. motion of the quartet in mean-field
approximation. Specifically, we have simulated a quartet of
4 uncorrelated nucleons in 2s states moving under the influ-
ence of the core nucleus 16O. The corresponding potential
W2s4(R) shows approximately the constancy of the chemi-
cal potential required within the Thomas-Fermi model.

To describe the formation of an α-like cluster, we need to
consider the interaction within the quartet. To estimate the
intrinsic interaction of the quartet, we add for R > rcrit the
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energy shift W intr(R), Eq. (18), which describes the forma-
tion of the cluster and the dissolution due to Pauli blocking,
see Fig. 5. The Coulomb potential is added, and the free effec-
tive potential of the shell model W2s4(R) is used instead of
W ext. A harmonic oscillator base was essentially used here
[22]. We denote this approximation for the potential for the
c.m. motion as Wappr(R).

Obviously, this c.m. potential Wappr(R) is only a rough
approximation. In particular, the sharp peak due to the sud-
den switching off of the intrinsic interaction at rcrit = 3.302
fm does not seem realistic. A similar peak at rcrit was also
obtained for the heavy isotopes [3,4], but it was less pro-
nounced than for the light isotope 20Ne.

The behavior for large R is correctly reproduced, the
asymptote limR→∞ W (R) = −28.3 MeV is the binding
energy of the α particle, and the Coulomb repulsion is well
represented. The attractive N − N interaction is also visible,
as in other approaches using an optical potential, see App.
A. As the density of the core increases, the binding energy
of the α cluster is weakened due to Pauli blocking, and a
pocket is formed. The behavior for small R ≤ 2 fm is also
well reproduced. The fluctuations around the Thomas-Fermi
value are due to the shell structure.

An improvement of the effective quartet potential is partic-
ularly necessary in the vicinity of the critical density. Instead
of a sharp switchover, in which all correlations above the crit-
ical density are omitted, these decrease continuously. Quartet
correlations are also present for R ≤ rcrit . They can provide a
contribution as resonances in the continuum, which decreases
steadily with increasing density. Furthermore, Pauli-blocking
is calculated for uncorrelated nucleons in the environment,
which is expressed in the use of the Fermi function. Correla-
tions in the surrounding matter would also reduce the Pauli
blocking. Taking into account the c.m. movement of the α-
cluster, the Pauli blocking is also reduced.

Furthermore, we are dealing with an inhomogeneous sys-
tem, so that gradient terms can become important. As an
extended system, the α-like cluster is determined not only
by the properties of the surrounding matter at the position of
the center of mass, but by the properties within the extension
of the cluster. Finally, the Pauli principle is a non-local effect,
which is treated as local only after some approximations. We
have collected several arguments which show that the effect
of Pauli blocking should be treated as a continuous function
of density. This can help to reduce the peak at the critical
radius.

4.3 Shell-model calculations

First results to use shell-model calculations for 20Ne to per-
form calculations within the QWFA have been presented in

Fig. 5 Quartet c.m. potentials W (R). The Thomas-Fermi approxima-
tionWTF(R) is compared with the calculationWappr(R) using harmonic
oscillator shell model states. Note the peak at rcrit = 3.302 fm

Refs. [6,7]. We use the widely-used Woods-Saxon potential

VWS (r) = V0

1 + exp( r−R0
a )

, (30)

together with the spin-orbit coupling interaction

Vso (r) = 1

2μ2r

(
∂

∂r

λV0

1 + exp( r−Rso
aso

)

)
l · s (31)

to determine the shell model wave functions of quartet nucle-
ons in 20Ne. The strength of the Woods-Saxon potential is
parameterized as

V0 = −46

[
1 ± 0.97

(
N − Z

A

)]
(32)

(“+” for protons and “−” for neutrons). The parameter R0 is
1.43 A1/3 fm for both protons and neutrons while the param-
eter Rso is 1.37 A1/3 fm. The diffusivity parameter a and aso

are chosen to be the same value 0.7 fm. μ is the reduced mass
of the α-core system and the normalization factor of the ls
coupling strength λ is 37.5 for neutrons and 31 for protons,
respectively. The Coulomb potential we adopt is

VC (r) = (Z − 1)e2(3R2
Coul − r2)/2R3

Coul, r ≤ RCoul,

= (Z − 1)e2/r, r > RCoul. (33)

with the radius RCoul = 1.25 A1/3 fm. The effective c.m.
potential constructed from the shell model quartet state for
20Ne is shown in Fig. 6.

A general discussion of the Pauli blocking term is neces-
sary to avoid the peak in Figs. 5 and 6. Various approxima-
tions were made when calculating the effective potential. We
mention the neglect of the gradient terms and the non-local
property of the potential W (R,R′), Eq. (10), in particular
due to the Pauli blocking term. We emphasize that Eq. (17)
was derived for α-particles in an uncorrelated medium. At
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Fig. 6 Quartet c.m. potential W (R) for 20Ne using shell model states

zero temperature, the medium can be strongly correlated and
form α matter. A correlated medium was considered in Ref.
[27], and the merging with the continuum was observed at a
slightly higher critical density. If we use this calculation to
construct the Pauli blocking shift, this could possibly lead to
a smoother transition and reduce the peak.

For 20Ne, the probability to find the α-particle in the local-
ized shell model states can be defined as

Fα =
∫

dR 4πR2ρc.m.
quartet(R)

∣∣∣
〈
ϕintr

α |ϕintr
quartet

〉
(R)

∣∣∣2
, (34)

where
〈
ϕintr

α |ϕintr
quartet

〉
(R) is the overlap between the intrinsic

wave functions of a quartet ϕintr
quartet and a free α-particle as a

function of c.m. variable R. The density at the c.m. positionR
is ρc.m.

quartet(R) =| Ψ c.m.
quartet(R) |2. As expected, the probability

Fα = 2.004 × 10−3 is quite small for 20Ne as the wave
function of the quartet is approximated by a product of shell
model states. However, the probability Fα is significantly
enhanced for the α + doubly magic core system 20Ne as
compared to those of their neighboring isotopes We show in
Fig. 7 the overlap between the wave functions of the quartet
and the α-particle as a function of c.m. coordinate R for 20Ne.
It is clearly demonstrated that there exists a peak in the region
beyond the critical radius (i.e. the surface region of the core).
Inside the core, the probability to find the α-like state is quite
low for 20Ne.

5 Comparison with the THSR model and other
approaches

5.1 Calculations for 20Ne

The THSR ansatz adeptly describes the low-density
regime of α matter as well as the shell model states, particu-
larly when the c.m. wave function coincides with the intrinsic
wave function. Notably, when four α clusters merge into a

Fig. 7 The overlap between the intrinsic wave functions of the quartet
and the α-particle as a function of c.o.m. coordinate R for the α+doubly
magic core system 20Ne

Fig. 8 Variational calculations for the energy of 16O with respect to
the harmonical osciallator parameter b and size parameter β0 using the
THSR wave function [12]

16O-like configuration, the antisymmetrization process gives
rise to nucleonic s and p orbitals, especially as the inter-
cluster distance approaches zero. Deviations in the Gaussian
width parameters signal the presence of correlations. The Nα

THSR wave function [12] can be written as,

ΦTHSR
nα ∝ A

{
n∏

i=1

exp
[

− 2(Xi − XG)2

b2 + 2β2
0

]
φ(αi )

}
, (35)

where Xi and XG are the c.m. coordinate of the α cluster and
the total c.m. coordinate of Nα cluster, respectively. Figure 8
presents a THSR calculation for 16O, where the parameter β0

reflects deviations from shell model behavior. The observed
energy minimum at a finite β0 (size parameter of the THSR
wave function) signifies the existence of α-like correlations
even in the ground state.

The uncorrelated mean-field approximation, often invoked
to compute Pauli blocking effects, may not be universally
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Fig. 9 Energy curve of 20Ne with the increase of the size parameter β

using the intrinsic THSR wave function. The asymptotic −154.16 MeV
for the binding energy of separated 16O and α clusters is also shown

valid. In particular, α matter exemplifies a scenario where
the medium undergoes a transformation into a correlated
state. Analogous reconfigurations are evident in pairing
phenomena at temperatures descending below the critical
value. The Tohsaki-Horiuchi-Schuck-Röpke (THSR) for-
malism was conceived to elucidate α clustering within such
tenuous nuclear environments, exemplified by the Hoyle state
of 12C. Here, the environment of an α cluster is composed of
other α clusters, leading to a pronouncedly clustered struc-
ture. This method has been successfully employed to inves-
tigate various 4n nuclei, including 20Ne.

The microscopic THSR wave function for the nucleus
20Ne can be written as

Φ̂THSR(β) = A
[

exp(− 8r2

5(b2 + 2β2)
φ(α)φ(16O)

]
, (36)

where r = X1 −X2. X1 and X2 represent the center-of-mass
coordinates of the α cluster and the 16O cluster, respectively.
It should noted that the 16O cluster is described as the shell
model wave function.

Figure 9 shows the energy curve with the increase of the
size parameter β. This can be transformed to the energy curve
as a function of the inter-cluster distance. The extracted effec-
tive α-O potential would be of interest. It should be noted,
however, that the inter-cluster distance between clusters can-
not be precisely defined, especially when clusters are in close
proximity, owing to the effects of antisymmetrization.

It is not directly possible to define the inter-cluster distance
D in THSR approach. According to Matsuse [28] one can
introduce the distance D according the relation for the rms
radii

20〈r2〉Ne = 16〈r2〉O + 4〈r2〉α + 16

5
〈D2〉 (37)

Fig. 10 Contour plot for the ground state of 20Ne in the spherical β1
and β2 parameter space

so that

〈D2〉 = 25

4
〈r2〉Ne − 195

16
b2 (38)

follows. We used this quantity D for the distance R in Fig. 11.
Very recently, the 5α clustering structure of 20Ne was scru-

tinized by Bo et al. [18] utilizing the THSR framework, which
adopts the container model. In this model, the intrinsic α clus-
ter width parameter b is complemented by two additional
parameters: β1 (denoting the width of the 16O core nucleus)
and β2 (representing the center-of-mass motion of the resid-
ual α cluster). The value b = 1.44 fm was taken for the α

cluster width parameter. As illustrated in Fig. 10, the energy
minimum is observed at β1 = 1.5 fm and β2 = 3.0 fm,
corresponding to an energy of approximately −155.3 MeV.
The generator coordinate method (GCM) calculations yield
an energy of −156.4 MeV. Additionally, the calculated rms
radius is 2.96 fm. A notable aspect of the THSR wave func-
tion is its inclusion of the shell model limit, thereby ensuring
an accurate representation of the ground state of the 16O core
nucleus. The orthogonality between the additional fifth α par-
ticle and the core states is rigorously preserved. Theoretical
calculations yield favorable comparisons with empirical data
for both the binding energy and the root-mean-square (rms)
radius of the ground state. The disparity between the val-
ues of β1 and β2 suggests the presence of an α particle atop
the doubly-magic 16O core. These results from the 5α cal-
culations set the stage for future studies to develop a more
realistic 16O-α effective interaction.
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Fig. 11 16O - α effective interaction potential as function of the center-
of-mass distance R. The THSR calculations (blue full line) are com-
pared with the Thomas-Fermi approximation of the quartetting wave
function (red full line). The total potential (TF, THSR) is shown as well
as the Coulomb contribution (dashed lines). In addition, the Coulomb
interaction for the harmonic oscillator density of the O-core is also
shown

5.2 α matter

The equilibrium composition of homogeneous nuclear matter
at low densities and temperatures is a complex problem, since
below the saturation density of symmetric matter ρsat = 0.15
fm−3 a thermodynamic instability occurs and clusters are
formed. The highest binding energy per nucleon is found for
the nucleus 56Fe. Here we only consider the formation of
α-clusters from the nucleons.

At a fixed baryon density, the mass fraction of the α clus-
ters increases with decreasing temperature. At a critical tem-
perature, a quantum condensate can be formed. In analogy to
pairing, the α-like quartets are the bosonic components of the
condensate. However, they are modified by the medium [29].
As known from pairing, where the Bogoliubov transforma-
tion allows to describe the nuclear matter below the critical
temperature, below the critical temperature for quartetting
we have to consider a correlated medium, the so-called α

matter.
In analogy to the THSR approach for low-density nuclei

such as 8Be or the Hoyle state of 12C, calculations for peri-
odic α-like structures were performed in [27]. Orthonormal
Bloch states were introduced so that Pauli blocking by nucle-
ons bound in α-clusters is strictly realized. One problem is
the separation of the c.m. contribution to the kinetic energy,
which is solved by a simple ansatz based on the energy gap
at zero momentum. As a result, in Ref. [27] it was shown that
the bound state merges with the continuum at about 0.2ρsat.

We have also performed exploratory calculations with a
separable potential adapted to reproduce the free-α proper-
ties mass and rms radius, see Appendix B. The difference

Fig. 12 Shift of the binding energy per nucleon for an α-cluster as
function of the nucleon density nB . The difference of the energy per
nucleon in α-matter and in momentum eigenstates (red) is compared
with the shift (blue) in uncorrelated matter, Eq. (39)

between the energy per nucleon in the uncorrelated free-
nucleon state and the α-matter state is shown in Fig. 12. A
value ρMott = 0.04 fm−3 was found for the dissolution of
the bound state.

For comparison, in Fig. 12 also shown is the shift of the
binding energy for uncorrelated matter where the surround-
ing nuleons occupy free single-particle states,

Euncorr
bound (nB) = −7.07 MeV + W Pauli(nB) − EF (nB). (39)

Compared to the Pauli blocking by free nucleons considered
in Eq. (17), the blocking in α-matter is smaller because the
distribution in momentum space is spread out, and the block-
ing is less efficient. As a result, the critical density where
bound states are dissolved, comes out to be larger if clus-
ter formation in the surrounding is taken into account. We
expect that this modification makes the peak in the Figs. 5
and 6 smoother. Further investigations are necessary to find
a better treatment of the dissolution of clusters due to Pauli
blocking.

Another approach to show that nuclear matter dissolves
into clusters at low density was presented in Ref. [30].
Restricted Hartree-Fock calculations were performed that
allow the formation of separate cluster structures. Even with
this approach, the strict separation of the kinetic energy of
the c.m. motion remains open. An unresolved question is
whether the disappearance of the cluster structures and the
appearance of a homogeneous phase is a first-order transi-
tion.

5.3 Other approaches to α-clustering in nuclei

Based on a local density approach with composition and
energy shifts derived from [31,32], Typel [33] has consid-
ered the formation of α-particle correlations at the surface
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of heavy nuclei to study the neutron skin thickness of heavy
nuclei and the slope of the nuclear symmetry energy. The α

particle density was considered as a function of radius for
the tin isotopes 108Sn to 132Sn, and it was shown that as
the neutron density at the skin increases, the abundance of
α-particles is suppressed as a result of Pauli blocking. The
experimental evidence for the α cluster formation in the sur-
face of neutron-rich tin isotopes was given using quasi-free
α cluster-knockout reactions [34,35]. Note that the occur-
rence of α-cluster at the surface of 48Ca and 208Pb and and
its impact on the extraction of symmetry energy from skin
thickness is also investigated by using QWFA [11]. Strong
closed shell structure effects and complex derivative terms of
the intrinsic wave function are properly taken into account
in QWFA [11].

The question of α formation in the ground state of heavy
nuclei has been investigated using the AMD approach [36,
37] in several recent publications. The AMD approach also
describes the suppression of clusters using the Pauli blocking
effect. The manifestation of clustering at the surface region
where the density is low has induced many investigations
on α-break-up reactions. We do not give a comprehensive
account of various investigations of specific isotopes [19,
38–45] in this paper. We would like to emphasize that the
approach of the quartet wave function presented here is also
of interest for these examples.

6 Conclusions

We investigated the c.m. motion of an α-like quartet, which
moves under the influence of a core nucleus, here the 16O
nucleus. In local density approximation, an effective poten-
tial W (R) for the quartet c.m. motion is obtained, which
shows a pocket structure near the surface of the nucleus.
This is important for the preformation of α particles near
the surface. A new aspect is the behavior of W (R) inside
the core nucleus, i.e. for R ≤ rcrit, where the quartet bound
state is dissolved due to Pauli blocking. In contrast to earlier
studies, which assume an increase in the effective α−16O-
potential with decreasing R, in a Thomas-Fermi approach
WTF(R) = μ4 remains constant in this range R ≤ rcrit

[2–4,20]. In the present work, we also show for the shell
model approach that the effective potential W (R) remains
almost constant in the core nucleus. The reason for this is the
exchange interaction or Pauli blocking between the quartet
nucleons and the core nucleus.

For large distances, the empirically determined M3Y
potential used for W (R) agrees with the optical potentials
derived from scattering experiments. Near the surface of the
nucleus the Pauli blocking becomes relevant. A pocket that
is formed for the effective potential WTF(R) is also retained
after the introduction of single-particle shell model states for

the core nucleus. However, the local density approximation
for the Pauli blocking should be improved, and it is expected
that sharp peak structures observed for W (R) in shell model
calculations will be smeared out.

Of interest is the comparison with the THSR approach
[12,46], which treats the quartets self-consistently. If a mean-
field description for the surrounding medium based on uncor-
related single-particle states is no longer possible, correla-
tions in the medium, especially quartetting, should be taken
into account. The full antisymmetrization of the many-body
wave function is a great challenge. The THSR approach
offers us such a self-consistent, antisymmetrized treatment
of quartetting of all nucleons. A variational principle with
Gaussian wave functions was used, and nuclei with A ≤ 20
were treated in this way. Interesting results were obtained for
20Ne [47–49] considering the full antisymmetrization of the
α- and 16O-wave functions. We have tried to find appropri-
ate observables in the THSR approach to derive an effective
potentialW (R) and a wave function ψ(R) for the quartet c.m.
motion, to compare them with the quartetting wave function
approach.

Our general vision is to treat quartetting in the nuclear mat-
ter self-consistently, as is the case for pairing. The approaches
described in this paper provide only partial answers to this
project. The THSR approach comes closest to this goal, but it
contains some restrictions, so that it is not generally applica-
ble. Although the quartet wave function approach is generally
applicable, it contains several approximations that still need
to be improved. One main problem is the treatment of Pauli
blocking. The local approximation with a cut-off of α-like
clusters at the critical density needs to be improved in future
work.

Acknowledgements We would like to dedicate this work to the mem-
ory of our esteemed colleague and friend, Peter Schuck, with whom we
have had the privilege of collaborating for many years. Peter’s broad
interests and profound insights in nuclear physics have been an inspi-
ration to us all. We are deeply grateful for his companionship and con-
tributions throughout the years. He will be dearly missed. His spirit
and dedication to the pursuit of knowledge continue to guide us, and
in his memory, we commit to advancing the work he so passionately
embraced. C. Xu is supported by the National Natural Science Foun-
dation of China (Grant No. 12275129). This work was supported in
part by the National Natural Science Foundation of China under con-
tract Nos. 12175042, 12147101. Zhongzhou REN thanks the support
of National Natural Science Foundation of China with grant number
12035011. The work of G.R. received support via a joint stipend from
the Alexander von Humboldt Foundation and the Foundation for Polish
Science. G.R. acknowledges support by the German Research Founda-
tion (DFG), Grant # RO905/38-1

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data are available
on request from the authors.]

123



Eur. Phys. J. A            (2024) 60:89 Page 13 of 16    89 

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Optical model description and double-folding
potential

We discuss the effective c.m. potential WTF(R) and com-
pare with other approaches, see also [20]. In particular, we
check whether the choice (23) for the double-folding poten-
tial parameters c, d are realistic. Several approaches to the
optical potential are shown in Fig. 13.

The elastic scattering of α particles on the 16O nucleus was
investigated, and the corresponding optical potentials were
inferred. There is a large uncertainty for small values of R.
A first expression for the real part of the optical potential is
[50]

− V0

1 + e(r−r0A1/3)/a
(40)

with V0 = 43.9 MeV, r0 = 1.912 fm and a = 0.451 fm.
Improvements were madein Ref. [55] considering the 16O
(6Li,d) 20Ne transfer reaction, where the model potential (40)
with r0 = 1.25 fm and a = 0.76 fm was used, V0 was
adjusted to reproduce the value 4.73 MeV of the binding
energy. Kumar and Kailas [56] give the parameter values
V0 = 142.5 MeV, r0 = 1.18 fm and a0 = 0.76 fm.

Another approach [51] was compared with experiments
[52,53]. They used the expression

− V0
1 + αe−(r/ρ)2

[1 + e(r−RR)/(2aR)]2
(41)

with V0 = 38 MeV, ρ = 4.5 fm, RR = 4.3 fm, aR = 0.6
fm, and the energy-dependent α = 3.625. More recently,
in Ref. [54] a density dependent effective M3Y interaction
(DDM3Y) was used, and a double-folding potential was
derived (Fig. 3 in [54]) which ranges at R = 0 to -110 MeV.

Note that Veff(R) = W (R)+Bα ≈ V Coul
α−O(R)+VN−N

α−O (R)

is the mean field relative to the free α particle. Below R = 5
fm, Pauli blocking terms occur, see Eq. (18). The agreement
with Michel et al. [51] is quite good. We conclude that the
choice (23) is reasonable. The standard approaches of the
optical model potentials have a diverging repulsive potential
below rcrit.

B α-shifts

In order to obtain a simple model to reproduce the essential
properties of the α-particle, we consider a microscopic model
to describe correlations. With the separable interaction [31]

V (p1, p2; p′
1, p

′
2)

= − λ

Ω
e

(p2−p1)2

4γ 2 e
(p′2−p′1)2

4γ 2 δp1+p2,p′
1+p′

2
δστ,σ ′τ ′ (42)

with Ω the normalization volume, λ = 1449.6 MeV fm3,
γ = 1.152 fm−1, we solve the α cluster within a variational
ansatz

ΦGauss
α (p1, p2, p3, p4) = 1

norm2 e
−(p2

1+p2
2+p2

3+p2
4)b2/4 (43)

with the c.m. momentum P = p1 + p2 + p3 + p4. The norm
follows from

norm =
∑
p

e−b2 p2/2

=
∫

d3 pΩ

(2π)3 e
−b2 p2/2 = Ω

(2πb2)3/2 . (44)

We calculate the kinetic energy

T = h̄2

2m

1

norm4∑
p

e−(p2
1+p2

2+p2
3+p2

4)b2/2(p2
1 + p2

2 + p2
3 + p2

4)

= 4
h̄2

2m

1

norm

∫
d3 pΩ

(2π)3 e
−b2 p2/2 p2 = 12

h̄2

2mb2 . (45)

Fig. 13 Optical model potentials from α - 16O scattering: The double-
folding Coulomb plus nucleon-nucleon interaction and the Thomas-
Fermi approach WTF plus the medium-dependent α-binding energy in
comparison with empirical expressions by Michel [51], McFadden [50],
and Kumar [56]
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From this, 1/4 is connected with the c.m. motion (introducing
Jacobian coordinates, p2

1 + p2
2 + p2

3 + p2
4 = 2q2

1 + 3
2q

2
2 +

4
3q

2
3 + 1

4 P
2). The intrinsic kinetic energy is 9h̄2/(2mb2).

The potential energy results as

42 3

4

1

2

∑
12,1′2′

φ(p1)φ(p2)V (12, 1′2′)φ(p′
1)φ(p′

2)

= −6λ
γ 6b3

π3/2(γ 2b2 + 2)3 . (46)

For the total energy the minimum −28.3087 MeV at b =
1.93354 occurs. The energy per nucleon is −7.04 MeV. The
empirical rms point radius is reproduced.

In a next step, we calculate the energy per nucleon
E free(nB) of the symmetric matter, baryon density nB , in
a cubic box of length La with periodic boundary conditions.
The volume is Ω = (La)3. We have in the average one
nucleon with given spin and isospin in the elementary box
a3, so that nB = 4/a3. The total number of α-particles is
Nα = L3, the total number of nucleons is 4Nα .

Free nucleon states with k = 2π/(La){nx , ny, nz} are
introduced, which are occupied within the Fermi cube with
kF = π/a in all three directions x, y, z. The kinetic energy
results as

Tcub = 4 × 3
h̄2

2m

∫ π/a

−π/a

dkx La

2π
k2
x

∫ π/a

−π/a

dky La

2π

×
∫ π/a

−π/a

dkz La

2π
= h̄2

m
2Nα

π2

a2 . (47)

The kinetic energy per nucleon is h̄2

m
π2

2×42/3 n
2/3
B . This value

π2

2×42/3 = 1.958 is a little bit larger than 3/10(3π2/2)2/3 =
1.808 for the Fermi sphere instead of the Fermi cube.

The potential energy is

Vcub = 4 × 3/2
∑

12,1′2′
V (12, 1′2′) = −6

λ

Ω

∫ π/a

−π/a

dkx1 La

2π

. . .

∫ π/a

−π/a

dkz2La

2π
e−(kx2 −kx1 )2/2γ 2

. . . e−(kz2−kz1)2/2γ 2
. (48)

With

I =
∫ π/a

−π/a
dkx1

∫ π/a

−π/a
dkx2 e

−(kx2 −kx1 )2/2γ 2

= 2γ

[(
e−2π2/a2γ 2 − 1

)
γ + 1

a
21/2π3/2erf(21/2π/aγ )

]

(49)

so that

Vcub = −6
λΩ

(2π)6 I
3, a = (4/nB)1/3, (50)

Fig. 14 Energy per nucleon as function of the nucleon density nB .
Results for the separable potential (51) are compared with RMF-DD2
and Skyrme calculations. The energy per nucleon for α-matter (magenta
full line) takes at zero density the value −28.3/4 MeV

and the potential energy per nucleon is −6 λ
(2π)6nB

I 3. The
energy per nucleon comes out as

Ecub(nB) = h̄2

m

π2

2 × 42/3 n
2/3
B − 6

λ

(2π)6nB
I 3. (51)

We compare this result with standard expressions. The
chemical potential contains the kinetic energy (degeneracy
4, Fermi wave number kF = (3π2n/2)1/3)

Ekin,Fermi(n) = h̄2

2m
k2
F = h̄2

2m

(
3π2

2

)2/3

n2/3 (52)

so that μ(n) = Ekin,Fermi(n) + ΔESE(n). The self-energy
shift of the single-nucleon states can be estimated by the
Skyrme model,

ΔESE(n) = −3

4
1057.3n + 3

16
14463.5n2. (53)

The energy per nucleon follows as

E/N = 1

n

∫ n

0
μ(n′)dn′

= 3h̄2

10m

(
3π2

2

)2/3

n2/3 − 3

8
1057.3n + 1

16
14463.5n2.

(54)

A better parametrization is given by the RMF approach, the
DD2 version [57] gives

μ(n) = ((mc2 − s(n))2 + (h̄ckF )2)1/2 − mc2 + v(n) (55)

(for a parametrization of s and v see [58]). The minimum
occurs at E(0.1483fm−3) = −16.278 MeV. In the subsatu-
rated range of density, the three approaches are in reasonable
agreement, see Fig. 14.
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Between both limits, the free α-cluster gas at low densities
and the free-nucleon quasiparticle gas at high densities, we
consider a Bloch ansatz [27]

φk(p) = 1

N 1/2
k N 1/2

α

(2πb2)1/4
Nα/2∑

m=−Nα/2

eimka+impa−b2 p2/4.

(56)

The kinetic energy follows as (4 for spin/isospin, 3 for the
components x, y, z)

TBloch = 4 × 3
h̄2

2m

∑
k

×
∑

m1m2

∑
p e

i(m1−m2)(kx+p)a−b2 p2/2 p2

∑
m1m2

∑
p′ ei(m1−m2)(k+p′)a−b2 p′2/2

. (57)

After performing the p, p′ integrals we have

TBloch/NB = 3
h̄2

2mb2

∫ π/a

−π/a

dkxa

2π

×
∑L/2

m=−L/2 e
imkxa−a2m2/(2b2)

(
1 − m2a2

b2

)
∑L/2

m′=−L/2 e
im′ka−a2m′2/(2b2)

. (58)

This expression contains the c.m. kinetic energy. To separate
the c.m. energy, it was proposes in [27] to consider the ratio
(x = a/b)

Nc(x) = 1 − 1

4

⎡
⎣1 −

∑L/2
m=−L/2 e

−x2m2/2(m2x2)∑L/2
m′=−L/2 e

−x2m′2/2

⎤
⎦ (59)

as a factor for the kinetic energy to exclude the c.m. kinetic
energy in the low-density region. The evaluation of the poten-
tial energy is somewhat lengthy so that we give only the final
result

VBloch = − 3

2π3/2

λb3

(b2 + 2/γ 2)3

(∫ π/a

−π/a

dk1a

2π

∫ π/a

−π/a

dk2a

2π

×Σe
1 [Σe

2Σe
3 + Σo

2 Σo
3 ] + Σo

1 [Σe
2Σo

3 + Σo
2 Σe

3 ]
Σ4(k1)Σ4(k2)

)3

(60)

where

Σe
1 =

∑
m

ei2m(k1+k2)a/2−m2x2

Σo
1 =

∑
m

ei(2m+1)(k1+k2)a/2−(2m+1)2x2/4

Σe
2 =

∑
m

ei2m(k2−k1)a/2−2m2a2/(b2+2/γ 2)

Σo
2 =

∑
m

ei(2m+1)(k2−k1)a/2−(2m+1)2a2/(2b2+4/γ 2)

Σe
3 =

∑
m

ei2m(k1−k2)a/2−2m2a2/(b2+2/γ 2)

Fig. 15 Energy per nucleon as function of the width parameter b at
different nucleon densitynB . The result (51) for the uncorrelated nuclear
matter is shown as dotted line

Σo
3 =

∑
m

ei(2m+1)(k1−k2)a/2−(2m+1)2a2/(2b2+4/γ 2)

Σ4(k) =
∑
m

eimka−m2a2/(2b2).

Within our approach one has to search for the minimum of
the energy as function of the width parameter b, see Fig. 15.
At low densities, the minimum occurs at b = 1.934 fm.
This value is slightly increasing with increasing density. At
the nucleon density nB = 0.0387 fm−3 it jumps to the free
nucleon value, see Fig. 15. This is a sharp transition. It is not
clear whether this phase transition is due to the approxima-
tions such as the separation of the c.m. kinetic energy or the
Gauss ansatz for the wave function, or is a real sharp quan-
tum phase transition to a correlated state. To understand the
dissolution of the bound state in the case of a sharp quan-
tum phase transition, we can use the equilibrium condition
of equal chemical potential μ in both phases. With the energy
per nucleon e(nB) = E/NB we have

μ(nB) = e(nB) + nB
∂e(nB)

∂nB
. (61)

The disappearance of the α-matter phase occurs if the chem-
ical potential coincides with that for the free momentum
quasiparticle phase.
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