Skip to main content
Log in

Molecular pentaquark states with open charm and bottom flavors

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the possibly-existing molecular pentaquark states with open charm and bottom flavors, i.e., the states with the quark contents \(c\bar{b}qqq\) and \(b\bar{c}qqq\) (\(q=u,d,s\)). We investigate the meson-baryon interactions through the coupled-channel unitary approach within the local hidden-gauge formalism, and extract the poles by solving the Bethe-Salpeter equation in coupled channels. These poles qualify as molecular pentaquark states, which are dynamically generated from the meson-baryon interactions through the exchange of vector mesons. Our results suggest the existence of the \(\varSigma _c^{(*)} B^{(*)}\) and \(\varSigma _b^{(*)} \bar{D}^{(*)}\) molecular states with isospin \(I=1/2\), the \(\varXi _c^{(\prime ,*)} B^{(*)}\) and \(\varXi _b^{(\prime ,*)} \bar{D}^{(*)}\) molecular states with isospin \(I=0\) and \(I=1\), as well as the \(\varOmega _c^{(*)} B^{(*)}\) and \(\varOmega _b^{(*)} \bar{D}^{(*)}\) molecular states with isospin \(I=1/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rept. 639, 1–121 (2016). https://doi.org/10.1016/j.physrep.2016.05.004. arXiv:1601.02092

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Pentaquark and Tetraquark States. Prog. Part. Nucl. Phys. 107, 237–320 (2019). https://doi.org/10.1016/j.ppnp.2019.04.003. arXiv:1903.11976

    Article  ADS  CAS  Google Scholar 

  3. H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, An updated review of the new hadron states. Rept. Prog. Phys. 86(2), 026201 (2023). https://doi.org/10.1088/1361-6633/aca3b6. arXiv:2204.02649

    Article  ADS  Google Scholar 

  4. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-quark QCD exotica. Prog. Part. Nucl. Phys. 93, 143–194 (2017). https://doi.org/10.1016/j.ppnp.2016.11.003. arXiv:1610.04528

    Article  ADS  CAS  Google Scholar 

  5. A. Esposito, A. Pilloni, A.D. Polosa, Multiquark resonances. Phys. Rept. 668, 1–97 (2017). https://doi.org/10.1016/j.physrep.2016.11.002. arXiv:1611.07920

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states. PTEP 2016(6), 062C01 (2016). https://doi.org/10.1093/ptep/ptw045arXiv:1603.09229

  7. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules. Rev. Mod. Phys. 90(1), 015004 (2018). https://doi.org/10.1103/RevModPhys.90.015004. arXiv:1705.00141,

    Article  ADS  CAS  Google Scholar 

  8. A. Ali, J.S. Lange, S. Stone, Exotics: Heavy pentaquarks and tetraquarks. Prog. Part. Nucl. Phys. 97, 123–198 (2017). https://doi.org/10.1016/j.ppnp.2017.08.003. arXiv:1706.00610

    Article  ADS  CAS  Google Scholar 

  9. S.L. Olsen, T. Skwarnicki, D. Zieminska, Nonstandard heavy mesons and baryons: experimental evidence. Rev. Mod. Phys. 90(1), 015003 (2018). https://doi.org/10.1103/RevModPhys.90.015003. arXiv:1708.04012

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. M. Karliner, J.L. Rosner, T. Skwarnicki, Multiquark States. Ann. Rev. Nucl. Part. Sci. 68, 17–44 (2018). https://doi.org/10.1146/annurev-nucl-101917-020902. arXiv:1711.10626

    Article  ADS  CAS  Google Scholar 

  11. S.D. Bass, P. Moskal, \(\eta ^\prime \) and \(\eta \) mesons with connection to anomalous glue. Rev. Mod. Phys. 91(1), 015003 (2019). https://doi.org/10.1103/RevModPhys.91.015003. arXiv:1810.12290

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The \(XYZ\) states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583

    Article  ADS  CAS  Google Scholar 

  13. F.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 112, 103757 (2020). arXiv:1912.07030, DOI: 10.1016/j.ppnp.2020.103757

    Article  CAS  Google Scholar 

  14. B. Ketzer, B. Grube, D. Ryabchikov, Light-meson spectroscopy with COMPASS. Prog. Part. Nucl. Phys. 113, 103755 (2020). arXiv:1909.06366, DOI: 10.1016/j.ppnp.2020.103755

    Article  CAS  Google Scholar 

  15. G. Yang, J. Ping, J. Segovia, Tetra- and Penta-Quark structures in the constituent quark model. Symmetry 12(11), 1869 (2020). https://doi.org/10.3390/sym12111869. arXiv:2009.00238

    Article  ADS  CAS  Google Scholar 

  16. S.-S. Fang, B. Kubis, A. Kupść, What can we learn about light-meson interactions at electron-positron colliders? Prog. Part. Nucl. Phys. 120, 103884 (2021). https://doi.org/10.1016/j.ppnp.2021.103884. arXiv:2102.05922

    Article  CAS  Google Scholar 

  17. S. Jin, X. Shen, Highlights of light meson spectroscopy at the BESIII experiment. Natl. Sci. Rev. 8(11), nwab198 (2021). https://doi.org/10.1093/nsr/nwab198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Albaladejo, et al., Novel approaches in Hadron Spectroscopy (12 2021). arXiv:2112.13436

  19. L. Meng, B. Wang, G.-J. Wang, S.-L. Zhu, Chiral perturbation theory for heavy hadrons and chiral effective field theory for heavy hadronic molecules (4 2022). arXiv:2204.08716

  20. N. Brambilla, et al., Substructure of Multiquark Hadrons (Snowmass 2021 White Paper) (3 2022). arXiv:2203.16583

  21. R. Aaij et al., Observation of \(J/\psi p\) Resonances Consistent with Pentaquark States in \(\Lambda _b^0 \rightarrow J/\psi K^- p\) Decays. Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001. arXiv:1507.03414

    Article  ADS  CAS  PubMed  Google Scholar 

  22. R. Aaij et al., Observation of a Narrow Pentaquark State, \(P_c(4312)^+\), and of the Two-Peak Structure of the \(P_c(4450)^+\). Phys. Rev. Lett. 122(22), 222001 (2019). https://doi.org/10.1103/PhysRevLett.122.222001. arXiv:1904.03947

    Article  ADS  CAS  PubMed  Google Scholar 

  23. R. Aaij et al., Evidence of a \(J/\psi \Lambda \) structure and observation of excited \(\Xi ^-\) states in the \(\Xi ^-_b \rightarrow J/\psi \Lambda K^-\) decay. Sci. Bull. 66, 1391 (2021). https://doi.org/10.1016/j.scib.2021.02.030. arXiv:2012.10380

    Article  CAS  Google Scholar 

  24. R. Aaij et al., Evidence for a New Structure in the \(J/\psi p\) and \(J/\psi \bar{p}\) Systems in \(B_s^0 \rightarrow J/\psi p \bar{p}\) decays. Phys. Rev. Lett. 128, 062001 (2022). https://doi.org/10.1103/PhysRevLett.128.062001. arXiv:2108.04720

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Observation of a \(J/\psi \Lambda \) resonance consistent with a strange pentaquark candidate in \(B^-\rightarrow J/\psi \Lambda \bar{p}\) decays (10 2022). arXiv:2210.10346

  26. L. Maiani, A.D. Polosa, V. Riquer, The New Pentaquarks in the Diquark Model. Phys. Lett. B 749, 289–291 (2015). https://doi.org/10.1016/j.physletb.2015.08.008. arXiv:1507.04980

    Article  ADS  CAS  Google Scholar 

  27. R.F. Lebed, The pentaquark candidates in the dynamical diquark picture. Phys. Lett. B 749, 454–457 (2015). https://doi.org/10.1016/j.physletb.2015.08.032. arXiv:1507.05867

    Article  ADS  CAS  Google Scholar 

  28. F. Stancu, Spectrum of the \(uudc \bar{c}\) hidden charm pentaquark with an SU(4) flavor-spin hyperfine interaction. Eur. Phys. J. C 79(11), 957 (2019). https://doi.org/10.1140/epjc/s10052-019-7474-0. arXiv:1902.07101

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. J.F. Giron, R.F. Lebed, C.T. Peterson, The dynamical Diquark model: first numerical results. JHEP 05, 061 (2019). https://doi.org/10.1007/JHEP05(2019)061. arXiv:1903.04551

    Article  ADS  Google Scholar 

  30. A. Ali, A.Y. Parkhomenko, Interpretation of the narrow \(J/\psi p\) Peaks in \(\Lambda _b \rightarrow J/\psi p K^-\) decay in the compact diquark model. Phys. Lett. B 793, 365–371 (2019). https://doi.org/10.1016/j.physletb.2019.05.002. arXiv:1904.00446

    Article  ADS  CAS  Google Scholar 

  31. X.-Z. Weng, X.-L. Chen, W.-Z. Deng, S.-L. Zhu, Hidden-charm pentaquarks and \(P_c\) states. Phys. Rev. D 100(1), 016014 (2019). https://doi.org/10.1103/PhysRevD.100.016014. arXiv:1904.09891

    Article  ADS  CAS  Google Scholar 

  32. M.I. Eides, V.Y. Petrov, M.V. Polyakov, New LHCb pentaquarks as hadrocharmonium states. Mod. Phys. Lett. A 35(18), 2050151 (2020). https://doi.org/10.1142/S0217732320501515. arXiv:1904.11616

    Article  ADS  CAS  Google Scholar 

  33. J.-B. Cheng, Y.-R. Liu, \(P_c(4457)^+\), \(P_c(4440)^+\), and \(P_c(4312)^+\): Molecules or compact pentaquarks? Phys. Rev. D 100(5), 054002 (2019). https://doi.org/10.1103/PhysRevD.100.054002. arXiv:1905.08605

    Article  ADS  CAS  Google Scholar 

  34. A. Ali, I. Ahmed, M.J. Aslam, A.Y. Parkhomenko, A. Rehman, Mass spectrum of the hidden-charm pentaquarks in the compact diquark model. JHEP 10, 256 (2019). https://doi.org/10.1007/JHEP10(2019)256. arXiv:1907.06507

    Article  ADS  Google Scholar 

  35. Z.-G. Wang, Analysis of the \(P_c(4312)\), \(P_c(4440)\), \(P_c(4457)\) and related hidden-charm pentaquark states with QCD sum rules. Int. J. Mod. Phys. A 35(01), 2050003 (2020). https://doi.org/10.1142/S0217751X20500037. arXiv:1905.02892

    Article  ADS  CAS  Google Scholar 

  36. Z.-G. Wang, Analysis of the \(P_{cs}(4459)\) as the hidden-charm pentaquark state with QCD sum rules. Int. J. Mod. Phys. A 36(10), 2150071 (2021). https://doi.org/10.1142/S0217751X21500718. arXiv:2011.05102

    Article  ADS  CAS  Google Scholar 

  37. R. Chen, Z.-F. Sun, X. Liu, S.-L. Zhu, Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks. Phys. Rev. D 100(1), 011502 (2019). https://doi.org/10.1103/PhysRevD.100.011502. arXiv:1903.11013

    Article  ADS  CAS  Google Scholar 

  38. H.-X. Chen, W. Chen, X. Liu, T.G. Steele, S.-L. Zhu, Towards Exotic Hidden-Charm Pentaquarks in QCD. Phys. Rev. Lett. 115(17), 172001 (2015). https://doi.org/10.1103/PhysRevLett.115.172001. arXiv:1507.03717

    Article  ADS  CAS  PubMed  Google Scholar 

  39. H.-X. Chen, E.-L. Cui, W. Chen, X. Liu, T.G. Steele, S.-L. Zhu, QCD sum rule study of hidden-charm pentaquarks. Eur. Phys. J. C 76(10), 572 (2016). https://doi.org/10.1140/epjc/s10052-016-4438-5. arXiv:1602.02433

    Article  ADS  CAS  Google Scholar 

  40. H.-X. Chen, W. Chen, S.-L. Zhu, Possible interpretations of the \(P_c(4312)\), \(P_c(4440)\), and \(P_c(4457)\). Phys. Rev. D 100(5), 051501 (2019). https://doi.org/10.1103/PhysRevD.100.051501. arXiv:1903.11001

    Article  ADS  CAS  Google Scholar 

  41. H.-X. Chen, Decay properties of \(P_c\) states through the Fierz rearrangement. Eur. Phys. J. C 80(10), 945 (2020). https://doi.org/10.1140/epjc/s10052-020-08519-1. arXiv:2001.09563

    Article  ADS  CAS  Google Scholar 

  42. H.-X. Chen, Hidden-charm pentaquark states through current algebra: from their production to decay. Chin. Phys. C 46(9), 093105 (2022). https://doi.org/10.1088/1674-1137/ac6ed2. arXiv:2011.07187

    Article  ADS  Google Scholar 

  43. H.-X. Chen, Hadronic molecules in \(B\) decays. Phys. Rev. D 105(9), 094003 (2022). https://doi.org/10.1103/PhysRevD.105.094003. arXiv:2103.08586

    Article  ADS  CAS  Google Scholar 

  44. E. Wang, H.-X. Chen, L.-S. Geng, D.-M. Li, E. Oset, Hidden-charm pentaquark state in \(\Lambda ^0_b \rightarrow J/\psi p \pi ^-\) decay. Phys. Rev. D 93(9), 094001 (2016). https://doi.org/10.1103/PhysRevD.93.094001. arXiv:1512.01959

    Article  ADS  CAS  Google Scholar 

  45. M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. Sánchez Sánchez, L.-S. Geng, A. Hosaka, M. Pavon Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: seven molecular pentaquarks in light of the latest LHCb analysis. Phys. Rev. Lett. 122(24), 242001 (2019). https://doi.org/10.1103/PhysRevLett.122.242001. arXiv:1903.11560

    Article  ADS  CAS  PubMed  Google Scholar 

  46. H. Huang, J. He, J. Ping, Looking for the hidden-charm pentaquark resonances in \(J/\psi p\) scattering (3 2019). arXiv:1904.00221

  47. Z.-H. Guo, J.A. Oller, Anatomy of the newly observed hidden-charm pentaquark states: \(P_c(4312)\), \(P_c(4440)\) and \(P_c(4457)\). Phys. Lett. B 793, 144–149 (2019). https://doi.org/10.1016/j.physletb.2019.04.053. arXiv:1904.00851

    Article  ADS  CAS  Google Scholar 

  48. C. Fernández-Ramírez, A. Pilloni, M. Albaladejo, A. Jackura, V. Mathieu, M. Mikhasenko, J.A. Silva-Castro, A.P. Szczepaniak, Interpretation of the LHCb \(P_c\)(4312)\(^+\) signal. Phys. Rev. Lett. 123(9), 092001 (2019). https://doi.org/10.1103/PhysRevLett.123.092001. arXiv:1904.10021

    Article  ADS  PubMed  Google Scholar 

  49. L. Meng, B. Wang, G.-J. Wang, S.-L. Zhu, The hidden charm pentaquark states and \(\Sigma _c\bar{D}^{(*)}\) interaction in chiral perturbation theory. Phys. Rev. D 100(1), 014031 (2019). https://doi.org/10.1103/PhysRevD.100.014031. arXiv:1905.04113

    Article  ADS  CAS  Google Scholar 

  50. J.-J. Wu, T.S.H. Lee, B.-S. Zou, Nucleon resonances with hidden charm in \(\gamma \)p reactions. Phys. Rev. C 100(3), 035206 (2019). https://doi.org/10.1103/PhysRevC.100.035206. arXiv:1906.05375

    Article  ADS  CAS  Google Scholar 

  51. Y. Yamaguchi, H. García-Tecocoatzi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, \(P_c\) pentaquarks with chiral tensor and quark dynamics. Phys. Rev. D 101(9), 091502 (2020). https://doi.org/10.1103/PhysRevD.101.091502. arXiv:1907.04684

    Article  ADS  CAS  Google Scholar 

  52. M. Pavon Valderrama, One pion exchange and the quantum numbers of the P\(_c\)(4440) and P\(_c\)(4457) pentaquarks. Phys. Rev. D 100(9), 094028 (2019). https://doi.org/10.1103/PhysRevD.100.094028. arXiv:1907.05294

    Article  ADS  CAS  Google Scholar 

  53. M.-Z. Liu, T.-W. Wu, M. Sánchez Sánchez, M.P. Valderrama, L.-S. Geng, J.-J. Xie, Spin-parities of the \(P_c(4440)\) and \(P_c(4457)\) in the one-boson-exchange model. Phys. Rev. D 103(5), 054004 (2021). https://doi.org/10.1103/PhysRevD.103.054004. arXiv:1907.06093

    Article  ADS  CAS  Google Scholar 

  54. B. Wang, L. Meng, S.-L. Zhu, Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory. JHEP 11, 108 (2019). https://doi.org/10.1007/JHEP11(2019)108. arXiv:1909.13054

    Article  ADS  CAS  Google Scholar 

  55. T. Gutsche, V.E. Lyubovitskij, Structure and decays of hidden heavy pentaquarks. Phys. Rev. D 100(9), 094031 (2019). https://doi.org/10.1103/PhysRevD.100.094031. arXiv:1910.03984

    Article  ADS  CAS  Google Scholar 

  56. M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, J.A. Oller, Q. Wang, Interpretation of the LHCb \(P_c\) States as Hadronic Molecules and Hints of a Narrow \(P_c(4380)\). Phys. Rev. Lett. 124(7), 072001 (2020). https://doi.org/10.1103/PhysRevLett.124.072001. arXiv:1910.11846

    Article  ADS  CAS  PubMed  Google Scholar 

  57. U. Özdem, K. Azizi, Electromagnetic multipole moments of the \(P_c^+(4380)\) pentaquark in light-cone QCD. Eur. Phys. J. C 78(5), 379 (2018). https://doi.org/10.1140/epjc/s10052-018-5873-2. arXiv:1803.06831

    Article  ADS  CAS  Google Scholar 

  58. Z.-G. Wang, X. Wang, Analysis of the strong decays of the \(P_c(4312)\) as a pentaquark molecular state with QCD sum rules. Chin. Phys. C 44, 103102 (2020). https://doi.org/10.1088/1674-1137/ababf7. arXiv:1907.04582

    Article  ADS  CAS  Google Scholar 

  59. J.-R. Zhang, Exploring a \(\Sigma _{c}\bar{D}\) state: with focus on \(P_{c}(4312)^{+}\). Eur. Phys. J. C 79(12), 1001 (2019). https://doi.org/10.1140/epjc/s10052-019-7529-2. arXiv:1904.10711

    Article  ADS  CAS  Google Scholar 

  60. K. Azizi, Y. Sarac, H. Sundu, Analysis of \(P_c^+(4380)\) and \(P_c^+(4450)\) as pentaquark states in the molecular picture with QCD sum rules. Phys. Rev. D 95(9), 094016 (2017). https://doi.org/10.1103/PhysRevD.95.094016. arXiv:1612.07479

    Article  ADS  Google Scholar 

  61. X.-H. Liu, Q. Wang, Q. Zhao, Understanding the newly observed heavy pentaquark candidates. Phys. Lett. B 757, 231–236 (2016). https://doi.org/10.1016/j.physletb.2016.03.089. arXiv:1507.05359

    Article  ADS  CAS  Google Scholar 

  62. S.-Q. Kuang, L.-Y. Dai, X.-W. Kang, D.-L. Yao, Pole analysis on the hadron spectroscopy of \(\Lambda _b\rightarrow J/\Psi p K^-\). Eur. Phys. J. C 80(5), 433 (2020). https://doi.org/10.1140/epjc/s10052-020-8008-5. arXiv:2002.11959

    Article  ADS  CAS  Google Scholar 

  63. F.-K. Guo, U.-G. Meißner, W. Wang, Z. Yang, How to reveal the exotic nature of the P\(_c\)(4450). Phys. Rev. D 92(7), 071502 (2015). https://doi.org/10.1103/PhysRevD.92.071502. arXiv:1507.04950

    Article  ADS  CAS  Google Scholar 

  64. M. Bayar, F. Aceti, F.-K. Guo, E. Oset, A discussion on triangle singularities in the \(\Lambda _b \rightarrow J/\psi K^{-} p\) reaction. Phys. Rev. D 94(7), 074039 (2016). https://doi.org/10.1103/PhysRevD.94.074039. arXiv:1609.04133

    Article  ADS  CAS  Google Scholar 

  65. S.X. Nakamura, \(P_c(4312)^+\), \(P_c(4380)^+\), and \(P_c(4457)^+\) as double triangle cusps. Phys. Rev. D 103, 111503 (2021). https://doi.org/10.1103/PhysRevD.103.L111503. arXiv:2103.06817

    Article  ADS  Google Scholar 

  66. J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Prediction of Narrow \(N^*\) and \(\Lambda ^*\) resonances with Hidden Charm above 4 GeV. Phys. Rev. Lett. 105, 232001 (2010). https://doi.org/10.1103/PhysRevLett.105.232001. arXiv:1007.0573

    Article  ADS  CAS  PubMed  Google Scholar 

  67. W.L. Wang, F. Huang, Z.Y. Zhang, B.S. Zou, \(\Sigma _c \bar{D}\) and \(\Lambda _c \bar{D}\) states in a chiral quark model. Phys. Rev. C 84, 015203 (2011). https://doi.org/10.1103/PhysRevC.84.015203. arXiv:1101.0453

    Article  ADS  CAS  Google Scholar 

  68. Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, S.-L. Zhu, Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon. Chin. Phys. C 36, 6–13 (2012). https://doi.org/10.1088/1674-1137/36/1/002. arXiv:1105.2901

    Article  ADS  CAS  Google Scholar 

  69. M. Karliner, J.L. Rosner, New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules. Phys. Rev. Lett. 115(12), 122001 (2015). https://doi.org/10.1103/PhysRevLett.115.122001. arXiv:1506.06386

    Article  ADS  CAS  PubMed  Google Scholar 

  70. J.-J. Wu, T.S.H. Lee, B.S. Zou, Nucleon resonances with Hidden Charm in coupled-channel models. Phys. Rev. C 85, 044002 (2012). https://doi.org/10.1103/PhysRevC.85.044002. arXiv:1202.1036

    Article  ADS  CAS  Google Scholar 

  71. H.-X. Chen, L.-S. Geng, W.-H. Liang, E. Oset, E. Wang, J.-J. Xie, Looking for a hidden-charm pentaquark state with strangeness \(S=-1\) from \(\Xi _b^-\) decay into \(J/\psi K^- \Lambda \). Phys. Rev. C 93(6), 065203 (2016). https://doi.org/10.1103/PhysRevC.93.065203. arXiv:1510.01803

    Article  ADS  CAS  Google Scholar 

  72. H.-X. Chen, W. Chen, X. Liu, X.-H. Liu, Establishing the first hidden-charm pentaquark with strangeness. Eur. Phys. J. C 81(5), 409 (2021). https://doi.org/10.1140/epjc/s10052-021-09196-4. arXiv:2011.01079

    Article  ADS  CAS  Google Scholar 

  73. F.-Z. Peng, M.-J. Yan, M. Sánchez Sánchez, M.P. Valderrama, The \(P_{cs}(4459)\) pentaquark from a combined effective field theory and phenomenological perspective. Eur. Phys. J. C 81(7), 666 (2021). https://doi.org/10.1140/epjc/s10052-021-09416-x. arXiv:2011.01915

    Article  ADS  CAS  Google Scholar 

  74. J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Dynamically generated \(N^{*}\) and \(\Lambda ^*\) resonances in the hidden charm sector around 4.3 GeV. Phys. Rev. C 84, 015202 (2011). https://doi.org/10.1103/PhysRevC.84.015202. arXiv:1011.2399

    Article  ADS  CAS  Google Scholar 

  75. C.W. Xiao, J. Nieves, E. Oset, Heavy quark spin symmetric molecular states from \({\bar{D}}^{(*)}\Sigma _c^{(*)}\) and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D 100(1), 014021 (2019). https://doi.org/10.1103/PhysRevD.100.014021. arXiv:1904.01296

    Article  ADS  CAS  Google Scholar 

  76. J. He, Study of \(P_c(4457)\), \(P_c(4440)\), and \(P_c(4312)\) in a quasipotential Bethe-Salpeter equation approach. Eur. Phys. J. C 79(5), 393 (2019). https://doi.org/10.1140/epjc/s10052-019-6906-1. arXiv:1903.11872

    Article  ADS  CAS  Google Scholar 

  77. C.W. Xiao, J.X. Lu, J.J. Wu, L.S. Geng, How to reveal the nature of three or more pentaquark states. Phys. Rev. D 102(5), 056018 (2020). https://doi.org/10.1103/PhysRevD.102.056018. arXiv:2007.12106

    Article  ADS  CAS  Google Scholar 

  78. T.J. Burns, E.S. Swanson, Molecular interpretation of the \(P_c\)(4440) and \(P_c\)(4457) states. Phys. Rev. D 100(11), 114033 (2019). https://doi.org/10.1103/PhysRevD.100.114033. arXiv:1908.03528

    Article  ADS  CAS  Google Scholar 

  79. Z.-L. Wang, C.-W. Shen, D. Rönchen, U.-G. Meißner, B.-S. Zou, Resonances in heavy meson-heavy baryon coupled-channel interactions. Eur. Phys. J. C 82(5), 497 (2022). https://doi.org/10.1140/epjc/s10052-022-10462-2. arXiv:2204.12122

    Article  ADS  CAS  Google Scholar 

  80. J. He, D.-Y. Chen, Molecular states from \(\Sigma ^{(*)}_c\bar{D}^{(*)}-\Lambda _c\bar{D}^{(*)}\) interaction. Eur. Phys. J. C 79(11), 887 (2019). https://doi.org/10.1140/epjc/s10052-019-7419-7. arXiv:1909.05681

    Article  ADS  CAS  Google Scholar 

  81. Y. Yamaguchi, E. Santopinto, Hidden-charm pentaquarks as a meson-baryon molecule with coupled channels for \(\bar{D}^{(\ast )}\Lambda _{\rm c}\) and \(\bar{D}^{(\ast )}\Sigma ^{(\ast )}_{\rm c}\). Phys. Rev. D 96(1), 014018 (2017). https://doi.org/10.1103/PhysRevD.96.014018. arXiv:1606.08330

    Article  ADS  Google Scholar 

  82. V.R. Debastiani, J.M. Dias, W.H. Liang, E. Oset, Molecular \(\Omega _c\) states generated from coupled meson-baryon channels. Phys. Rev. D 97(9), 094035 (2018). https://doi.org/10.1103/PhysRevD.97.094035. arXiv:1710.04231

    Article  ADS  CAS  Google Scholar 

  83. W.-H. Liang, J.M. Dias, V.R. Debastiani, E. Oset, Molecular \(\Omega _b\) states. Nucl. Phys. B 930, 524–532 (2018). https://doi.org/10.1016/j.nuclphysb.2018.03.008. arXiv:1711.10623

    Article  ADS  CAS  Google Scholar 

  84. Q.X. Yu, R. Pavao, V.R. Debastiani, E. Oset, Description of the \(\Xi _c\) and \(\Xi _b\) states as molecular states. Eur. Phys. J. C 79(2), 167 (2019). https://doi.org/10.1140/epjc/s10052-019-6665-z. arXiv:1811.11738

    Article  ADS  CAS  Google Scholar 

  85. Q.-X. Yu, J.M. Dias, W.-H. Liang, E. Oset, Molecular \(\Xi _{bc}\) states from meson-baryon interaction. Eur. Phys. J. C 79(12), 1025 (2019). https://doi.org/10.1140/epjc/s10052-019-7543-4. arXiv:1909.13449

    Article  ADS  CAS  Google Scholar 

  86. J.M. Dias, V.R. Debastiani, J.J. Xie, E. Oset, Doubly charmed \(\Xi _{cc}\) molecular states from meson-baryon interaction. Phys. Rev. D 98(9), 094017 (2018). https://doi.org/10.1103/PhysRevD.98.094017. arXiv:1805.03286

    Article  ADS  CAS  Google Scholar 

  87. J.M. Dias, Q.-X. Yu, W.-H. Liang, Z.-F. Sun, J.-J. Xie, E. Oset, \(\Xi _{bb}\) and \(\Omega _{bbb}\) molecular states. Chin. Phys. C 44(6), 064101 (2020). https://doi.org/10.1088/1674-1137/44/6/064101. arXiv:1912.04517

    Article  ADS  CAS  Google Scholar 

  88. W.-F. Wang, A. Feijoo, J. Song, E. Oset, Molecular \(\Omega _{cc}\), \(\Omega _{bb}\), and \(\Omega _{bc}\) states. Phys. Rev. D 106(11), 116004 (2022). https://doi.org/10.1103/PhysRevD.106.116004. arXiv:2208.14858

    Article  ADS  CAS  Google Scholar 

  89. G. Montaña, A. Feijoo, A. Ramos, A meson-baryon molecular interpretation for some \(\Omega _{c}\) excited states. Eur. Phys. J. A 54(4), 64 (2018). https://doi.org/10.1140/epja/i2018-12498-1. arXiv:1709.08737

    Article  ADS  CAS  Google Scholar 

  90. R. Aaij et al., Observation of Five New Narrow \(\Omega _c^0\) States Decaying to \(\Xi _c^+ K^-\). Phys. Rev. Lett. 118(18), 182001 (2017). https://doi.org/10.1103/PhysRevLett.118.182001. arXiv:1703.04639

    Article  ADS  CAS  PubMed  Google Scholar 

  91. R. Aaij et al., First Observation of Excited \(\Omega _b^-\) States. Phys. Rev. Lett. 124(8), 082002 (2020). https://doi.org/10.1103/PhysRevLett.124.082002. arXiv:2001.00851

    Article  ADS  CAS  PubMed  Google Scholar 

  92. B. Aubert et al., Study of \(\bar{B} \rightarrow \Xi _c \bar{\Lambda }^-_c\) and \(\bar{B} \rightarrow \Lambda ^+_c \bar{\Lambda }^-_c \bar{K}\) decays at BABAR. Phys. Rev. D 77, 031101 (2008). https://doi.org/10.1103/PhysRevD.77.031101. arXiv:0710.5775

    Article  ADS  CAS  Google Scholar 

  93. Y.B. Li et al., Observation of \(\Xi _{c}(2930)^0\) and updated measurement of \(B^{-} \rightarrow K^{-} \Lambda _{c}^{+} \bar{\Lambda }_{c}^{-}\) at Belle. Eur. Phys. J. C 78(3), 252 (2018). https://doi.org/10.1140/epjc/s10052-018-5720-5. arXiv:1712.03612

    Article  ADS  MathSciNet  CAS  Google Scholar 

  94. Y.B. Li et al., Evidence of a structure in \(\bar{K}^{0} \Lambda _{c}^{+}\) consistent with a charged \(\Xi _c(2930)^{+}\), and updated measurement of \(\bar{B}^{0} \rightarrow \bar{K}^{0} \Lambda _{c}^{+} \bar{\Lambda }_{c}^{-}\) at Belle. Eur. Phys. J. C 78(11), 928 (2018). https://doi.org/10.1140/epjc/s10052-018-6425-5. arXiv:1806.09182

    Article  ADS  MathSciNet  CAS  Google Scholar 

  95. R. Aaij et al., Observation of a New \(\Xi _b^-\) Resonance. Phys. Rev. Lett. 121(7), 072002 (2018). https://doi.org/10.1103/PhysRevLett.121.072002. arXiv:1805.09418

    Article  ADS  CAS  PubMed  Google Scholar 

  96. R. Aaij et al., Observation of the Doubly Charmed Baryon \(\Xi _{cc}^{++}\). Phys. Rev. Lett. 119(11), 112001 (2017). https://doi.org/10.1103/PhysRevLett.119.112001. arXiv:1707.01621

    Article  ADS  CAS  PubMed  Google Scholar 

  97. J.-J. Wu, L. Zhao, B.S. Zou, Prediction of super-heavy \(N^*\) and \(\Lambda ^*\) resonances with hidden beauty. Phys. Lett. B 709, 70–76 (2012). https://doi.org/10.1016/j.physletb.2012.01.068. arXiv:1011.5743

    Article  ADS  CAS  Google Scholar 

  98. C.-W. Shen, U.-G. Meißner, Prediction of five-flavored pentaquarks (3 2022). arXiv:2203.09804

  99. P.A. Zyla et al., Review of particle physics. PTEP 8, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  CAS  Google Scholar 

  100. N. Mathur, M. Padmanath, S. Mondal, Precise predictions of charmed-bottom hadrons from lattice QCD. Phys. Rev. Lett. 121(20), 202002 (2018). https://doi.org/10.1103/PhysRevLett.121.202002. arXiv:1806.04151

    Article  ADS  CAS  PubMed  Google Scholar 

  101. M. Bando, T. Kugo, S. Uehara, K. Yamawaki, T. Yanagida, Is rho Meson a Dynamical Gauge Boson of Hidden local symmetry? Phys. Rev. Lett. 54, 1215 (1985). https://doi.org/10.1103/PhysRevLett.54.1215

    Article  ADS  CAS  PubMed  Google Scholar 

  102. M. Bando, T. Kugo, K. Yamawaki, Nonlinear Realization and Hidden local symmetries. Phys. Rept. 164, 217–314 (1988). https://doi.org/10.1016/0370-1573(88)90019-1

    Article  ADS  MathSciNet  CAS  Google Scholar 

  103. U.G. Meissner, Low-Energy Hadron Physics from Effective Chiral Lagrangians with Vector Mesons. Phys. Rept. 161, 213 (1988). https://doi.org/10.1016/0370-1573(88)90090-7

    Article  ADS  CAS  Google Scholar 

  104. E. Oset, A. Ramos, Dynamically generated resonances from the vector octet-baryon octet interaction. Eur. Phys. J. A 44, 445–454 (2010). https://doi.org/10.1140/epja/i2010-10957-3. arXiv:0905.0973

    Article  ADS  CAS  Google Scholar 

  105. S. Sakai, L. Roca, E. Oset, Charm-beauty meson bound states from \(B(B^*)D(D^*)\) and \(B(B^*)\bar{D}(\bar{D}^*)\) interaction. Phys. Rev. D 96(5), 054023 (2017). https://doi.org/10.1103/PhysRevD.96.054023. arXiv:1704.02196

    Article  ADS  Google Scholar 

  106. F. Klingl, N. Kaiser, W. Weise, Current correlation functions, QCD sum rules and vector mesons in baryonic matter. Nucl. Phys. A 624, 527–563 (1997). https://doi.org/10.1016/S0375-9474(97)88960-9. arXiv:hep-ph/9704398

    Article  ADS  Google Scholar 

  107. M.F.M. Lutz, E.E. Kolomeitsev, On charm baryon resonances and chiral symmetry. Nucl. Phys. A 730, 110–120 (2004). https://doi.org/10.1016/j.nuclphysa.2003.10.012. arXiv:hep-ph/0307233

    Article  ADS  CAS  Google Scholar 

  108. J. Hofmann, M.F.M. Lutz, D-wave baryon resonances with charm from coupled-channel dynamics. Nucl. Phys. A 776, 17–51 (2006). https://doi.org/10.1016/j.nuclphysa.2006.07.004. arXiv:hep-ph/0601249

    Article  ADS  CAS  Google Scholar 

  109. W. Roberts, M. Pervin, Heavy baryons in a quark model. Int. J. Mod. Phys. A 23, 2817–2860 (2008). https://doi.org/10.1142/S0217751X08041219. arXiv:0711.2492

    Article  ADS  CAS  Google Scholar 

  110. J.A. Oller, E. Oset, N/D description of two meson amplitudes and chiral symmetry. Phys. Rev. D 60, 074023 (1999). https://doi.org/10.1103/PhysRevD.60.074023. arXiv:hep-ph/9809337

    Article  ADS  Google Scholar 

  111. J.A. Oller, U.G. Meissner, Chiral dynamics in the presence of bound states: Kaon nucleon interactions revisited. Phys. Lett. B 500, 263–272 (2001). https://doi.org/10.1016/S0370-2693(01)00078-8. arXiv:hep-ph/0011146

    Article  ADS  CAS  Google Scholar 

  112. X.-K. Dong, F.-K. Guo, B.-S. Zou, A survey of heavy-heavy hadronic molecules. Commun. Theor. Phys. 73(12), 125201 (2021). https://doi.org/10.1088/1572-9494/ac27a2. arXiv:2108.02673

    Article  ADS  CAS  Google Scholar 

  113. X.-K. Dong, F.-K. Guo, B.-S. Zou, Explaining the many threshold structures in the heavy-quark Hadron spectrum. Phys. Rev. Lett. 126(15), 152001 (2021). https://doi.org/10.1103/PhysRevLett.126.152001. arXiv:2011.14517

    Article  ADS  CAS  PubMed  Google Scholar 

  114. W.-Y. Liu, H.-X. Chen, E. Wang, Hadronic molecular states with the quark contents \(bc \bar{s} \bar{q}\), \(b \bar{c} s \bar{q}\), and \(b \bar{c} \bar{s}q\). Phys. Rev. D 107(5), 054041 (2023). https://doi.org/10.1103/PhysRevD.107.054041. arXiv:2301.06785

    Article  ADS  CAS  Google Scholar 

  115. A. Feijoo, W.-F. Wang, C.-W. Xiao, J.-J. Wu, E. Oset, J. Nieves, B.-S. Zou, A new look at the Pcs states from a molecular perspective. Phys. Lett. B 839, 137760 (2023). https://doi.org/10.1016/j.physletb.2023.137760. arXiv:2212.12223

    Article  CAS  Google Scholar 

  116. J.A. Marsé-Valera, V.K. Magas, A. Ramos, Double-strangeness molecular-type Pentaquarks from coupled-channel dynamics. Phys. Rev. Lett. 130(9), 091903 (2023). https://doi.org/10.1103/PhysRevLett.130.091903. arXiv:2210.02792

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Eulogio Oset for the very helpful discussion. This project is supported by the National Natural Science Foundation of China under Grants No. 12075019 and No. 11975083, the Jiangsu Provincial Double-Innovation Program under Grant No. JSSCRC2021488, and the Fundamental Research Funds for the Central Universities. This project is also supported by the Central Government Guidance Funds for Local Scientific and Technological Development, China (No. Guike ZY22096024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xing Chen.

Additional information

Communicated by Eulogio Oset.

Appendices

Baryon wave functions

We summarize all the relevant baryon wave functions in this appendix. The wave functions for the \(J^P=1/2^+\) baryons are:

$$\begin{aligned} \big | \varXi _c^+ \big \rangle= & {} \Big | {1\over \sqrt{2}} c(us-su) \Big \rangle \big | \chi _{MA} \big \rangle , \nonumber \\ \big | \varXi _c^0 \big \rangle= & {} \Big | {1\over \sqrt{2}} c(ds-sd) \Big \rangle \big | \chi _{MA} \big \rangle , \nonumber \\ \big | \varXi _c^{\prime +} \big \rangle= & {} \Big | {1\over \sqrt{2}} c(us+su) \Big \rangle \big | \chi _{MS} \big \rangle , \nonumber \\ \big | \varXi _c^{\prime 0} \big \rangle= & {} \Big | {1\over \sqrt{2}} c(ds+sd) \Big \rangle \big | \chi _{MS} \big \rangle , \nonumber \\ \big | \varOmega _c^{0} \big \rangle= & {} \Big | css \Big \rangle \big | \chi _{MS} \big \rangle , \nonumber \\ \big | \varXi _b^{0} \big \rangle= & {} \Big | {1\over \sqrt{2}} b(us-su) \Big \rangle \big | \chi _{MA} \big \rangle , \nonumber \\ \big | \varXi _b^{-} \big \rangle= & {} \Big | {1\over \sqrt{2}} b(ds-sd) \Big \rangle \big | \chi _{MA} \big \rangle , \nonumber \\ \big | \varXi _b^{\prime 0} \big \rangle= & {} \Big | {1\over \sqrt{2}} b(us+su) \Big \rangle \big | \chi _{MS} \big \rangle , \nonumber \\ \big | \varXi _b^{\prime -} \big \rangle= & {} \Big | {1\over \sqrt{2}} b(ds+sd) \Big \rangle \big | \chi _{MS} \big \rangle , \nonumber \\ \big | \varOmega _b^{-} \big \rangle= & {} \Big | bss \Big \rangle \big | \chi _{MS} \big \rangle , \nonumber \\ \big | \varLambda ^{0} \big \rangle= & {} {1\over \sqrt{2}} \left( \big | \phi _{MS} \rangle \big | \chi _{MS} \big \rangle + \big | \phi _{MA} \big \rangle \big | \chi _{MA} \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MS} \rangle = {1\over 2} \left( \big | dus \big \rangle + \big | dsu \big \rangle - \big | uds \big \rangle - \big | usd \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MA} \rangle = {1\over 2\sqrt{3}} \left( \big | u(ds-sd) \big \rangle + \big | d(su-us) \big \rangle \right. \nonumber \\{} & {} \left. - 2\big | s(ud-du) \big \rangle \right) , \nonumber \\ \big | \varSigma ^{+} \big \rangle= & {} {1\over \sqrt{2}} \left( \big | \phi _{MS} \rangle \big | \chi _{MS} \big \rangle + \big | \phi _{MA} \big \rangle \big | \chi _{MA} \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MS} \rangle = -{1\over \sqrt{6}} \left( \big | u(us+su) \big \rangle - 2\big | suu \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MA} \rangle = {1\over \sqrt{2}} \big | u(su-us) \big \rangle , \nonumber \\ \big | \varSigma ^{0} \big \rangle= & {} {1\over \sqrt{2}} \left( \big | \phi _{MS} \rangle \big | \chi _{MS} \big \rangle + \big | \phi _{MA} \big \rangle \big | \chi _{MA} \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MS} \rangle = {1\over 2\sqrt{3}} \left( \big | u(ds+sd) \big \rangle + \big | d(su+us) \big \rangle \right. \nonumber \\{} & {} \left. - 2\big | s(du+ud) \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MA} \rangle = {1\over 2} \left( \big | u(ds-sd) \big \rangle - \big | d(su-us) \big \rangle \right) , \nonumber \\ \big | \varXi ^{0} \big \rangle= & {} {1\over \sqrt{2}} \left( \big | \phi _{MS} \rangle \big | \chi _{MS} \big \rangle + \big | \phi _{MA} \big \rangle \big | \chi _{MA} \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MS} \rangle = {1\over \sqrt{6}} \left( \big | s(us+su) \big \rangle - 2\big | uss \big \rangle \right) , \nonumber \\{} & {} \big | \phi _{MA} \rangle = -{1\over \sqrt{2}} \big | s(us-su) \big \rangle . \end{aligned}$$
(A.1)

The wave functions for the \(J^P=3/2^+\) baryons:

$$\begin{aligned} \big | \varXi _c^{*+} \big \rangle= & {} \Big | {1\over \sqrt{2}} c(us+su) \Big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varXi _c^{*0} \big \rangle= & {} \Big | {1\over \sqrt{2}} c(ds+sd) \Big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varOmega _c^{*0} \big \rangle= & {} \big | css \big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varXi _b^{*0} \big \rangle= & {} \Big | {1\over \sqrt{2}} b(us+su) \Big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varXi _b^{*-} \big \rangle= & {} \Big | {1\over \sqrt{2}} b(ds+sd) \Big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varOmega _b^{*-} \big \rangle= & {} \big | bss \big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varSigma ^{*+} \big \rangle= & {} {1\over \sqrt{3}}\big | u(su+us)+suu \big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varSigma ^{*0} \big \rangle= & {} {1\over \sqrt{6}} \big ( \big | s(du+ud)+d(su+us) \big \rangle , \nonumber \\{} & {} + \big | u(sd+ds) \big \rangle \big ) \big | \chi _S \big \rangle \nonumber \\ \big | \varXi ^{*0} \big \rangle= & {} {1\over \sqrt{3}}\big | s(us+su)+uss \big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varDelta ^{++} \big \rangle= & {} \big | uuu \big \rangle \big | \chi _S \big \rangle , \nonumber \\ \big | \varOmega ^{-} \big \rangle= & {} \big | sss \big \rangle \big | \chi _S \big \rangle . \end{aligned}$$
(A.2)

Discussion on the dimensional and cut-off regularizations

Fig. 6
figure 6

Re[\(G^{\mathcal{M}\mathcal{B}}\)] (Im[\(G^{\mathcal{M}\mathcal{B}}\)]) and Re[\(G^{\prime \mathcal{M}\mathcal{B}}\)] (Im[\(G^{\prime \mathcal{M}\mathcal{B}}\)]) stand for the real (imaginary) parts of the loop function for various coupled channels, calculated through the dimensional and cut-off regularizations, respectively. The dash black lines indicate the poles positions

Table 7 The poles extracted from the \(PB_{1/2}\) sector of the \(b\bar{c}sud\) system with \(I=0\), obtained using the dimensional regularization with \(a(\mu =1 \, \mathrm GeV)=-3.2\) and the cut-off regularization with \(q_{\max }=450\text { MeV}\). Pole positions, binding energies (\(E_B\)), widths, and threshold masses of various coupled channels are in units of MeV. The couplings \(g_i\) have no dimension

During the present study, we find that the results obtained using the dimensional and cut-off regularizations are not always the same. In this appendix we use the \(PB_{1/2}\) sector of the \(b\bar{c}uud\) system with \(I={1/2}\) and the \(PB_{1/2}\) sector of the \(b\bar{c}sud\) system with \(I=0\) as two examples to discuss this difference.

The dimensional regularization for the meson-baryon loop function \(G^{\mathcal{M}\mathcal{B}}(s)\) has been given in Eq. (44), while the cut-off regularization for this loop function is

$$\begin{aligned} G_{ll}^{\prime \mathcal {M}\mathcal {B}}(s)= & {} i \int \frac{\textrm{d}^4 q}{(2\pi )^4}\frac{M_l}{E_l(\textbf{q})} \frac{1}{k^0_i + p^0_i - q^0-E_l(\textbf{q})+i\epsilon } \nonumber \\{} & {} \times \frac{1}{q^2-m_l^2+i\epsilon } \nonumber \\= & {} \int _{|\textbf{q}|<q_{\textrm{max}}} \frac{\textrm{d}^3 q}{(2\pi )^3} \frac{1}{2\omega _l(\textbf{q})} \frac{M_l}{E_l(\textbf{q})} \nonumber \\{} & {} \times \frac{1}{k^0_i + p^0_i - \omega _l(\textbf{q})-E_l(\textbf{q})+i\epsilon }, \end{aligned}$$
(B.3)

where l denotes the intermediate channel; \(p^0_i\) and \(k^0_i\) are the energies of the initial meson and baryon, respectively; \(m_l\) and \(M_l\) are the masses of the intermediate meson and baryon, respectively; \(\omega _l=\sqrt{m_l^2 + \textbf{q}^2}\) and \(E_l=\sqrt{M_l^2 + \textbf{q}^2}\) are the energies of the intermediate meson and baryon, respectively.

For the \(PB_{1/2}\) sector of the \(b\bar{c}uud\) system with \(I={1/2}\), we consider the \(N \bar{B}_c\), \(\varLambda _b \bar{D}\), and \(\varSigma _b \bar{D}\) coupled channels. The results are summarized in Table 6, where we choose the subtraction constant for the dimensional regularization to be \(a(\mu =1 \text { GeV})=-3.2\), and we choose the three-momentum cutoff for the cut-off regularization to be \(q_{\max }=450 \text { MeV}\). Using these two parameters, the loop functions \(G_{\varSigma _b \bar{D}}^{\mathcal{M}\mathcal{B}}(s)\) and \(G_{\varSigma _b \bar{D}}^{\prime \mathcal{M}\mathcal{B}}(s)\) have the same value at the \(\varSigma _b \bar{D}\) threshold. Compared to the cut-off regularization, there exists an extra bound state below the \(\varLambda _b \bar{D}\) threshold when using the dimensional regularization. This pole should be discarded, as already discussed in Ref. [97]. The reason can be clearly seen in Fig. 6, where we show the real and imaginary parts of the \(G^{\mathcal{M}\mathcal{B}}(s)\) and \(G^{\prime \mathcal{M}\mathcal{B}}(s)\) loop functions. As shown in Fig. 6c and d, their imaginary parts are exactly the same within the effective range. In the absence of coupled channel effects, the scattering matrix is given by \(T=(V^{-1} - G)^{-1}\), and a pole is expected when the real part of the loop function equals the inverse of the interaction. As shown in Fig. 6a, we use the dash line to indicate the extra bound state located at \(7372.6 \text { MeV}\), where the real part of \(G_{\varLambda _b \bar{D}}^{\mathcal{M}\mathcal{B}}(s)\) is positive and far below the \(\varLambda _b \bar{D}\) threshold. Moreover, the potential \(V_{\varLambda _b \bar{D} \rightarrow \varLambda _b \bar{D}}^{P\mathcal {B}}(s)\) is also positive around this energy region, indicating the interaction to be repulsive. Therefore, this pole can not be a bound state and should be discarded. Oppositely, as shown in Fig. 6b, the real part of \(G_{\varLambda _b \bar{D}}^{\prime \mathcal{M}\mathcal{B}}(s)\) is negative below the \(\varLambda _b \bar{D}\) threshold, so that the above bound state does not appear at all.

For the \(PB_{1/2}\) sector of the \(b\bar{c}sud\) system with \(I=0\), we consider the \(\varLambda \bar{B}_c\), \(\varLambda _b \bar{D}_s\), \(\varXi _b \bar{D}\), and \(\varXi _b^\prime \bar{D}\) coupled channels. The results are summarized in Table 7, where we choose the subtraction constant for the dimensional regularization to be \(a(\mu =1 \text { GeV})=-3.2\), and we choose the three-momentum cutoff for the cut-off regularization to be \(q_{\max }=450 \text { MeV}\). Similarly, compared to the cut-off regularization, there exists an extra bound state below the \(\varLambda _b \bar{D}_s\) threshold when using the dimensional regularization, and this pole should also be discarded. Moreover, in this case the results obtained using the dimensional regularization are significantly different from those obtained using the cut-off regularization, which needs further investigations in the future studies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JX., Chen, HX., Liang, WH. et al. Molecular pentaquark states with open charm and bottom flavors. Eur. Phys. J. A 60, 15 (2024). https://doi.org/10.1140/epja/s10050-024-01240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01240-7

Navigation