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Abstract During the last 10 years or so the Brownian
shape-motion (BSM) model has been used in numerous cal-
culations of fission-fragment mass and charge distributions
with encouraging agreement with experimental measure-
ments. In this model the structure obtained in the fission-
fragment distributions is entirely a consequence of the
structures in the calculated five-dimensional (5D) potential-
energy surfaces. The potential-energy model until recently
did not accommodate the influence of the emerging frag-
ment properties on the calculated potential energy. There-
fore there were no odd-even effects in the calculated fission-
fragment distributions. Recent extensions of the potential-
energy model allow properties of the nascent fragments to
be included in the potential-energy model. Application of the
BSM model to execute random walks on these more detailed
potential-energy surfaces led to calculated fission-fragment
yields that exhibited odd-even effects, which “by eye” indi-
cated reasonable agreement with experimental data. The
present work goes a step further with a quantitative compari-
son between experimental and theoretical results based on the
global and local odd-even staggering observables. Theoret-
ical calculations and experimental observations both show
that pairing effects and enhancement of two-nucleon rela-
tive to one-nucleon transfer in heavy-ion collisions decrease
with excitation energy and implementing a damping of these
quantities with excitation energy leads to improved agree-
ment with experiment. Characteristic variations of the local
staggering with charge split seen in the experimental data are
also present in the calculated results.

a e-mail: mollerinla@gmail.com (corresponding author)

1 Introduction

In the Brownian shape-motion (BSM) method fission-frag-
ment yields are calculated by random walks on a five-dimen-
sional (5D) potential-energy “surface” which is a function
of five shape variables. The 5D potential-energy function
is calculated for a discrete set of about five million differ-
ent shapes and stored as a 5D matrix, see Ref. [1] for more
details. The BSM method was introduced in 2011 [2]. Subse-
quently it has been extensively tested with respect to experi-
mental data. A phenomenological treatment of the damping
of the shell corrections with energy was introduced at the
time of these tests [3]. In the study of Ref. [3] the calculated
fragment charge yields compared well with the 70 yield dis-
tributions measured at GSI [4]. In Ref. [5] the sensitivity of
the method to various model ingredients was investigated,
in particular to the discretization of the shape space and to
various assumptions about the dissipation tensor [3]. The
charge yield was found to be relatively robust with respect to
these aspects, so an explicit dissipation tensor is not imple-
mented in the current model, although an implicit assumption
underlying the BSM model is strong dissipation. However,
a potential-energy surface of lower dimensionality is unable
to describe the experimental data, demonstrating the impor-
tance of the choice and number of collective coordinates.
After these studies and benchmarks had been carried out the
model was used to calculate fission yields for 987 nuclides
[6] so that its predictive capabilities can be tested in future
experiments.
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2 Calculational details

The potential energies are calculated as specified in detail in
Ref. [1]. All total potential energies in this work (in tables,
figures, and text) are expressed with respect to our defined ref-
erence point, the macroscopic energy of the spherical shape
for the particular nuclide considered. The selected shape
grid-points in the shape variables Q2 (elongation), rn (neck
radius), εf1 (left fragment deformation), and εf2 (right frag-
ment deformation) are as in Ref. [1]. The asymmetry variable
αg is chosen so that each value of this coordinate corresponds
to integer values of Z1 and Z2 in the fragments. The model
enhancements introduced to study odd-even staggering are
presented in Ref. [7]. Each fragment distribution calculation
is based on 500,000 trajectories or random walks. The walks
are started in the ground state and terminated when the neck
radius is 2.5 fm. The bias-potential constant V0 is 15 MeV
[2].

2.1 Nascent fragment pairing effects

We summarize how we previously modeled odd–even effects.
When the fragments are fully developed with zero neck radius
of the compound system a common assumption is that for
odd–odd splits the extra odd contribution to the energy should
be Eodd = 2×� where � is the pairing-gap parameter, which
we in previous work [8] have chosen as � = 1.0 MeV. With
a non-zero neck radius the effect of pairing of the emerging
odd splits would be smaller; for very compact shapes with
no obvious neck there should be no effect. This leads to the
following prescription for the odd energy contribution to the
fissioning system

Eodd = 2 × � × (BW − 1)k odd Z1, Z2

Eodd = 0 even Z1, Z2 (1)

where, with the choice k = 1, (BW − 1)k has been our
choice [7,9] for the shape-dependence ansatz for the Wigner
term in our potential-energy model. The shape factor BW is
1 for a shapes with no neck and increases continuously, as
the neck develops, to 2 for separated fragments. It is nec-
essary to postulate such a shape dependence because the
macroscopic energy of two separated fragments contains two
Wigner terms, the original system only one. Without such a
shape dependence a discontinuity of the order of 10 MeV
would occur at scission of actinide nuclei. That is, if we cal-
culated the energy for a deforming nucleus up to the scission
point we would at scission obtain a 10 MeV lower energy
than if we calculated the energy of two approaching sepa-
rated fragments. A pedagogical figure illustrating this and
the necessity of this shape dependence is in Ref. [10], fig. 1.
Since we need a realistic potential-energy surface in the scis-
sion region we do need to consider these issues, which have

in many investigations been ignored. The comprehensive dis-
cussion of the shape-dependence of the Wigner term in Ref.
[9] carries directly over to how the effect of the pairing �

increases as the neck becomes narrower. There is no known
derivation of the shape dependence of the Wigner term, so it
was postulated, based on consideration of its behavior in the
limit of fully developed fragments [9]. The power constant
k, governs how early in the division process the character
of the two fragments causes the “second” Wigner term, and
additionally in our case, the odd pairing effect, start to appear.

In addition to allowing pairing effects in the nascent frag-
ments to modify the model of the potential energy when the
fragments start to exhibit their individual characters, the ran-
dom walk also needs to be further developed. In its initial
formulation a candidate point for the next step in the random
walk is a point adjacent to the current point [2]. However,
when there is a large difference in yield for even-even splits
compared to odd-odd splits, high for the former and low for
the latter, the random walk has to traverse a low-yield “choke
point” to reach the next high-yield point on the fragment
charge-distribution curve. This “choke point” would greatly
reduce the probability of populating the next even-even point
on the charge-yield curve. So might two protons be transmit-
ted in one step? This possibility was implemented in our
first study of odd-even staggering [7], namely we selected as
a possible next candidate point in the asymmetry direction
in the random walk a point corresponding to a change by
one proton and a change of two protons with equal probabil-
ity. There is experimental evidence of enhanced probability
in heavy-ion collisions of transferring two nucleons in one
step compared to a two-step process, see Ref. [11] and ref-
erences cited in Ref. [7]. In the latter it was pointed out that
both the magnitude of the pairing � added to the potential
energy and the relative probabilities of selecting one step or
two step candidate points in the charge-asymmetry variable
would need to depend on excitation energy in a more refined
formulation. In our work “transfer” refers to moving nucle-
ons from one emerging fragment to the other, that is changing
the asymmetry coordinate in the calculated potential-energy
surface. Now new detailed experimental studies of staggering
in fission-fragment charge distributions have become avail-
able for several fissioning nuclei and excitation energies, see
Ref. [12] and references therein. Therefore we are now in a
position to compare calculated and experimental global and
local staggering quantities and their variation with excitation
energy, element and isotope.

2.2 Adaptation of the Brownian shape-motion
random-walk to charge-yield modeling

In our investigations here the charge yield is calculated with
the original “five-dimensional” Y (A) code [2,5] by vary-
ing the volume asymmetry (A1, A2) where the compound
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nucleon number A is A = A1 + A2 so that these volume
splits yield fragment (Z1, Z2) splits that are integers, with
the assumption of unchanged charge division (UCD).

The charge yields in Ref. [7] are calculated by use of that
approach. Calculated yields without and with pairing effects
in the emerging fragments are shown in the top and bottom
panels of fig. 1, in this initial model no damping of pairing
effects with energy were included. In other studies, such as
modeling isotopic yields [13] it is necessary to use the full
“six-dimensional” model that allows calculation of Y (Z , N )

which was also introduced in Ref. [7]. In our previous stud-
ies of staggering effects in fission-fragment charge distri-
butions comparisons between experimental and theoretical
results were simply done by overlaying the experimental and
theoretical charge distributions in the same figures, see for
example [7,13,14].
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Fig. 1 Calculated and experimental fission-fragment charge distribu-
tions for 240Pu. Fragment pairing effects are not included in the top
panel but are in the bottom panel. The units of E∗ and � are MeV
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Fig. 2 Experimental studies of how δglob depends on excitation energy
for two compound systems (Open symbols). The filled black symbols
(upper group of symbols) are the calculated results with our model as
defined in Ref. [7]. The red filled (middle) group of calculated symbols
are the results when we only allow the next neighbor as a candidate next
point in the random walk. Finally the green (lower) group of calculated
results are obtained when we also decrease the pairing delta to � = 0.5
MeV
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Fig. 3 Variation of calculated δglob with excitation energy and element,
with our selected damping of �pair and selected damping of paired
proton transfers, red filled symbols (lower group of filled symbols).
Experimental results are shown as open symbols. Results with original
model [7] (no damping of pairing or two proton transfer with energy)
are shown as filled black symbols (upper group of filled symbols). Only
one calculated point is significantly outside the experimental error bars
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Fig. 4 Local staggering δ
log
loc from experiment [16] at an average energy

of 11.5 MeV compared to calculations based on our current model

2.3 Global staggering in fission-fragment charge
distributions

In Ref. [15] a global measure δglob of odd-even staggering in
nuclear charge yields is defined as

δglob = 1
∑

Z Y (Z)

∑

Z

(−1)ZY (Z) (2)

We show in fig. 2 measured δglob for 238U and 240Pu for
a range of excitation energies [16]. As expected [17] the
measured value of δglob decreases with increasing excitation
energy and with increasing charge of the fissioning com-
pound nuclide. The same is true for the δglob calculated in our
original model [7], but the calculated values do not decrease
sufficiently fast versus energy or compound system. A com-
prehensive review of experimental results are in [18,19].

2.4 Damping of fission-fragment pairing effects with
excitation energy

First, let us alert to the two uses of “excitation energy”.
In experiments excitation energy usually means excitation
energy (above the ground state) of the compound nucleus. In
our theory discussions in most contexts we mean the excita-
tion on the random walk trajectory above the current point
in the potential energy surface, which is a function of the
current shape and the initial energy imparted to the nucleus.
The meaning should be clear from context.

Pairing studies [20,21] show that the pairing gap � and
other pairing effects decrease with energy. We can therefore
anticipate that also the probability of transferring paired pro-
tons in one step decreases with excitation energy. In Fig. 2
we have studied the effect on δglob of not allowing trans-

fer of two protons in one step, shown as filled red symbols
(middle group of calculated results) and in the lower green
group the effect of a smaller pairing delta, namely � = 0.5
MeV, and not allowing transfer of two paired protons in one
step. Because experimental results and calculations (see for
example figures in [20]) show little decrease of the pairing �

for low excitation energies we have in our model (and codes)
implemented

� = e(−0.17×(E∗−6)) × 1.0 E∗ ≥ 6.0 MeV

� = 1.0 MeV E∗ ≤ 6.0 MeV (3)

Specifically, fig. 3 in Ref. [20] shows almost no decrease in
� for low excitation energies after which there is a rapid
decrease; the above expression was formulated to approxi-
mate this behavior and the constants adjusted to reproduce the
observed values of the global pairing quantity δglob defined
in Eq. 2. In our original model of odd-even fission-fragment
charge-distribution staggering we picked one or two steps in
the asymmetry variable (integer proton number) as the next
candidate point on the random walk trajectory with equal
probability. Recognizing that the probability of transferring
two paired protons together in one step decreases with exci-
tation energy leads us to the following modified selection
algorithm. First a candidate point for one or two steps in the
asymmetry coordinate is selected as before with equal prob-
abilities. If the outcome is that two steps are suggested for
a candidate point, then to decrease the probability of going
two steps in the asymmetry coordinate when the excitation
energy increases, we add the following step. We execute the
random number generator (in the range 0 to 1) again. If it
is larger than 0.6 ∗ e(−0.07∗E∗) we do not use the candidate
point obtained but start the process over. This decreases the
probability that a candidate point corresponding to transfer
of two protons is selected as the energy increases.

In Fig. 3 we compare δglob, calculated with damping
according to the above discussion included, to available
experimental data. Only one of the calculated points is sig-
nificantly outside the experimental error bars for the ten data
points studied.

2.5 Local staggering in fission-fragment charge
distributions

Tracy et al. [22] define a local odd-even staggering measure
δloc which specifically applied to charge yields [15] is written

δ
log
loc

(

Z + 3

2

)

= (−1)Z

8

[

ln Y (Z + 3) − ln Y (Z)

−3

(

ln Y (Z + 2) − ln Y (Z + 1)

)]

(4)

One should note that this is a “logarithmic” definition. The
consequence is that (in a figure) a 0.1% deviation where the
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Fig. 5 Measured fission-fragment charge yields [16], at an average
energy 8.5 MeV, compared to calculated values

yield is 1% will look as large as a 1% deviation where the
deviation is 10%. As a consequence small yield deviations
in low-yield regions will look large. However, in practical
applications one might be more interested in the deviations
where the yield is high, where the effect on some studied
process would affect the outcome the most. Then the “non-
logarithmic” expression

δlin
loc

(

Z + 3

2

)

= 1
∑

Z Y (Z)

{
(−1)Z

8

[

Y (Z + 3) − Y (Z)

−3

(

Y (Z + 2) − Y (Z + 1)

)]}

(5)

would be the most appropriate. Also, if we assume the inac-
curacy of the calculations is more “absolute” than relative
and that one (of unknown source) contribution to the theo-
retical error in the yield is, say, 1% for any mass split, then
it would be difficult to get small logarithmic errors in the
local staggering δ

log
loc in the tails of the charge distributions

and also in the symmetry region where the yield for the cases
we study is also low. We will below compare the logarithmic
and linear measures of looking at local odd-even staggering.

3 Results and discussion

We compare calculated local staggering to recent experimen-
tal results [16] for a range of energies for fission of 240Pu and
238U. For 240Pu the comparisons are in Figs. 4, 5, 6, 7, and
8. At the compound-nucleus excitation energy 8.5 MeV in
Figs. 5, 6, and 7 we study three quantities, namely the fission-
fragment charge distribution, the local logarithmic staggering
δ

log
loc and the local linear staggering δlin

loc to show these three
related quantities for one specific energy. For 238U we study
the local logarithmic staggering δ

log
loc for the two compound-
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Fig. 6 Local staggering δ
log
loc from experiment [16], compared to values

calculated in our current study. With this logarithmic definition of δ
log
loc ,

deviations appear large in regions of low yield, as they also will in
similar figures below
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Fig. 7 Local staggering δlin
loc from experiment [16] compared to calcu-

lated values for compound-nucleus excitation energy 8.50 MeV. Here
the use of a linear version of δloc leads to the impression that the largest
differences occur in the high-yield regions

nucleus excitation energies 8.7 MeV and 6.8 MeV in Figs.
9 and 10. The charge yield for 240Pu at 8.5 MeV shows that
the rather small deviation in the yield at Z = 38 gives a
substantial deviation in the linear local odd–even staggering
δlin

loc at Z = 38 and Z = 39 The deviation at, for exam-
ple, Z = 34 appears small whereas in the logarithmic plot
it appears large. The deviations at Z = 38 and Z = 39 in
the linear plot in Fig. 7, are about a factor 2 as displayed,
whereas in the log plot in Fig. 6 the difference between the-
ory and experiment appears quite small; experiment is about
12 and the calculation is about 10. We should also note that
the difference definitions of the local staggering for a specific
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Fig. 8 Local staggering δ
log
loc obtained from an evaluated experimental

data base [23] and calculated from our current study. The heavy-yield
peak in the experimental data has been obtained by mirroring the yields
in the light peak. The data is for thermal-neutron induced fission
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Fig. 9 Local staggering δ
log
loc from experiment [16] compared to cal-

culations for an average experimental compound-nucleus excitation
energy of 8.70 MeV

proton number have contributions from the actual mass yield
at four different proton numbers.

One needs to be aware that difference expressions like the
ones used here to extract some quantity from experimental
data have limitations in many situations. It is well-known
that pairing effects, in particular an “experimental” value
of the pairing gap �, are often extracted from experimen-
tal masses by difference expressions, see for example Refs.
[24,25]. However, in the specific example of pairing these
difference expressions extract all non-smooth contributions
to the mass surface beyond second order, from for exam-
ple, and very importantly, contributions from deformation
changes. However, if experimental and theoretical “pairing
gaps” are based on using the same difference expressions on
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Fig. 10 Local staggering δ
log
loc from experiment [16] compared to cal-

culations for an average experimental compound-nucleus excitation
energy of 6.80 MeV

experimental and theoretical masses they can be compared,
although they do not exactly correspond to pairing gaps used
or obtained in theoretical models. The same is of course cor-
rect for the local staggering measures. But as pointed out
above we need to be aware of how differently linear and log-
arithmic deviations present the experimental data. We can
still draw some general conclusions and we find encourag-
ing agreement between experimental and theoretical results.
In particular, a general feature in the experimental results is
that local staggering increases toward the tails of the yields,
towards symmetric divisions, and decreases with excitation
energy. These features are also seen in the theoretical results.
In the logarithmic local staggering calculations the larger
deviations with respect to experiment occur in the regions
of low yield, which we explained above occur because the
logarithmic definition will give large deviations in regions of
low yield even if the deviation is only a fraction of a percent.

In Fig. 8 there is an obvious large deviation at Z = 36 and
Z = 35 which occurs because there is a large bump in the
experimental data. In this case the experimental data is from
an ENDEF evaluation [23]. The evaluation lists the isotopic
yields Y (Z , N ) for which we have taken the obvious sums
to obtain Y (Z). Additionally, we have obtained the heavy
peak by reflecting on symmetric division. There is no similar
bump in the newly measured data [16] at closelying excita-
tion energies for these proton numbers, see for example Fig.
5. It therefore seems clear that additional experimental mea-
surements are needed for thermal-neutron-induced fission for
240Pu so that more accurate yields will be available.

At higher excitation energies, the experimental data cor-
respond to a range of excitation energies, see legends in Figs.
4, 5, 6, 7, 9, 10, rather than to a well-defined value. The cal-
culations were instead performed for a specific value, chosen

123



Eur. Phys. J. A (2024) 60 :27 Page 7 of 8 27

approximately as the mean of the energy range, due to the
imprecise knowledge of the excitation-energy distribution in
the experiments. Furthermore, due to low statistics, the exper-
imental error bars can be quite large, as is seen in the figures.
A more refined study of the rate of damping of staggering
effects requires more precise experimental information. Mea-
surements in this direction are currently in progress [26].

It is common in many contexts to use a phenomenolog-
ical expression for the damping of shell corrections with
excitation energy. Such phenomenological damping is also
used in the BSM model [3]. It was also shown that use of
a Fermi-gas level-density model [27] gave almost identi-
cal results compared to a microscopic combinatorial level-
density model. However, to model staggering which is due
to pairing effects in the emerging fragments it is necessary to
introduce in the potential-energy model such pairing effects,
as discussed above. Also in this case we have here found
that a phenomenological ansatz for the damping with energy
of pairing effects is sufficient to yield realistic results. Thus,
in the BSM model the structure in the calculated mass and
charge yields is determined by the structure in the calculated
potential-energy surfaces with the generalization to include
effects of pairing properties of the emerging fragments. It is
important to note that near scission the potential energy is
close to the sum of the fragment ground-state masses plus
the Coulomb interaction energy which latter is trivial. This
is illustrated in fig. 1 in Ref. [10]. Therefore it is important
that the potential-energy model yields sufficiently accurate
ground-state masses. In the potential-energy model used here
the ground-state masses are accurate to about 0.75 MeV [10].

However to describe neutron emission from the fission
fragments and correlations between fragment total kinetic
energies, mass division and number of neutrons emitted it
is necessary to calculate microscopic level structure in the
emerging fragments [28].
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