
Eur. Phys. J. A (2024) 60:14
https://doi.org/10.1140/epja/s10050-023-01229-8

Regular Article - Theoretical Physics

Thermodynamics of quark matter with multiquark clusters in an
effective Beth-Uhlenbeck type approach

D. Blaschke1,2,3,a , M. Cierniak1 , O. Ivanytskyi4 , G. Röpke1,5

1 Institute of Theoretical Physics, University of Wroclaw, Max Born place 9, 50-204 Wroclaw, Poland
2 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
3 Center for Advanced Systems Understanding (CASUS), Untermarkt 20, 02826 Görlitz, Germany
4 Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids, University of Wrocław, Max Born place 9, 50-254 Wroclaw,

Poland
5 Institute of Physics, University of Rostock, Albert-Einstein Str. 23-24, 18059 Rostock, Germany

Received: 15 August 2023 / Accepted: 22 December 2023 / Published online: 24 January 2024
© The Author(s) 2024
Communicated by Thomas Duguet

Abstract We describe multiquark clusters in quark matter
within a Beth-Uhlenbeck approach in a background gluon
field coupled to the underlying chiral quark dynamics using
the Polyakov gauge. An effective potential for the traced
Polyakov loop is used to establish the center symmetry of the
SU(3) color which suppresses colored states and its dynami-
cal breaking as an aspect of the confinement/deconfinement
transition. Quark confinement is modeled by a large quark
mass in vacuum which is motivated by a confining den-
sity functional approach. A multiquark cluster containing
n quarks and antiquarks is described as a binary compos-
ite of smaller subclusters n1 and n2 (n1 + n2 = n). It has a
spectrum consisting of a bound state and a scattering state
continuum. For the corresponding cluster-cluster phase shifts
we use simple ansätze that capture the Mott dissociation of
clusters as a function of temperature and chemical potential.
We go beyond the simple “step-up-step-down” model that
ignores continuum correlations and introduce an improved
model that includes them in a generic form. In order to explain
the model, we restrict ourselves here to the cases where the
cluster size is 1 ≤ n ≤ 6. A striking result is the suppres-
sion of the abundance of colored multiquark clusters at low
temperatures by the coupling to the Polyakov loop and their
importance for a quantitative description of lattice QCD ther-
modynamics at non-vanishing baryochemical potentials. An
important ingredient are Polyakov-loop generalized distri-
bution functions of n-quark clusters which are derived here
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for the first time. Within our approach we calculate ther-
modynamic properties such as baryon density and entropy.
We demonstrate that the limits of a hadron resonance gas
at low temperatures and O(g2) perturbative QCD at high
temperatures are correctly reproduced. A comparison with
lattice calculations shows that our model is able to give a
unified, systematic approach to describe properties of the
quark-gluon-hadron system.

1 Introduction

The phase diagram of quantum chromodynamics (QCD) is
a subject of intense theoretical and experimental research.
Exploratory probes of the hot and increasingly dense nuclear
matter are being performed in heavy–ion collision (HIC)
experiments at the Relativistic Heavy-Ion Collider (RHIC)
at BNL Brookhaven, the Large Hadron Collider (LHC) and
the Super Proton Synchrotron (SPS) at CERN in Geneva
with plans for many additional accelerator experiments in
the near future. In the low-temperature range of the phase
diagram, the possibility of a phase transition to a cold and
dense quark–gluon plasma (QGP) in neutron stars is widely
considered (see [1–4] for recent reviews). Many ongoing
observational efforts aim at detecting signs of a phase transi-
tion inside neutron star cores. The current iteration of these
multi-messenger observations include the NICER mission,
and the LIGO–VIRGO collaboration with their gravitational
wave detectors. The efforts of the NICER team have pro-
duced vital data on the masses and radii of pulsars PSR
J0030+0451 [5,6] and PSR J0740+6620 [7,8] (currently the
heaviest known neutron star with 2.08 ± 0.07 M�, as inde-
pendent Shapiro–delay based mass measurements [9]) while
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the analyses of the gravitational wave signal from the binary
neutron star merger event GW170817 have put constraints
on the tidal deformability of neutron stars in their typical
mass range of 1.4 M� [10–12]. Future measurements of
postmerger gravitational waves may contribute to deciding
the question whether a strong phase transition to deconfined
quark matter may occur in those systems [13]. In addition,
the hypothesis of a phase transition induced shock revival
in core–collapse supernova [14] might hint at an additional
observational avenue of studying the structure of the hot and
dense sector of the QCD phase diagram (cf. [4] and refer-
ences therein).

All of these efforts require a good theoretical understand-
ing of the phase diagram of strongly interacting matter and
its structure. The only ab–initio solutions of QCD, which
could be applied to the study of the phase diagram are lattice-
QCD (LQCD) calculations, where Monte–Carlo simulations
of the QCD partition function are performed on a discretized
Euclidean space–time lattice. The vanishing baryochemical
potential (μB = 0) sector of the QCD phase diagram is well
explored within this approach, see, for instance, Refs. [15–
18]. However, despite recent progress in calculating finite
μB observables on the lattice [19–21], the available density
range is still insufficient to provide theoretical data applica-
ble to both HIC and neutron star studies due to the numerical
sign problem for finite μB calculations.

Therefore, in order to explore the QCD phase diagram
at arbitrary temperatures and densities one has to use effec-
tive models based on the underlying symmetries of QCD.
One such model is the Nambu–Jona-Lasinio (NJL) model
[22,23]. It is extensively used in studies of dynamical chiral
symmetry breaking and restoration (cf. [24]). However, this
model does not capture the aspect of quark confinement and
leads to an unphysical dominance of colored quark degrees
of freedom already at relatively low temperatures, below 100
MeV. Therefore, an extension of the NJL model by an addi-
tional coupling between the fermionic degrees of freedom
and a gluon background field in the Polyakov gauge (or PNJL
model [25–28]) has been introduced which addresses the
aspect of quark confinement by a statistical suppression of the
contribution of free quarks to thermodynamic observables at
low temperatures and chemical potentials. In this work we
further extend the PNJL–based QGP model by a perturbative
QCD correction of O(αs) in the expansion w.r.t. the strong
fine structure constant αs = g2/(4π) stemming from one-
gluon exchange which, following Ref. [29] (for details, see
also [30,31]) applies only to processes with high momentum
transfer p > Λpert. This extension of the PNJL model leads
to an improvement of the comparison with LQCD thermo-
dynamics at high temperatures.

The model is defined to allow for a thermodynamic
description of matter at finite temperature T and baryochem-

ical potential μB under conditions of isospin symmetry and
strangeness neutrality.

For a realistic description of strong interacting matter, the
effective model should take into account quark hadronization
in the domain of low T and μB , where the resulting hadrons
are composite quark clusters. In the spirit of [29], the compos-
ite nature of the low density hadronic degrees of freedom is
accounted for by employing a generalized Beth-Uhlenbeck
formula [30–40], which provides an interface between the
low density and low temperature hadronic matter and the
high density and high temperature PNJL-based QGP. This
approach to quark clustering closely resembles the idea of
the hadron–resonance–gas (HRG) model, which is crucial to
the interpretation of LQCD calculations at low temperatures.

The HRG model assumes that the strong interactions are
saturated by hadron resonance formation [41]. Indeed, this
assumption produces a description of low energy QCD matter
as a free HRG well in agreement with both LQCD studies
below the pseudocritical temperature Tc [42–45] and HIC
experiments (cf. [46] and reference therein).

Unsurprisingly, however, at increasing temperatures this
agreement falters due to the rising importance of the quark
substructure of hadrons leading to repulsive interactions,
which the unmodified HRG model does not take into account.
One fact is that highly excited resonances in the continuum
of scattering states cannot be treated like bound states. These
weak correlations are seen in the phase shifts and give only
a small contribution to the virial expansion of the thermo-
dynamic functions, as known, for instance from the Beth-
Uhlenbeck formula discussed below.

Another fact is that the model of ideal mixture of non-
interacting clusters fails when density is increasing. Vari-
ous methods of solving this problem exist, for instance by a
hadronic excluded volume. One physical mechanism for the
repulsive interactions in a hadron gas is seen in the quark
substructure of hadrons which, following the Pauli exclu-
sion principle, leads to a repulsive interaction by quark Pauli
blocking among hadrons [47,48]. These effects of exchange
symmetry are precursory to the delocalization of the hadron
wave functions in the hot, dense hadron gas which entails
the dissociation of hadrons in the analogue of a Mott effect
introduced in nuclear physics [49] and known from solid
state and plasma physics [50]. In order to provide a descrip-
tion of the QGP on the same microscopic footing with the
gas of hadronic resonances as bound states of a confining
interquark potential, the principle of saturation of the color
charge within a range of nearest neighbors has been applied
within the string-flip model (SFM) [47,51]. In Ref. [52], an
improvement of the SFM has been presented which includes
relativistic kinematics for the quarks and discusses a mixed
phase between the SFM plasma and a schematic HRG model
containing multi-quark clusters. The results were compared
with the early lattice QCD simulations of that time. However,
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a consistent formulation of medium effects on bound state
formation is absent in this approach so that this mixed phase
construction can only be viewed as an early realization of
the switch function concept of Ref. [53]. The SFM model for
the QGP has been considerably improved in the subsequent
work of Khvorostukhin et al. [54], where a confining quasi-
particle model of quarks and gluons has been introduced in
the form of a relativistic density functional (RDF) approach.
The form of this density functional has later been general-
ized to include the coupling to a nonlinear vector mean field
that allowed to discuss heavy hybrid neutron stars and mass
twin solutions for them [55]. The most recent development
of the SFM is a lagrangian RDF formulation that obeys chi-
ral symmetry and contains vector meson and diquark mean
fields and is shown to obey modern constraints from multi-
messenger observations of neutron stars and their mergers
[56].

However, to provide qualitative insight into the transition
from an HRG to a QGP, in the present work we abstain from a
detailed microscopic model for solving the few-quark prob-
lem in a dense medium. For our study, we will incorporate
the effect of the repulsive interaction as well as the even-
tual temperature and density dissociation of hadrons (the
Mott effect) directly into a model for the phase shift δi of
a hadron species i in the generalized Beth-Uhlenbeck for-
mula. The ansatz will be similar to the one used in [30,31], in
agreement with the Levinson theorem. The resulting contri-
bution to the thermodynamic observables will be referred to
as the Mott–hadron–resonance–gas (MHRG) contribution.
The full MHRG+PNJL model embodies the main conse-
quence of quark chiral symmetry restoration, i.e. the low-
ering of the continuum thresholds for multiquark scattering
states, which entails the dissociation of multiquark bound
states (Mott effect). A general approach to strong correla-
tions in many-particle systems is the Φ-derivable approach
which is based on the Luttinger-Ward-Baym functional [57–
59] and has recently been applied to a T -matrix description
of the QGP thermodynamics as well as spectral and transport
properties by Liu and Rapp [60]. However, these authors did
not extend the approach to include bound state formation and
the limiting case of the hadron resonance gas phase. This is
the main goal of the present work, where we generalize the
Φ-derivable approach to deal with multi-quark clusters.

As an extension of the previous work [29], we have con-
sidered clusters beyond the color–singlet states, and we allow
for any combination of quarks and antiquarks up to 6 valence
degrees of freedom. In this way, we also take into account
all colored multi-quark cluster states which, however, are
strongly suppressed in the region below the Mott tempera-
ture due to their coupling to the Polyakov loop.

As a benchmark for defining the model, we use continu--
um–extrapolated LQCD calculations of the baryon density
and the entropy density as a function of the temperature for

finite values of μB/T [19,20]. These data allow us to test
the PNJL model with the MHRG virial correction terms.
We perform exploratory calculations accounting for a limited
number of resonances from the Particle Data Group (PDG)
up to a mass threshold of about 2600 MeV.

Furthermore, instead of deriving the quark mass self–
consistently, we make the assumption of a sudden drop of the
quark mass at the μB-dependent pseudocritical temperature
Tc(μB) from the constituent quark mass value to the current
quark mass value. This assumption entails that the pseudo-
critical temperature can be identified with the Mott temper-
ature TMott(μB) where all hadronic bound states dissociate
into their quark constituents. This allows us to focus on the
cluster contribution to the Polyakov–loop calculation, with-
out taking into account the complicated interplay between
the singlet clusters, the scalar mean field and the Polyakov
loop. Such an analysis is definitely warranted, especially due
to the discrepancy between the pseudocritical temperature of
the chiral crossover transition obtained in LQCD simulations
and Polyakov–loop generalized chiral quark models. But this
issue is beyond the scope of the present work.

This work is organized as follows: In Sect. 2 we present
the theoretical aspects of our approach, i.e., the QGP ther-
modynamics based on the PNJL thermodynamic potential,
and the treatment of clusters in the context of the MHRG
approach. A major issue is the determination of the scatter-
ing phase shifts, which follow in principle from the solution
of a few-quark in-medium wave equation, but here are pos-
tulated in a generic, medium-dependent form in Sect. 3 along
with other parameters of the model. Results for the thermody-
namic quantities baryon density and entropy as a function of
T and μB are presented and discussed in Sect. 4. In Sect. 5,
a summary is given and conclusions are drawn. Technical
details are collected in Appendices A and B.

2 Generalized Beth-Uhlenbeck approach to quark
clustering in the Polyakov gauge

In order to satisfactory reproduce the high temperature lat-
tice QCD predictions, we shift now towards an effective
Polyakov-loop quark–gluon plasma (QGP) model based
on the quark quasiparticle description combined with the
Polyakov–loop potential U(φ, φ̄) and a O(αs) perturbative
virial correction. In an effort to maintain the description of
hadrons as nonperturbative correlations of quarks and glu-
ons, we couple this model to the Mott–hadron resonance gas
(MHRG), in analogy to [29], and extended it to finite chem-
ical potentials.

In this work we develop the technique of the cluster virial
expansion approach for multi-quark clusters at finite tem-
peratures and chemical potentials on the basis of a cluster
generalization of the so-called Φ-derivable approach. Within
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a Green’s function approach [58,59] the correlation func-
tional Φ is introduced where the contributions of interac-
tion are represented by closed-loop diagrams. When for the
Φ functional a restriction to closed two-loop diagrams in
cluster Green’s functions is applied, this approach is equiva-
lent to the generalized Beth-Uhlenbeck approach to cluster-
ing in hot, dense Fermi-systems [61]. The intricacy of color
confinement in low-density quark matter is considered by
coupling the quarks and their clusters to the Polyakov-loop
background field which serves to suppress the appearance
of colored clusters in the region of quark confinement. We
demonstrate a satisfactory comparison of our results for the
thermodynamics of clustered quark matter with recent lattice
QCD simulations at finite temperature and chemical poten-
tials, where they are available.

We introduce an ansatz for the thermodynamic potential
which separates the QGP sector of quark and gluon quasipar-
ticles from that of the MHRG comprised of hadrons which
are understood as quark bound states (multiquark clusters)
that can undergo a Mott dissociation,

Ω(T, μ, φ, φ̄) = ΩQGP(T, μ, φ, φ̄) + ΩMHRG(T, μ, φ, φ̄).

(1)

In the following subsections we explain these two contribu-
tions more in detail.

2.1 QGP thermodynamics of quarks and gluons

The thermodynamics of the deconfined QGP can be separated
into a perturbative and a nonperturbative contribution

ΩQGP(T, μ, φ, φ̄) = ΩNP(T, μ, φ, φ̄) + Ωpert(T, μ, φ, φ̄),

(2)

where ΩNP describes the nonperturbative low-energy QCD
quark and gluon degrees of freedom via the mean–field ther-
modynamic potential

ΩNP(T, μ, φ, φ̄) = ΩQ(T, μ, φ, φ̄) + U(φ, φ̄) (3)

and perturbative corrections are absorbed inΩpert(T, μ, φ, φ̄).
We take into account the minimal coupling of quarks to a

homogeneous gluon background mean field in the Polyakov
gauge A4 = λ3 A3

4 + √
3λ8 A8

4 while quark interactions are
accounted for by a suitably chosen relativistic energy density
functional Lint

L0 = q̄
[
γ0(iωn + μ − i A4) − �γ · �p − m0

]
q

−U(φ, φ̄) − Lint , (4)

with U(φ, φ̄) denoting the Polyakov–loop (gluon) potential
for which we will not make use of the traditional form found

in [26], but the one given in [62] as explained below. The
traced Polyakov loop is defined as

φ = Trc exp(iβ A4)/Nc, (5)

where Nc = 3 is the number of colors in the SU (Nc) gauge
theory and β = 1/T is the inverse temperature. Abbreviat-
ing this expression in accordance with the standard notation
found in the literature, we have A3

4 = ϕ3 and A8
4 = ϕ8, so

that A4 = diag(ϕ3 + ϕ8,−ϕ3 + ϕ8,−2ϕ8) and finally

φ = 1

Nc

(
e−2iβϕ8 + eiβ(ϕ8−ϕ3) + eiβ(ϕ8+ϕ3)

)
, φ̄ = φ∗ .

(6)

The minimal coupling of the quark to the homogeneous
gluon background field in the Polyakov gauge leads to a shift
of the Matsubara frequency iωn → iωn − i A4. We define
the distribution function of a quark of given color c as the
Matsubara sum over the quark propagator

Fc(E p −μ+ i A4) ≡ 1

β

∑

n

1

(iωn − E p + μ)1c − i(A4)cc
.

(7)

The Polyakov-loop distribution function is then obtained
after performing the color trace

f (1),+
φ = Trc Fc(E p − μ + i A4) (8)

=
3∑

c=1

f [(E p − μ) + i(A4)cc], (9)

where f [(E p −μ)] is the ordinary Fermi function which can
be written as

f (E p − μ) ≡ − 1

β

∂z+

∂ E p
, (10)

with z+ ≡ ln[1 + y+
1 ] and y+

1 = e−β(E p−μ). Now we can
write

f (1),+
φ = 1

β

3∑

c=1

∂ ln
[
1 + y+

1 e−iβ(A4)cc
]

∂ E p
(11)

= 1

β

∂

∂ E p
ln
[
1 + 3(φ̄ + φy+

1 )y+
1 + y+

1
3
]

(12)

and obtain the Polyakov-loop generalized single-quark dis-
tribution function

f (1),+
φ = (φ̄ + 2φy+

1 )y+
1 + y+

1
3

1 + 3(φ̄ + φy+
1 )y+

1 + y+
1

3 . (13)

We note that the distribution function for an antiquark[
f (1),−
φ

]∗
is obtained from Eq. (13) by the replacements:
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μ → −μ and φ → φ̄ = φ∗. The nonperturbative part of the
QGP thermodynamics (3) consists of a quark quasiparticle
contribution and the Polyakov–loop potential U for which
we adopt the form defined in [62],

U(T, φ, φ̄) = T 4
[
−1

2
a(T )φ̄φ + b(T ) log MH

+1

2
c(T )

(
φ3 + φ̄3

)
+ d(T )

(
φ̄φ
)2
]

(14)

with MH being the SU(3) Haar measure

MH = 1 − 6φ̄φ + 4
(
φ3 + φ̄3

)
− 3

(
φ̄φ
)2

, (15)

and

a(T ) = a1 + a2 (T0/T ) + a3 (T0/T )2

1 + a4 (T0/T ) + a5 (T0/T )2 + a6
μ2T 2

0

T 4 , (16)

b(T ) = b1 (T0/T )b4
[
1 − eb2(T0/T )b3

]
, (17)

c(T ) = c1 + c2 (T0/T ) + c3 (T0/T )2

1 + c4 (T0/T ) + c5 (T0/T )2 , (18)

d(T ) = d1 + d2 (T0/T ) + d3 (T0/T )2

1 + d4 (T0/T ) + d5 (T0/T )2 . (19)

The parameters a1 . . . a5, b1 . . . b4, c1 . . . c5, d1 . . . d5 are
taken from the pure SU(3) lattice gauge fit performed in [62].
The parameter a6 = 1.28 is introduced here to improve the
description of the baryon density in comparison with LQCD
results [19]. The parameter T0 is related to the critical tem-
perature for deconfinement in the case of pure gluodynamics,
where the value T0 = 270 MeV is taken from pure gauge
theory simulations on the lattice. One has to invoke a flavor
dependence of this parameter [63], which for our applica-
tions to the realistic case of N f = 2 + 1 flavors is chosen
to be T0 = 205 MeV in order to provide the best agreement
with the LQCD data [19] discussed below.

The mean field thermodynamics in the quark sector of the
PNJL model is described by

ΩQ(T, μ, φ, φ̄) =
∑

f =u,d,s

Δ2
f (T, μ)

8Gs
− 2N f Nc

∫ Λ

0

dp p2

2π2 E p

−N f Nc

∫
dp p2

3π2

p

E p

{
f (1),+
φ +

[
f (1),−
φ

]∗}
. (20)

Here, Gs is the scalar coupling constant, and Δ f (T, μ) =
M f (T, μ) − m f is the dynamically generated quark mass
gap for the flavor f , see Table 1.

The same structure for the mean field thermodynamic
potential (20) is also obtained in the confining relativistic
density functional (RDF) approach, see Eqs. (16) and (17) of
[56], since it can be mapped to an NJL model with medium
dependent couplings. Solutions of the gap equation for the
medium dependent quark mass in this case are shown, e.g., in

Table 1 Properties of quarks f

B f Quark M f [MeV] m f [MeV] d f = 2Nc N f

1/3 q = u,d 627 5.6 12

1/3 s 770 124 6

B f baryon number, d f degeneracy, M f constituent mass and m f current
mass of quark flavor

[64] and exhibit a significantly larger constituent quark mass
than NJL models, realising the effective quark confinement
in the RDF approach. In this work, we will use a sudden
switch model that entails a corresponding behavior of the
thresholds for multi-quark continuum states as discussed in
more detail in Sect. 3.1 below.

The divergence of the integral within ΩQ is a known defi-
ciency of the (P)NJL model. We regularize the divergent part
of this integral by introducing a 3-dimensional momentum
cutoff. The cutoff Λ is chosen such, that

N f Nc

π2

∫ Λ(T,μ)

0
dp p2 E p −

∑

f =u,d,s

Δ2
f (T, μ)

8Gs
= 0, (21)

simplifying the quasiparticle expression for the quark ther-
modynamical potential to

ΩQ,reg = −N f Nc

∫
dp p2

3π2

p

E p

{
f (1),+
φ +

[
f (1),−
φ

]∗}
.

(22)

In addition, we introduce a perturbative virial correction con-
tribution in two loop order, Ωpert(T, μ, φ, φ̄) with a standard
expression (cf. [65], see also [66]) of the form

Ωpert(T, μ, φ, φ̄) = 8

π

αs N f

β4

{
1

6

(
I + + I −)

+ 1

4π2

(
I + + I −)2

}
(23)

where

I ±(T, μ, φ, φ̄) =
∫ ∞

Λpert/T
dx

x

3
f (1),±
φ (24)

are modified integrals introduced in [29] and extended to
finite chemical potentials with the generalized Polyakov–
loop generalized Fermi distribution functions. The infrared
cutoff, Λpert = 222 MeV, represents the momentum range
below which nonperturbative physics dominates. This value
is adjusted in order to provide agreement with the data on
the LQCD thermodynamics (see Sect. 4). We use a temper-
ature and chemical potential dependent regularized running
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coupling [67–69]

αs(T, μ) = 12π

11Nc − 2N f

[
1

ln
(
x2
) − 1

x2 − 1

]

, (25)

x2 =
(

T

T∗

)2

+
(

μ

μ∗

)2

, (26)

with Nc = 3, N f = 3, T∗ = 93.75 MeV. We choose μ∗ =
3πT∗ in accordance with the argument of the switch function
in [53].

The traced Polyakov loop variables φ and φ̄ are obtained
by solving the corresponding gap equations derived by min-
imizing the total thermodynamic potential. This includes the
PNJL and perturbative parts of the QGP model, which were
derived in [29] for μ = 0. As an extension of that work, we
have introduced finite–μ descriptions of each of the contri-
butions to the thermodynamic potential. Additionally, in the
MHRG part we have permitted the contributions of color–
triplet and color–antitriplet clusters, which, while strongly
suppressed in the HRG phase where the traced Polyakov–
loop is close to zero, have an impact on the Polyakov–loop
behaviour and on the thermodynamics in the phase where the
approximate chiral symmetry is restored and bound states
underwent Mott dissociation. The results of these calcula-
tions will be shown in the following subsection.

2.2 Clusters in quark matter and the MHRG approach

Below the deconfinement transition, quark matter appears
predominantly as color-neutral clusters, the hadrons. The
quark substructure of the hadronic system determines the
interaction between hadrons, but also intrinsic excitations.
The inclusion of cluster formation, including excited states
and resonances is an indispensable ingredient to the thermo-
dynamics of quark-gluon matter.

In contrast to plasma physics where we start from a known
hamiltonian and use for the evaluation of the partition func-
tion well-elaborated methods such as partial summation of
ladder diagrams to introduce bound state formation, this first
principle approach is presently not in reach in QCD. Data
from Lattice gauge theory simulations are not available for
nuclear matter in the hadronic phase. Usually, this prob-
lem is circumvented by interpolation between two different
approaches to describe high energy density matter, the QGP
at high temperatures as described above, and the hadron-
resonance gas (HRG) below the deconfinement transition.
For instance, in [53] both approaches are matched together,
using a switching function for a smooth transition. There, the
crossover region at μ = 0 occurs around T = 170 MeV and
goes to T = 0 around μ = 1.25 GeV. In addition, the HRG is
modified by an excluded-volume ansatz to mimic the interac-
tion between hadrons in the hadronic phase. Adapting param-
eters for this semi-empirical approach, in Ref. [53] good

agreement with lattice data is obtained. The introduction of
a switching function “by hand”, however, does not provide
any insights to the microphysical processes that underlie the
hadron-to-QGP transition.

We intend to find a unified description for the quark-gluon-
hadron matter system including cluster formation and disso-
ciation. The hadrons are obtained as bound states, but their
disappearance at high densities is described as melting owing
to medium effects. Instead of a phenomenological excluded
volume concept, a quark exchange process may be consid-
ered as origin of repulsion. Thus, a main point is the account
for antisymmetrization of the fermionic quark states what
leads to Pauli blocking and the dissolution of bound states,
denoted above as Mott effect. In the absence of a fundamental
hamiltonian of the system, we will use multiquark correla-
tion functions to encode and model the dynamical properties
of the system.

In this work we are interested in the systematic descrip-
tion of correlations in the quark system which are seen from
the bound state formation, but also in the continuum correla-
tions. For the two-particle system, continuum correlations are
related to the scattering phase shifts as known from the Beth-
Uhlenbeck formula. A generalization of this Beth-Uhlenbeck
formula has been discussed [61] where the scattering of two
clusters was considered.

When considering more than two elementary constituents
of a cluster, different channels are possible where this cluster
appears. Here, we deal with binary processes for the for-
mation and the decay of the clusters into two subclusters.
We consider two-component scattering phase shifts which
indicate the occurrence of a resonance, but reflect also the
possible existence of a bound state of these constituents.

In general, we have different possibilities for the decom-
position of a cluster into subclusters. This is of relevance for
the decays into various channels with corresponding branch-
ing ratios, but not for the thermodynamic properties which
are determined by the density of states. For the thermody-
namic properties it is sufficient to consider only a specific
binary decomposition. This approach is a generalization of
the two-particle problem to a many-particle approach and
has also been applied in nuclear physics to describe cluster
formation and resonances in nuclear matter [70,71].

Within our approach, we consider all possible clusters
formed from light quarks of flavors f = u, d, s, includ-
ing also colored clusters. This is necessary to describe the
transition to the QGP state. The set of clusters considered in
the present work is shown in Tables 2, 3, 4. The color-neutral
clusters are selected from the Particle Data Group [72] sum-
mary tables for mesons in Table 3 and for baryons in Table
4, according to the choice made in Ref. [53]. We added the
deuteron as a hexaquark state as well as the hypothetical sex-
aquark S(uuddss), for which a mass of 1885 MeV was moti-
vated by Buccella [73] assuming a compact three-diquark
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Table 2 Masses of colored
multiquark clusters according to
the simple hadron mass formula
(52) together with the
corresponding multiquark
thresholds (53)

Bi Colored cluster di Mi M<
th,i M>

th,i
[MeV] [MeV] [MeV]

2/3 D1 (uu/ud/dd) 3 783 1254 11.2

2/3 D2 (us/ds) 6 926 1397 129.6

4/3 4q1 (D1 D1) 3 1095 2508 22.4

4/3 4q2 (D1 D2) 6 1238 2651 140.8

5/3 5q1 (N D1) 12 1251 3135 28.0

5/3 5q2 (N D2) 24 1394 3278 146.4

5/3 5q3 (ΛD2) 48 1537 3421 264.8

Bi is the baryon number and di the degeneracy of the state i

structure, see also [74] and references therein. The contri-
bution of heavier clusters is discussed below. It should be
mentioned that also further clusters such as penta-quarks are
discussed recently [75,76], but those containing only three
light quark flavors are not yet confirmed by experiments.

The MHRG part takes the form of a cluster decomposition
of the thermodynamic potential for quark matter

ΩMHRG(T, μ, φ, φ̄) =
N∑

n=2

Ωn(T, μ) + Φ [{Sn}] , (27)

Ωn(T, μ) = cn

[
Tr ln S−1

n + Tr(Πn Sn)
]
, (28)

where n denotes the total number of valence quarks and anti-
quarks in the cluster; cn = 1/2 for bosonic and cn = −1 for
fermionic clusters [77,78]. The functional Φ [{Sn}] contains
all two-cluster irreducible (2CI) closed-loop diagrams that
can be formed with the complete set of cluster Green’s func-
tions Sn . We will restrict ourselves to a maximum number
of N = 6 quarks in the cluster and to the class of two-loop
diagrams of the “sunset” type which are shown in Figs. 1 and
2 for the case of N = 6.

The full quark cluster propagators Sn fulfill a Dyson–
Schwinger equation

S−1
n = S(0)

n
−1 − Πn , n = 2, . . . , N , (29)

where S(0)
n is the free n−quark cluster propagator and the

cluster selfenergy Πn should be obtained from

Πn = ∂Φ

∂Sn
. (30)

The free n−quark cluster propagator for n = 2, . . . , N in
general is obtained from the free quark propagator by a prod-
uct ansatz and subsequent summation over n − 1 Matsubara
frequencies in order to obtain a one-frequency function, see,
e.g., Ref. [79]. Here we perform a cluster virial expansion
which we restrict to the second virial coefficients for inter-
actions of pairs of clusters, including also quark pairs as the
simplest example. In that case we obtain the free a−quark
cluster propagator by performing one Matsubara summation

in the product ansatz for the bipartition of the cluster as illus-
trated in Appendix A. The generalized Matsubara frequen-
cies which include the coupling to the Polyakov-gauge gluon
background field, are given in Table 5.

The Eqs. (27), (28), (29) and (30) form a closed set of
equations that for its solution requires the knowledge of the
free n−quark cluster propagator S(0)

n and the choice of the
2CI set of diagrams of the Φ−functional, built with the
set of full cluster propagators {Sn}. Following the spirit of
Refs. [77,78], we consider here the quark density and entropy
density as first derivatives of the thermodynamic potential
with respect to the quark chemical potential μ and the tem-
perature T , respectively. From the cluster decomposition (27)
of the MHRG thermodynamic potential follows the cluster
decomposition of the quark density

nMHRG(T, μ) = −∂ΩMHRG(T, μ)

∂μ

=
∑

i

ai ni (T, μ), (31)

where ai is the net quark number in the ni−particle state with
the partial density defined as

ni (T, μ) = − ∂

∂μ

⎧
⎪⎪⎨

⎪⎪⎩
di

∫
d3q

(2π)3

∫
dω

2π

[
ln
(
−S−1

ni

)

+ Tr
(
Πni Sni

)]+
∑

i1,i2
i1+i2=ni

Φ[Si1 , Si2 , Sni ]

⎫
⎪⎪⎬

⎪⎪⎭

(32)

and di denotes the degeneracy factor for ni−particle states.
Using the spectral decomposition rule for an analytic com-
plex function F(ω)

F(iωn) =
∫ ∞

−∞
dω

2π

2 ImF(ω)

ω − iωn
(33)

and the Matsubara summation in the case of many-quark
Green’s functions coupled to the gluon background field (see
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Table 3 Meson masses and
degeneracy factors di according
to the PDG [72], compared to
Mi from (58) for pseudoscalars
or (52) and the continuum
thresholds (53)

PDG di MPDG Mi M<
th,i M>

th,i
mesons [MeV] [MeV] [MeV] [MeV]

π+/π0 3 140 140 1254 11.2

K +/K 0 4 494 494 1397 129.6

η 1 548 878 1349 90.1

ρ+/ρ0 9 775 783 1254 11.2

ω 9 783 783 1254 11.2

K ∗+/K ∗0 12 895 806∗ 2651 140.8

η′ 1 960 878 1349 90.1

a0 3 980 1095∗ 2508 22.4

f0 1 980 1095∗ 2508 22.4

φ 3 1020 1069 1540 248

h1 3 1170 1069 1540 248

a1/b1 18 1230 1095∗ 2508 22.4

K1(1270) 12 1272 1238∗ 2651 140.8

f2 5 1275 1095∗ 2508 22.4

f1 3 1282 1095∗ 2508 22.4

η(1295) 1 1294 1190∗ 2603 101.4

π(1300) 3 1300 1095∗ 2508 22.4

a2 15 1318 1095∗ 2508 22.4

f0(1370) 1 1350 1095∗ 2508 22.4

π1(1400) 9 1354 1095∗ 2508 22.4

K1(1400) 12 1403 1238∗ 2651 140.8

η(1405) 1 1409 1190∗ 2603 101.4

K ∗(1410) 12 1414 1238∗ 2651 140.8

ω(1420) 3 1425 1095∗ 2508 22.4

K ∗
0 (1430) 4 1425 1238∗ 2651 140.8

K ∗±
2 (1430) 10 1426 1238∗ 2651 140.8

f1(1420) 3 1426 1095∗ 2508 22.4

K ∗0
2 (1430) 10 1432 1238∗ 2651 140.8

ρ(1450) 9 1465 1095∗ 2508 22.4

a0(1450) 3 1474 1095∗ 2508 22.4

η(1475) 1 1476 1190∗ 2603 101.4

f0(1500) 1 1505 1095∗ 2508 22.4

f ′
2(1525) 5 1525 1095∗ 2508 22.4

η2(1645) 5 1617 1190∗ 2603 101.4

π1(1600) 9 1662 1095∗ 2508 22.4

ω3(1670) 7 1667 1095∗ 2508 22.4

ω(1650) 3 1670 1095∗ 2508 22.4

π2(1670) 15 1672 1095∗ 2508 22.4

φ(1680) 3 1680 1381∗ 2794 259.2

ρ3(1690) 21 1689 1095∗ 2508 22.4

K ∗(1680) 12 1717 1238∗ 2651 140.8

ρ(1700) 9 1720 1095∗ 2508 22.4

f0(1710) 1 1720 1095∗ 2508 22.4

K2(1770) 20 1773 1238∗ 2651 140.8

123



Eur. Phys. J. A (2024) 60 :14 Page 9 of 24 14

Table 3 continued
PDG di MPDG Mi M<

th,i M>
th,i

mesons [MeV] [MeV] [MeV] [MeV]

K ∗
3 (1780) 28 1776 1238∗ 2651 140.8

π(1800) 3 1812 1095∗ 2508 22.4

K2(1820) 20 1816 1238∗ 2651 140.8

φ3(1850) 7 1854 1381∗ 2794 259.2

π2(1880) 15 1895 1095∗ 2508 22.4

f2(1950) 5 1944 1095∗ 2508 22.4

a4(2040) 27 1996 1095∗ 2508 22.4

f2(2010) 5 2011 1095∗ 2508 22.4

f4(2050) 9 2018 1095∗ 2508 22.4

K ∗
4 (2045) 36 2045 1238∗ 2651 140.8

φ(2170) 3 2175 1381∗ 2794 259.2

f2(2300) 5 2297 1095∗ 2508 22.4

f2(2340) 5 2339 1095∗ 2508 22.4

States with ∗ are understood as tetraquark states

Table 5 and Appendix A.2)

1

3

3∑

c=1

1

β

∑

n

1

iω(a)
n − ω1c

= f (a),+
φ (ω) (34)

with the relation ∂ f (a)(ω)/∂μ = −∂ f (a)(ω)/∂ω, we get for
Eq. (32) now

ni (T, μ) = −di cai

∫
d3q

(2π)3

∫
dω

π
f (ai ),+
φ (ω)

∂

∂ω

[
Im ln

(−S−1
ni

)

+ Im
(
Πni Sni

)]+
∑

i1,i2
i1+i2=ni

∂Φ[Si1 , Si2 , Sni ]
∂μ

,

(35)

where a partial integration over ω has been performed. For
two-loop diagrams of the sunset type holds a cancellation
[77,78], which we generalize here for cluster states

di cai

∫
d3q

(2π)3

∫
dω

π
f (ai ),+
φ (ω)

∂

∂ω

(
ReΠni ImSni

)

−
∑

i1,i2
i+ j=ni

∂Φ[Si1 , Si2 , Sni ]
∂μ

= 0 . (36)

Using generalized optical theorems [80] and the polar rep-
resentation of the n–quark cluster Green’s function Sn =
|Sn| exp(iδn), where δn is the cluster phase shift, one obtains

∂

∂ω

[
Im ln

(
−S−1

n

)
+ ImΠn ReSn

]

= 2 Im

[
Sn ImΠn

∂

∂ω
S∗

n ImΠn

]

= −2 sin2 δn
∂δn

∂ω
. (37)

The density is obtained in the form of a generalized Beth-
Uhlenbeck EoS

nMHRG(T, μ) =
∑

i

ai di cai

∫
d3q

(2π)3

∫ ∞

0

dω

π

{
f (ai ),+
φ

−
[

f (ai ),−
φ

]∗ }
2 sin2 δni (ω, q)

∂δni (ω, q)

∂ω
,

(38)

where the properties of the distribution function f (a),+
φ

and the phase shift with respect to reflection ω → −ω

have been used and the “no sea” approximation has been
employed which removes the divergent vacuum contribu-
tion. The Polyakov–loop modified distribution functions are
defined as

f (a),±
φ

(a even)= (φ − 2φ̄y±
a )y±

a + y±
a

3

1 − 3(φ − φ̄y±
a )y±

a − y±
a

3 , (39)

f (a),±
φ

(a odd)= (φ̄ + 2φy±
a )y±

a + y±
a

3

1 + 3(φ̄ + φy±
a )y±

a + y±
a

3 , (40)

where y±
a = e−(ω∓aμ)/T and a is the net number of valence

quarks present in the cluster. See Appendix A for a detailed
derivation.

In an analogous manner follows for the MHRG entropy
density

sMHRG(T, μ) = −∂Ω

∂T
=
∑

i

si (T, μ)

=
∑

i

di cai

∫
d3q

(2π)3

∫
dω

π

{
σ

(ai ),+
φ

+
[
σ

(ai ),−
φ

]∗}
2 sin2 δni (ω, q)

∂δni (ω, q)

∂ω
,

(41)
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Table 4 Color-singlet hadrons
with baryon number Bi = 1,
masses MPDG and degeneracy
factor di according to the PDG
[72]

PDG di MPDG Mi M<
th,i M>

th,i
baryons [MeV] [MeV] [MeV] [MeV]

n/p 4 939 939 1881 16.8

Λ 2 1116 1082 2024 135.2

Σ 6 1193 1082 2024 135.2

Δ 16 1232 1251∗∗ 3135 28

Ξ0 2 1315 1225 2167 253.6

Ξ− 2 1322 1225 2167 253.6

Σ(1385) 6 1385 1394∗∗ 3278 146.4

Λ(1405) 2 1405 1394∗∗ 3278 146.4

N (1440) 4 1440 1251∗∗ 3135 28

Λ(1520) 4 1520 1394∗∗ 3278 146.4

N (1520) 8 1520 1251∗∗ 3135 28

Ξ0(1530) 4 1532 1537∗∗ 3421 264.8

Ξ−(1530) 4 1535 1537∗∗ 3421 264.8

N (1535) 4 1535 1251∗∗ 3135 28

Δ(1620) 8 1630 1251∗∗ 3135 28

N (1650) 4 1655 1251∗∗ 3135 28

Σ(1660) 6 1660 1394∗∗ 3278 146.4

Λ(1670) 2 1670 1394∗∗ 3278 146.4

Σ(1670) 12 1670 1394∗∗ 3278 146.4

Ω− 4 1673 1368 2310 372

N (1675) 12 1675 1251∗∗ 3135 28

N (1680) 12 1685 1251∗∗ 3135 28

Λ(1690) 4 1690 1394∗∗ 3278 146.4

Ξ(1690) 4 1690 1537∗∗ 3421 264.8

N (1700) 8 1700 1251∗∗ 3135 28

Δ(1700) 16 1700 1251∗∗ 3135 28

N (1710) 4 1710 1251∗∗ 3135 28

N (1720) 8 1720 1251∗∗ 3135 28

Σ(1750) 6 1750 1394∗∗ 3278 146.4

Σ(1775) 18 1775 1394∗∗ 3278 146.4

Λ(1805) 4 1805 1394∗∗ 3278 146.4

Ξ(1820) 8 1823 1537∗∗ 3421 264.8

Λ(1825) 12 1825 1394∗∗ 3278 146.4

N (1875) 8 1875 1251∗∗ 3135 28

d 3 1875 1251∗∗∗ 3762 33.6

S(uuddss) 1 1885 1693∗∗∗∗ 4048 270.4

Δ(1905) 32 1885 1251∗∗ 3135 28

Λ(1890) 4 1890 1394∗∗ 3278 146.4

N (1900) 8 1900 1251∗∗ 3135 28

Σ(1915) 18 1915 1394∗∗ 3278 146.4

Δ(1925) 48 1925 1251∗∗ 3135 28

Σ(1940) 12 1940 1394∗∗ 3278 146.4

Δ(1930) 24 1950 1251∗∗ 3135 28

Ξ(1950) 4 1950 1537∗∗ 3421 264.8

Ξ(2030) 12 2025 1537∗∗ 3421 264.8

Σ(2030) 24 2030 1394∗∗ 3278 146.4

123



Eur. Phys. J. A (2024) 60 :14 Page 11 of 24 14

Table 4 continued
PDG di MPDG Mi M<

th,i M>
th,i

baryons [MeV] [MeV] [MeV] [MeV]

Λ(2105) 14 2105 1394∗∗ 3278 146.4

N (2195) 36 2220 1251∗∗ 3135 28

Σ(2250) 6 2250 1394∗∗ 3278 146.4

Ω−(2250) 2 2252 1680∗∗ 3564 383.2

N (2250) 20 2275 1251∗∗ 3135 28

Λ(2350) 10 2350 1394∗∗ 3278 146.4

Δ(2420) 48 2420 1251∗∗ 3135 28

N (2600) 24 2600 1251∗∗ 3135 28

Also shown are the masses Mi according to our simple hadron mass formula (52) and the masses of the
continuum thresholds Mth,i for the decay into their quark constituents. States denoted by ∗∗ are considered
as pentaquark states; ∗∗∗ the deuteron is a six–quark state with molecular structure of two almost unbound
nucleons; ∗∗∗∗ the sexaquark is a hypothetical deeply bound six–quark state [74]

Table 5 Matsubara frequencies for an n−particle cluster with a net valence quarks in the Polyakov-gauge quark model, obtained as composite of
a pair of lower order clusters, see Figs. 1 and 2

Symbol Cluster Quarks n a Bipartition Matsubara frequency Color
i (antiquarks) ω

(a)
n

q Quark 1 (0) 1 1 – ((2n + 1)πT − iμ)1c − A4 Triplet

D Diquark 2 (0) 2 2 (q+q) (2nπT − i2μ)1c + A4 Antitriplet

M Meson 1 (1) 2 0 (q+q̄) (2nπT )1c Singlet

N Nucleon 3 (0) 3 3 (q+D) ((2n + 1)πT − i3μ)1c Singlet

F 4-quark 4 (0) 4 4 (q+N), (D+D) (2nπT − i4μ)1c − A4 Triplet

T Tetraquark 2 (2) 4 0 (M+M), (D+D̄) (2nπT )1c Singlet

Q 5-quark 5 (0) 5 5 (q+F), (D+N) ((2n + 1)πT − i5μ)1c + A4 Antitriplet

P Pentaquark 4 (1) 5 3 (M+N), (q̄+F) ((2n + 1)πT − i3μ)1c Singlet

H Hexaquark 6 (0) 6 6 (q+Q), (D+F), (N+N) (2nπT − i6μ)1c Singlet

where σ (a) = f (a)
φ ln f (a)

φ (−)a[1(−)a f (a)
φ ] ln[1(−)a f (a)

φ ]
and f (a)

φ is the cluster distribution function for a net quark
number a modified by the traced Polyakov loop.

The Eqs. (38) and (41) are consistent with each other
because they follow from the functional for the thermody-
namic potential (27) in the case of two-loop skeleton dia-
grams for the Φ- functional [77,78], where it has been shown
that the correlation contribution vanishes, see Eq. (36). The
formula for the pressure as thermodynamical potential can be
obtained from Eq. (38) by integration over the quark chem-
ical potential μ. Analogously, it can be obtained from Eq.
(41) by integration over T

p(T, μ) =
∫ T

0
dT ′s(T ′, μ) . (42)

It is instructive to consider the two limits φ = φ̄ = 1
(deconfinement and color singlet states) and φ = φ̄ = 0
(confinement). In the situation where φ = φ̄ = 1, the distri-
bution functions reduce to

f (a=0,2,4,... ),±
φ=1 = y±

a

1 − y±
a

, (43)

f (a=1,3,5,... ),±
φ=1 = y±

a

1 + y±
a

, (44)

corresponding to the ordinary Bose (Fermi) distribution func-
tions for even (odd) numbers a of quarks in the cluster. In
the case of confinement when φ = φ̄ = 0, the distribution
functions take the form

f (a=0,2,4,... ),±
φ=0 = y±

a
3

1 − y±
a

3 , (45)

f (a=1,3,5,... ),±
φ=0 = y±

a
3

1 + y±
a

3 . (46)

From Eq. (45) one can see how the Polyakov-loop suppres-
sion of colored states acts. Since y±

a
3
(T ) = y±

a (T/3), in the
situation of confinement when φ = 0, the generalized distri-
bution functions of odd (even) colored clusters become Fermi
(Bose) functions with the temperature T being replaced by
T/3, so that in this case of full Polyakov-loop suppression
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Fig. 1 Feynman diagrams for the Φ functional in the cluster two-loop
approximation. A n-quark cluster Green’s function is shown as n solid
lines bound with one arrow, a meson Green’s function is a dashed line
with an arrow. Starting from the top, the figure shows the diquark
as two-quark state, the meson as quark-antiquark state, the nucleon
as quark-diquark state and the 4–quark cluster as nucleon-quark or
diquark-diquark state

the thermal occupation is the same as for the unsuppressed
case at one third of the temperature.

We bring expressions (38) in another form where we split
the extended phase shift δi (ω, q) into its bound state part
with a step-up at ω = Ei (q) and the part related to the elastic
scattering phase shift δsc

i (ω, q) depending on the energy ω

of relative motion of the subclusters and the total momentum
q of the cluster. The net baryon density (38) is the difference
of contributions from particles and antiparticles,

nMHRG(T, μ) = n+
MHRG(T, μ) − n−

MHRG(T, μ) . (47)

Applying integration by parts to the Beth-Uhlenbeck equa-
tion and considering only the color singlet hadrons for which

Fig. 2 Continuation of Fig. 1. Starting from the top, we show the Feyn-
man diagrams for the Φ functional in the cluster two-loop approxima-
tion whith the tetraquark as meson-meson or diquark-antidiquark state,
the 5–quark cluster as 4–quark-quark state or nucleon-diquark state,
the pentaquark as nucleon-meson state or 4–quark-antiquark state and
the hexaquark channels: 5–quark-quark, 4–quark-diquark and nucleon-
nucleon states

f (a),+
φ = f (a),+

φ=1 , the particle contribution can be brought to
the form

n+
MHRG(T, μ) =

∑

i

ai di cai

∫
d3q

(2π)3

{
f (a),+
φ=1 (Ei (q))

− f (a),+
φ=1 (Ethr,i ) +

∫
dω

π T
f (a),+
φ=1

[
δsc

i (ω, q)

−1

2
sin(2δsc

i (ω, q))

]}
, (48)

and a similar relation for the antiparticles. Here, the bound
state part can be addressed to the first two contribution, sim-
ilar to the Planck-Larkin-Brillouin partition function for the
hydrogen plasma [50]. Within the generalized cluster Beth-
Uhlenbeck formula, we have for the a-quark correlation the
continuum contribution as expressed by the phase shifts, and,
in addition, the contribution of bound states, if they exist. For
the entropy density (41), a similar decomposition as (47) and
(48) can be made.

As well known, the subdivision of contribution from
bound states and from the continuum of scattering states is
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arbitrary. Because of the Levinson theorem we can introduce
an extended scattering phase shift which jumps by π for
every bound state at the bound state energy which is below
the continuum edge of scattering states (so-called “step-up”
phase shift).

3 Exploratory model calculation for multiquark
correlations

3.1 Quark masses and continuum thresholds

The temperature and chemical potential dependent quark
masses determine the behavior of the continuum thresholds.
We want to point out that in non-confining NJL models a
smooth temperature dependence of quark masses has been
obtained which results from the consideration of a medium
of uncorrelated quarks in these models. Because in reality
the quarks are strongly correlated (confined) inside hadrons
even for temperatures up to the chiral crossover Tc(μ), any
medium modification of quark masses shall be strongly sup-
pressed.

Improved microscopic calculations within a rank-2 sep-
arable Dyson-Schwinger equation (DSE) model [81] later
extended within the Polyakov-loop DSE model [82,83],
and recent results within the confining density functional
approach [56] motivate a steep medium dependence (switch)
from a large constituent quark mass in cool and dilute matter
to the current quark mass of the QCD Lagrangian in a hot
and dense medium.

Therefore, we assume in the present work a “sudden
switch” scenario for the quark masses. It consists of a con-
stant and large quark mass as a reflection of the quark con-
finement within the hadronic phase of the model that is delim-
ited by the Mott dissociation temperature of the hadrons
(and multi-quark states) TMott(μ), and a tail function for the
medium-dependent quark mass in the QGP phase, which for
simplicity we assume here to coincide with the constant cur-
rent quark masses m f ,

M f (T, μ) = M f Θ(TMott(μ) − T )

+m f Θ(T − TMott(μ)). (49)

Here the subscript f = q, s denotes the light (q = u, d)
and strange ( f = s) quark flavors with their corresponding
current quark masses m f and the constituent quark masses
M f = M f (0, 0) in the vacuum. This quark mass model is
depicted for light quarks as the red solid line in Fig. 3.

We are aware that such a “sudden switch” model is a strong
idealization of the reality and could lead to a kinky behaviour
of the resulting thermodynamic functions, in particular when
they are derivatives of the thermodynamic potential.

Fig. 3 Mass spectrum of light and strange quarks used in this work,
together with mass and decay width of the Breit-Wigner model for the
pion and the nucleon as generic examples for hadrons as a function of
temperature for vanishing chemical potential μ/T = 0

Consistent with the quark confinement property we make
in our model the idealizing assumption of constant hadron
masses. This captures, however, the fact that hadrons are
almost pointlike, strongly localized states which “feel” the
medium only when it provides conditions very close to the
Mott dissociation. In this case, hadron-hadron interactions
induce finite mass shifts and collisional broadening.

We extend the formula (49) to finite μB by using the
chemical potential dependence the pseudo-critical temper-
ature Tc(μ) which resulted from the fitting the lattice QCD
results obtained by Taylor expansion techniques for small
chemical potentials [18] also for estimating the Mott tem-
perature,

TMott(μ) = TMott(0)

[

1 − κ

(
μ

TMott(0)

)2
]

. (50)

We use the values κ = 0.012 and TMott(0) = 156.5 MeV
from the fit of the μ- dependence of the pseudocritical tem-
perature Tc(μ) = TMott(μ) found in [18], restricting our-
selves to the O(μ2

B) part of the expansion and neglecting the
O(μ4

B) term because of the smallness of the associated κ4

parameter found in that work.
With the medium dependence of the quark mass being

defined, one can solve the gap equation for obtaining the
value of the traced Polyakov loop which would correspond
to an extremum of the thermodynamic potential (1),
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Fig. 4 Temperature dependence of the Polyakov loop absolute value
calculated for several values of μB/T indicated in the legend

∂Ω

∂φ
= 0 . (51)

This can be done first at the quark mean field level, including
the perturbative QCD contribution. Then, the effect of col-
ored clusters can be included, which are depending on φ and
φ̄ via the Polyakov-loop generalized multiquark distribution
functions (76) and (75). In Fig. 4, we show the temperature
dependence of the absolute value of the Polyakov loop for
different values of chemical potentials μB/T . These results
include the backreaction from colored clusters which turn
out to be negligibly small. For temperatures below TMott(μ),
because of the large quark mass, the values of the traced
Polyakov loop stay close to zero, reflecting confinement.
Also in the transition region above the Mott temperature,
up to T ∼ 200 MeV, this order parameter for deconfinement
stays below |φ| ∼ 0.5, indicating strong color correlations
induced by the gluon background field. It can also be seen
from Fig. 4 that for temperatures above T ∼ 350 MeV, the
order parameter asymptotically approaches |φ| = 1.0, the
case of deconfinement.

3.2 Hadron mass formulas

3.2.1 Multiquark clusters

In the model exploited in the present work, we do not obtain
the hadron masses as solutions of the corresponding equa-
tions of motion. Instead, we assume that below the Mott dis-
sociation temperature TMott(μ) the hadron masses Mi are

medium independent and follow the approximate relation
[84]

Mi = (Nq + Nq̄)Mq + (Ns + Ns̄)Ms − (n − 1)B , (52)

where Mq(s) = 627 (770) MeV is the light (strange) quark
mass in vacuum and B = 471 MeV is the binding energy
per quark bond, i.e. per relative Jacobi coordinate of which
we have n − 1 in a multiquark state composed of Nq (Ns)
light (strange) quarks and Nq̄ (Ns̄) light (strange) antiquarks.
Here, n = Nq + Nq̄ + Ns + Ns̄ is the total number of quarks
and antiquarks and a = Nq + Ns − Nq̄ − Ns̄ is the net quark
number in the multiquark state (hadron).

From the medium-dependent quark mass spectrum fol-
lows immediately the temperature and chemical potential
dependent threshold mass of the continuum states for a mul-
tiquark bound state species i

Mthr,i(T, μ) = M<
thr,iΘ(TMott(μ) − T )

+M>
thr,iΘ(T − TMott(μ)), (53)

M<
thr,i = (Nq + Nq̄)Mq + (Ns + Ns̄)Ms, (54)

M>
thr,i = (Nq + Nq̄)mq + (Ns + Ns̄)ms . (55)

This behavior of the threshold masses entails that all PDG
hadrons undergo the Mott transition from bound states below
TMott(μ) to unbound correlations in the continuum above that
temperature, see Tables 3 and 4.

For temperatures above TMott, a linear temperature depen-
dence of the mass and the decay width of the resonance is
adopted

Mi (T ) = Mi,0 + α1 Γi (T ), (56)

Γi (T ) = α2 (T − TMott)Θ(T − TMott) , (57)

where Mi,0 stands for the vacuum mass of the resonance i
that is taken from the particle data tables [72] and remains
unchanged for all temperatures below TMott. Since the Mott
temperature is identified with the pseudocritical temperature
Tc obtained from lattice QCD simulations [18], the ansatz
(56), (57) leaves us with only two free parameters, α1 = 11.4
and α2 = 1.9, which determine the slopes of masses and
widths, respectively. Their values are determined such that
the behaviour of the total entropy density and the total baryon
density at Tc are continuous. This behavior is illustrated in
Fig. 3 for the nucleon and the pion.

For the higher-lying meson (baryon) states which all decay
into their ground state and a meson (mostly pion), we adopt
a mass formula that assumes a tetraquark (pentaquark) struc-
ture, i.e. adding 2Mq − 2B = 312 MeV to the ground
state mass. The continuum threshold for these states is then
2Mq = 1254 MeV (2mq = 11.2 MeV) above that for the
corresponding ground state for T < TMott (T > TMott).
While in our calculations the color singlet hadron masses are

123



Eur. Phys. J. A (2024) 60 :14 Page 15 of 24 14

taken from the PDG [72], the masses of the colored clusters
and the continuum thresholds require an underlying quark
model, see Tables 1, 2, and 3.

3.2.2 Pseudoscalar meson masses

The pseudoscalar mesons play a special role as the pseudo-
Goldstone bosons of the broken chiral symmetry in low-
energy QCD. Therefore, their masses follow a Gell-Mann–
Oakes–Renner relation

M2
P = − (Nqmq + Nsms)(Nq〈q̄q〉 + Ns〈s̄s〉)

(Nq − Ns) f 2
π + 2Ns f 2

K

, (58)

where for the P = π (K ), the pion (kaon) mass of 140
(494) MeV is obtained with Nq = 1(1), Ns = 0(1),
mq = 5.6 MeV, ms = 124 MeV, 〈q̄q〉 = −(242 MeV)3,
〈s̄s〉 = −(245 MeV)3, fπ = 92.4 MeV and fK = 113 MeV.

3.2.3 η mesons

For the ground state η mesons, we postulate a mass for-
mula composed as a weighted sum of light and strange quark
masses with the average mesonic binding energy

Mη = Mη′ = 2

3
Ms + 4

3
Mq − B, (59)

with the corresponding threshold masses

Mthr,η(T, μ) =
(

2

3
Ms + 4

3
Mq

)
Θ(TMott(μ) − T )

+
(

2

3
ms + 4

3
mq

)
Θ(T − TMott(μ)). (60)

The higher lying η states are understood as tetraquarks, i.e.
adding a light quark-antiquark pair as in the case of the higher
lying meson and baryon states.

3.3 Phase shift model

In this work, we want to introduce a generic model ansatz for
the phase shift δi (M, T, μ) that shares all essential features
with results that have been obtained, e.g., within NJL model
calculations for the case of the pion [36,85] and within the
PNJL model for the pion and the diquark [86] in quark matter.

For the extended phase shifts, which include the bound
state contribution as “step-up” by π , we can use experimental
determined ones, including the binding energies, or results
from a potential model calculation.

Three simple approximations which are illustrated in the
three panels of Fig. 5 shall be considered:

1. The phase shifts jump up from zero to π at the bound
state mass and then remain constant. This simplest step-

Fig. 5 Approximations for the hadronic phase shift for the example
of the pion at rest in the medium. Upper panel: step-up (SU), middle
panel: step-up-step-down (SUSD), bottom panel: step-up-continuum
(SUC) models
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up model is labelled “SU” and shown in the upper panel
of Fig. 5. For the full set of hadronic states in the Table 3
extracted from the listing of the PDG [72], this model
reproduces the HRG thermodynamics, see the dotted
lines in Fig. 6. The SU model violates the Levinson theo-
rem and does not account for the dissociation of hadrons
at high temperatures and densities. It overestimates the
contribution of clusters.

2. The simplest way to account not only for the formation
of bound states but also for their dissociation by simul-
taneously fulfilling the Levinson theorem is to add a step
down by π at Ethr,i to the step-up of the phase shift by π at
the bound state energy Ei . In this approximation, labelled
“SUSD” in the middle panel of Fig. 5, the ω-integral in
the Beth-Uhlenbeck equation (48) for the hadron contri-
bution to the net baryon density can be trivially performed
and results in the absence of this contribution for temper-
atures T > TMott. By the definition of this SUSD model,
resonances in the continuum are absent. In this case the
entropy of the MHRG model which follows from Eq.
(41) is shown by the red dashed lines in Fig. 6.

3. Include the possibility to describe resonances in the con-
tinuum using a Breit-Wigner ansatz and postulate a struc-
tureless negative background phase shift which assures
the Levinson theorem, namely that at asymptotic large
energies the total phase shift in each channel goes to zero.
The resonance masses and width as parameters of the
Breit-Wigner ansatz are temperature dependent, a sim-
ple linear dependence is assumed. In this case, labelled
“SUC” and shown in the bottom panel of Fig. 5, there is a
finite, nonvanishing contribution to the thermodynamics
from hadronic resonances in the continuum for tempera-
tures above TMott, see the green solid lines in Fig. 6.

The simplest model that is in agreement with the Levinson
theorem is a SUSD ansatz [80,87]. It results in the Mott
dissociation of hadrons at high temperatures and chemical
potentials

δi (M, T, μ) = πΘ(Mthr,i − Mi ){
Θ(M − Mi ) − Θ(M − Mthr,i )

}
. (61)

Here, the only ingredients are the medium-dependent hadron
masses Mi and the sum of the masses of their quark con-
stituents which determine the threshold mass Mthr,i of the
corresponding continuum of unbound states. The main draw-
back of the simple ansatz of Eq. (61) is that it neglects any
contribution from the continuum of scattering states. This
ansatz has recently been applied in the description of lattice
QCD thermodynamics at μ = 0 [29]. In the absence of con-
tinuum correlations, the requirement of a smooth transition
region between the pure HRG and pure QGP phases for the
temperature interval 160 � T [MeV] � 200 was fulfilled by

Fig. 6 Scaled entropy density of hadrons sMHRG/T 3 as a function of
temperature T calculated for μB/T = 0 (upper panel) and μB/T = 3.0
(lower panel) calculated for the SU (blue dotted curves), SUSD (red
dashed curves) and SUC (green solid curves) models of the hadronic
phase shifts discussed in the text. The shaded regions correspond to the
lattice QCD results [19], while the thick solid line represents calcula-
tions within the HRG, see [53]

adopting a smooth drop of the quark masses, viz. the contin-
uum threshold over that region of temperatures. This resulted
in a sequential dissociation of hadrons with the consequence
of a staircase-like fine structure of the thermodynamic poten-
tial which entailed a fuzzy behavior of its derivatives. Besides
this caveat, if the Mott dissociation is related to the chemi-
cal freeze-out, this scenario would entail a state-dependent
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smearing of freeze-out parameters for which there are no
indications in heavy-ion collision experiments.

For the present work we take the ansatz of [34] and extend
it from the original π and σ channels to include contribu-
tions from each cluster with the appropriate Mott dissocia-
tion effect at high temperatures. This modified phase shift
model reads

δi (M) = δ∗
i (M)Bigg[Θ(M2

thr,i − M2)

+ 1

π
acos

(
2M − 2Mthr,i − NiΛi

NiΛi

)

×Θ(M2 − M2
thr,i )Θ((Mthr,i + Λi Ni )

2 − M2)

]

(62)

with

δ∗
i (M) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

π Θ(M2 − M2
i ) , T < TMott

π

atan

(
M2−M2

i
Γi Mi

)
−atan

(
M2

thr,i −M2
i

Γi Mi

)

π
2 −atan

(
M2

thr,i −M2
i

Γi Mi

)

×Θ(M2 − M2
thr,i ) . T > TMott

(63)

For temperatures above TMott, a linear temperature depen-
dence of the mass and the decay width of the resonance is
adopted according to Eqs. (56) and (57), respectively.

The encoded mass dependence of the phase shift is shown
in the bottom panel of Fig. 5 for the generic case of the pion at
rest in the medium (where ω = M) for different temperatures
around the Mott transition at TMott = Tc = 156.5 MeV.

4 Results for QCD thermodynamics

After having defined the Beth-Uhlenbeck type approach to
hadron-quark-gluon matter in Sect. 2 and making plausible
assumptions about the key ingredients for its numerical eval-
uation in Sect. 3, we are now in the position to present results
for the entropy density and the net baryon density. In Fig. 7,
we present the scaled entropy s/T 3 as function of the tem-
perature. In the upper panel, we show the results for van-
ishing baryochemical potential, while in the lower panel the
case μB/T = 3.0 is presented and compared to the results
of lattice QCD simulations [19], which are given as a grey
band. There is a very good agreement. On this basis, we
can now give an interpretation of the QCD thermodynamics.
Within the sudden drop model for the quark mass, there is
a perfect confinement of quark and gluon degrees of free-
dom for temperatures below the pseudocritical one, which
in our case coincides with the Mott temperature of hadron

Fig. 7 Scaled entropy density s/T 3 as a function of temperature T
calculated at μB/T = 0 (upper panel) and μB/T = 3.0 (lower panel).
Partial contributions of hadrons, quarks, gluons as well as perturbative
correction and total s/T 3 are represented by different curves indicated
in figures. The shaded regions correspond to the lattice QCD results
[19] in good agreement with the result of the present model (thick solid
line)

dissociation TMott = Tc = 156.5 MeV. For T < TMott,
the entropy is saturated by the contributions from the ideal
hadron resonance gas. We have implemented here the same
set of hadronic states from the PDG as in Ref. [53], and added
the deuteron as a hexaquark state as well as the hypothetical
sexaquark S(uuddss) which is discussed, e.g., in [74] and
references therein. At T = TMott, the hadron contribution
drops by about half of its value as a result of the temper-
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Fig. 8 Scaled entropy density s/T 3 as a function of temperature T cal-
culated at different values of μB/T indicated in the legend. The shaded
regions of the corresponding colors represent the lattice QCD results
[19]. The triangles of corresponding colors are the values obtained
within O(αs) perturbative QCD, see Table 6, and are attained for large
T . Note the broken temperature axis

ature dependence of the hadronic correlations encoded in
their phase shift adopted in this model. The full spectrum
of hadronic states contributes to the entropy as continuum
correlations modeled by their phase shifts. With increasing
temperature, these contributions die out and vanish above
T ∼ 200 MeV. We note that it is important for obtaining a
continuous behaviour of the entropy at the transition tempera-
ture that the contributions in the deconfined phase, stemming
from quark quasiparticles, gluons, perturbative virial correc-
tions and colored clusters conspire so as to compensate the
sudden drop in the hadronic entropy. One may attribute this
to quark-hadron duality. A remarkable finding is that at finite
chemical potential the colored clusters (diquarks, 4–quark
and 5–quark states) play an important role.

In Fig. 8, we demonstrate that the chemical potential
dependence of the lattice QCD data is correctly reproduced
and that for large temperatures the O(αs) perturbative QCD
limits are attained.

In Fig. 9, we demonstrate the very power of the present
approach. Namely, that we can identify the composition of
the matter on both sides of the transition. The fractional con-
tributions of hadron species reflect the composition of the
HRG within the statistical model which gives an excellent
understanding of hadron production in heavy-ion collision
experiments (see, e.g., [46] and references therein). We want
to underline that the red and turquoise solid lines in Fig. 9
standing for the quark and gluon fractions of the entropy,

Fig. 9 Fractions of entropy density carried by different species as a
function of temperature T calculated at vanishing baryochemical poten-
tial. Notably, the red and turquoise solid lines stands for the entropy
fractions of quarks and gluons, resp., which are dominant in the QGP
phase and strongly suppressed below the Mott transition temperature,
because of the effective confinement mechanism in the present work

respectively, shows the degree of realization of quark and
gluon confinement in this model. While quarks and gluons
dominate the high temperatuure region above T ∼ 200 MeV,
their entropy fraction in the hadronic phase below TMott is
below the per cent level. This realization of sudden quark-
gluon confinement is due to the combination of the Polyakov-
loop suppression of the colored state and the large constituent
quark mass in the hadronic phase.

We want to comment also on the changes that the entropy
fractions undergo at the Mott transition. The contributions of
all multiquark clusters get suppressed by about a factor two
because of the dramatic change in the generic phase shift
function, when they change their character from a bound
state to a correlation in the continuum, see Fig. 5. This change
can be directly read-off from Fig. 9 for color singlet hadrons
(pions, kaons, nucleons,...) while for colored clusters there
is the effect of Polyakov loop suppression which acts on
their distribution functions in the hadronic phase, where the
traced Polyakov loop is close to zero, see Fig. 4. In the case
of diquarks, both effects compensate each other, so that the
entropy fraction of diquarks is continuous at the Mott transi-
tion, while for the 4–quark and 5–quark states, the Polyakov
loop suppression overcompensates the effect of Mott disso-
ciation at TMott. The S(1885) contribution is a unique pre-
diction of the present model. We note that in Ref. [89], pre-
dictions have been made for the relative yields of S(1950)/d
and S(1700)/d in heavy-ion collisions using a thermal statis-
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Fig. 10 Scaled pressure p/T 4 as a function of temperature T at van-
ishing baryochemical potential μB/T = 0 obtained from integrating
the entropy (42) (blue solid line), in comparison with two sets of lattice
QCD data from Borsanyi et al. (2014) [88] and Borsanyi et al. (2021)
[19], shown as shaded regions

tical model with excluded volume corrections. Similar to the
entropy fraction shown in Fig. 9, the sexaquark-to-deuteron
ratio is of the order one.

A quantity of central interest for the QCD thermodynam-
ics is the pressure because it plays the role of the thermody-
namic potential of the grand canonical ensemble. We use Eq.
(42) to obtain the pressure by integrating the entropy density
over temperature. The result is shown in Fig. 10. The com-
parison to two sets of lattice QCD data by Borsanyi et al.
(2014) [88] and Borsanyi et al. (2021) [19] shows an excel-
lent agreement.

Finally, in Figs. 11 and 12 we show the results for the
scaled baryon density as a function of the temperature. In
Fig. 11 we show the different components that contribute to
the baryon density for μB/T = 3.0 and compare the result-
ing total density with the lattice QCD simulation [19] shown
as a blue band. We find it remarkable that the colored clus-
ters contribute more than the color singlet hadrons in the
transition region above TMott. Figure 12 demonstrates that
the systematics of the chemical potential dependence is cor-
rectly accounted for. In particular, the baryon density quickly
approaches the O(αs) perturbative QCD values while the
lattice QCD data slightly overshoot. At temperatures below
TMott, where the baryon density is given by the color singlet
baryons only, there is a discrepancy with the lattice QCD
results which eventually can be related to the known problem
of missing strange baryon states in the PDG HRG description
[17]. Adding baryonic states from a quark model description
[90] has been demonstrated to solve this problem [91].

Fig. 11 Baryon density as a function of temperature for μB/T = 3.0
(blue solid line) compared to lattice QCD simulations (light blue band)
[19]. Shown are also the contributions from partial densities of quarks
(orange dashed line), colored clusters (red long dashed line), hadrons
(green dotted line) and perturbative QCD (magenta very long dashed
line)

Fig. 12 Baryon density as a function of temperature for different val-
ues of μB/T compared to lattice QCD simulations [19]. The triangles of
corresponding colors are the values obtained within O(αs) perturbative
QCD, see Table 6, which are attained at large temperature

5 Summary and conclusions

We have developed a systematic approach to the thermody-
namics of the quark-gluon-hadron system that studies quark-

123



14 Page 20 of 24 Eur. Phys. J. A (2024) 60 :14

quark correlations in the form of bound states and contin-
uum correlations. The challenge is to describe, in contrast to
conventional plasma systems, the confinement property that
allows only color-neutral clusters in the low-density limit.
This property was taken into account by using the Polyakov-
Nambu-Jona-Lasinio model as an effective approach for the
many-quark system, where the gluon degrees of freedom
were eliminated.

We obtained results for arbitrary temperatures and for
finite baryonic chemical potentials. Two limiting cases are
reproduced: hadronic matter described as hadron resonance
gas at low temperatures, for which experimental data are
available, and the quark-gluon plasma at high temperatures,
for which results from perturbation theory are known. In con-
trast to semi-empirical approaches such as Ref. [53], which
use a switch function to interpolate between the two limiting
cases, we have outlined a microscopic approach that involves
the formation of a condensate, chiral symmetry, and decon-
finement. In addition to colored single-quark quasiparticles,
colored clusters are also included.

A main topic is the treatment of correlations, for which
we employed the correlation functional Φ. Within a cluster
decomposition, the special class of “sunset” diagrams was
singled out and a generalized Beth-Uhlenbeck equation was
used. This approach allows not only a systematic inclusion
of continuum correlations via the scattering phase shifts, but
also the inclusion of in-medium effects describing the disso-
lution of bound states with increasing energy density.

In this work, we have developed the technique of the
cluster-virial expansion approach for multi-quark clusters at
finite temperatures and chemical potentials based on a cluster
generalization of the Φ-derivable approach. When a restric-
tion to closed two-loop diagrams in cluster Green’s functions
is applied to the Φ-functional, this approach is equivalent to
the generalized Beth-Uhlenbeck approach to clustering in hot
and dense Fermi systems.

The complexity of color confinement in low-density quark
matter is accounted for by coupling the quarks and their clus-
ters to the Polyakov-loop background field, which serves to
suppress the appearance of colored clusters in the quark con-
finement region. We have compared our results for the ther-
modynamics of clustered quark matter with recent lattice
QCD simulations at finite temperature and small chemical
potentials where they are currently available and found sat-
isfactory agreement.

Our approach contains some simplifying approximations,
especially with respect to the in-medium phase shifts. A
self-consistent solution of the gap equation in a correlated
medium would be of interest to obtain consistent results. We
expect that such a solution would exhibit a behaviour which
justifies the assumption of a sudden switch model for the
quark masses that we made in this work. The few-quark
wave equation describing the shift in binding energies and

the phase shifts δi is a subject of further investigation. In addi-
tion to the sunset diagrams, other diagrams for the correlation
functional Φ can be considered to improve this approxima-
tion. Baryon densities and entropies have been compared
with lattice QCD simulations to verify the quality of our
approach. Consistent expressions for the various equations
of state for the corresponding thermodynamic variables are
needed to simulate matter under extreme conditions, such as
those encountered in ultrarelativistc heavy-ion collisions and
in dense astrophysical objects.
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A Matsubara summations for multiquark
Polyakov-loop propagators

A.1 Diquark propagator and distribution function

In this work we restrict ourselves to the consideration of
the scalar, color antitriplet diquark. The free color antitriplet
diquark propagators are obtained after color and Matsubara
sum of the product of two color triplet single-quark prop-
agators folded with the antisymmetric Gell-Mann matrices
λ2, λ5 or λ7. For a better systematics, we will replace these
matrices by the completely equivalent totally antisymmetric
symbol εabc in color space. We introduce the bosonic Mat-
subara frequency Ωm = ωn +ω′

n as the sum of the fermionic
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Matsubara frequencies of the quark propagators that consti-
tute the diquark and obtain the free quark pair propagator.

S(0)
2 =

∑

ab

∑

n

εabc
1

(iωn − E p + μ)1c − i(A4)aa
·

1

(iωn′ − E p′ + μ)1c − i(A4)bb

=
∑

ab

∑

n

εabc

(iΩm − E p − E p′ + 2μ)1c − i(A4)aa − i(A4)bb

×
[

1

(iωn − E p + μ)1c − i(A4)aa

+ 1

(i(Ωm − ωn) − E p′ + μ)1c − i(A4)bb

]
(64)

=
− f (1),+

φ

∣
∣∣
E p

+
[

f (1),−
φ

]∗∣∣∣
E p′

(iΩm − E p − E p′ + 2μ)1c + i(A4)cc
, (65)

where 1c is the diagonal matrix in color space and we
have employed the result of the summation over color
and Matsubara frequency of the single quark propaga-
tors given by Eq. (13) and used the identity −(A4)cc =
εabc [(A4)aa + (A4)bb].

The diquark distribution function in the presence of the
Polyakov-loop background field can now be obtained analo-
gously to the case of the single quark distribution. For that we
introduce the abbreviation ω = E p +E p′ for the two-particle
energy and neglect the compositeness effect by suppressing

the Pauli blocking factor − f (1),+
φ

∣∣∣
E p

+
[

f (1),−
φ

]∗∣∣∣
E p′

=
1− f (1),+

φ

∣
∣∣
E p

− f (1),+
φ

∣
∣∣
E p′

−→ 1. By summation over Mat-

subara frequencies and color index we then obtain

f (2),+
φ = 1

3

3∑

c=1

1

β

∑

n

1

iω(2)
n − ω1c

(66)

= 1

3

3∑

c=1

1

β

∂ ln
[
1 − y+

2 eiβ(A4)cc
]

∂ω
(67)

= 1

3β

∂

∂ω
ln
{
[1 − y+

2 e−2iβϕ8 ][1 − y+
2 eiβ(ϕ8−ϕ3)]

[1 − y+
2 eiβ(ϕ8+ϕ3)]

}
(68)

= 1

3β

∂

∂ω
ln
[
1 − 3(φ − φ̄y+

2 )y+
2 − y+

2
3
]

, (69)

where y+
2 (ω) = exp[−β(ω − 2μ)] and ω

(2)
n = (2nπT −

i2μ)1c + A4, see Table 5. Carrying out the ω−derivative,
we obtain the Polyakov-loop generalized diquark distribution
function

f (2),+
φ = (φ − 2φ̄y+

2 )y+
2 + y+

2
3

1 − 3(φ − φ̄y+
2 )y+

2 − y+
2

3 . (70)

A.2 Three-quark (nucleon) propagator and distribution
function

We obtain higher order cluster Green’s functions as a result
of their bipartition into lower lying cluster states which are
already known. In this way, we combine the color antitriplet
diquark (anticolor a) with a color triplet quark (color a) in
order to obtain a color singlet nucleon, see Table 5. In this
way, we obtain the free three-quark (nucleon = quark +
diquark) propagator as

S(0)
3 =

∑

ab

∑

n

δab
1

iω(1)
n − E p1c

· 1

iω(2)

n′ − E p′1c

(71)

=
∑

a

∑

n

1

(iω(3)
m − (E p + E p′)1c

[
1

iω(1)
n − E p1c

+ 1

(i(ω(3)
m − ω

(1)
n ) − E p′1c

]

(72)

=
− f (1),+

φ

∣
∣∣
E p

+
[

f (2),−
φ

]∗∣∣∣
E p′

iω(3)
m − (E p + E p′)1c

=
1 − f (1),+

φ

∣
∣∣
E p

+ f (2),+
φ

∣
∣∣
E p′

iω(3)
m − (E p + E p′)1c

. (73)

Now it is obvious that the nucleon is a color singlet state
and no summation over colored degrees of freedom need
to be done. The summation over the fermonic Matsubara
frequancy ω

(3)
m = (2m + 1)πT − i3μ is standard and gives

f (3)
φ (ω) = f (3)(ω) = 1

β

∑

n

1

iω(3)
n − ω1c

= y+
3

1 + y+
3

,

(74)

where y+
3 (ω) = exp[−β(ω−3μ)] and we have neglected the

phase space occupation factor in the numerator of Eq. (73).

A.3 Polyakov-loop generalized multi-quark distribution
functions

On the basis of the derivations presented in Appendices A.1
and A.2, we can now summarize the generalized multi-quark
distribution functions that are obtained for multi-quark states
which are dimers of other multiquark states. To this end it is
sufficient to know the Matsubara frequencies for the a−quark
cluster and its color structure (triplet, antitriplet or singlet)
as given in Table 5.

For the color triplet state with an odd number of net
valence quarks, we obtain

f (a),±
φ

(a odd)= (φ̄ + 2φy±
a )y±

a + y±
a

3

1 + 3(φ̄ + φy±
a )y±

a + y±
a

3 , (75)
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which represents the Polyakov–loop–generalized Fermi func-
tion, with notable limiting cases being the single quark dis-
tribution function f (1),±

φ and the color singlet Fermi function

f (a),±
φ=1 .

For an even number of net valence quarks, still in the color
triplet state, we obtain

f (a),±
φ

(a even)= (φ̄ − 2φy±
a )y±

a + y±
a

3

1 − 3(φ̄ − φy±
a )y±

a − y±
a

3 , (76)

y±
a = exp[−β(ω ∓ aμ)] , (77)

which represents the Polyakov–loop–generalized Bose func-
tion, with notable limiting cases being the diquark distribu-

tion function
[

f (2),±
φ

]∗
(the complex conjugation represents

a diquark in the color–antitriplet state) and the color singlet
Bose function f (a),±

φ=1 .

B High-temperature O(g2) perturbative QCD limit

An important benchmark for the development of an effective
model description that reproduces lattice QCD thermody-
namics is the O(g2) perturbative QCD limit at high tempera-
tures. For the readers convenience, we quote here expressions
from Appendix B of Ref. [20], starting with the pressure at
this order, which reads for the three-flavor case (N f = 3)

p = pid − g2 p2 , (78)

pid = 8π2

45
T 4
(

1 + 63

32

)
+ 3

2
μ2T 2 + 3

4π2 μ4 , (79)

p2 = 1

6
T 4
(

1 + 5

4

)
+ 3

4π2 μ2T 2 + 3

8π4 μ4 . (80)

Here, we consider the case of vanishing charge and strange
ness chemical potentials μS = μQ = 0, for which μu =
μd = μs = μ = μB/3.

From the pressure as the thermodynamic potential, one
can derive the other equations of state, such as the density

Table 6 limiting values for the dimensionless baryon density nB/T 3

and entropy s/T 3 to O(g2) in perturbative QCD for αs = g2/(4π) =
0.1872

μ̂B nB/T 3 s/T 3 = 19π2

9

(
1 − 27g2

38π2

)

=
(

μ̂B
3 + μ̂3

B
27π2

)(
1 − g2

2π2

)
+ μ̂2

B
3

(
1 − g2

2π2

)

0.0 0.0 17.3072

1.0 0.2969 17.6008

2.0 0.6137 18.4816

3.0 0.9701 19.9497

and the entropy density,

n = ∂p

∂μ

∣∣∣∣
T =const

= 3μT 2 + 3

π2 μ3 − g2
(

3

2π2 μT 2 + 3

2π4 μ3
)

, (81)

s = ∂p

∂T

∣∣∣∣
T =const

= 32π2

45
T 3
(

1 + 63

32

)
+ 3μ2T

−g2
[

2

3
T 3
(

1 + 5

4

)
+ 3

2π2 μ2T

]
. (82)

In Table 6, we give the limiting values for the dimensionless
baryon density nB/T 3 and entropy s/T 3 to O(g2) for four
values of μ̂B = μB/T = 0, 1.0, 2.0 and 3.0, for which there
are results from lattice QCD simulations [19] available.

These values are approached asymptotically by our model
and by the lattice QCD simulations, as can be seen in Figs. 8
and 12, where they are indicated by small right arrows of the
corresponding colors.
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