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Abstract Separation energies of light Λ hypernuclei (A ≤
5) and their theoretical uncertainties are investigated. Few-
body calculations are performed within the Faddeev-
Yakubovsky scheme and the no-core shell model. Thereby,
modern and up-to-date nucleon-nucleon, three-nucleon and
hyperon-nucleon potentials derived within chiral effective
field theory are employed. It is found that the numerical
uncertainties of the few-body methods are well under control
and an accuracy of around 1 keV for the hypertriton and of
better than 20 keV for the separation energies of the 4

ΛHe and
5
ΛHe hypernuclei can be achieved. Variations caused by dif-
ferences in the nucleon-nucleon interaction are in the order
of 10 keV for 3

ΛH and no more than 110 keV for A = 4, 5
Λ hypernuclei, when recent high-precision potentials up to
fifth order in the chiral expansion are employed. The varia-
tions are smaller than the expected contributions from chi-
ral hyperon-nucleon-nucleon forces which arise at the chi-
ral order of state-of-the-art hyperon-nucleon potentials. Esti-
mates for those three-body forces are deduced from a study
of the truncation uncertainties in the chiral expansion.

1 Introduction

The insight into the properties of the ΛN interaction that
one can gain from the available scattering experiments [1–5]
is somewhat limited. Specifically, essential features like its
spin dependence cannot be deduced from those data. Because
of that, already at an early stage of hypernuclear physics,
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measurements of light Λ hypernuclei were explored as an
additional source of information. For example, the conjecture
that the ΛN interaction in the spin-singlet state should be
more attractive than the one in the triplet state was drawn
from such analyses around 60 years ago [6–8].

Light hypernuclei continue to play an essential role in test-
ing and improving our understanding of the hyperon-nucleon
(YN ) interaction. Fortunately, the theoretical and computa-
tional tools for pertinent investigations have been improved
dramatically over the years. Techniques for treating few-body
systems have been matured to a level that rigorous calcula-
tions with sophisticated two-body potentials, including the
full complexity of YN dynamics like tensor forces or the
important coupling between the ΛN and ΣN channels, have
become feasible. To be concrete, binding energies of A = 3
and 4 hypernuclei can be obtained by solving Faddeev or
Yakubovsky (FY) equations [9–11] for such YN interactions.
Other ab initiomethods like the no-core shell model (NCSM)
allow one to compute even binding energies for hypernuclei
beyond the s shell [12–17] and, so far, studies of hypernuclei
up to 13

ΛC have been reported [15].
With the improvement in the methods another aspect

moved into the foreground of hypernuclear studies, namely
that of estimating the uncertainties of the achieved results. Of
course, this concerns first of all the applied techniques them-
selves. However, it extends also to uncertainties due to an
essential input in such microscopic calculations, the under-
lying nucleon–nucleon (NN ) potential and possibly three-
nucleon forces (3NFs). Only with those ingredients under
control, reliable conclusions on the YN interaction to be
examined can be drawn.

Bound-state calculations performed over the last two
decades suggest that the Λ separation energies of light hyper-
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nuclei are not very sensitive to the employed NN interaction
[11,18]. For example, for a high-precision NN interaction
derived within chiral effective field theory (EFT) like the
semi-local momentum-space-regularized (SMS) potential of
fifth order (N4LO) [19], the variation of the separation energy
with regulator cutoffs ΛN = 400 − 550 MeV is of the order
of 100 keV for 4

ΛHe/ 4
ΛH [18], when combined with next-to-

leading order (NLO) YN potentials derived likewise in chiral
EFT. The variation has to be seen in relation to the total exper-
imental separation energy which is 2.347 ± 0.036 MeV for
the 4

ΛHe (0+) state [20]. Indeed, such a variation is within
the range expected from earlier calculations based on phe-
nomenological NN and YN interactions [11]. It was there-
fore very surprising that Htun et al. [21] reported an NN -
interaction dependence of the hypertriton separation energy
of 100 keV, i.e. of the same order as the separation energy
itself. A recent more extended study by the same group found
variations of around 250 keV for A = 4 hypernuclei and of
more than 1 MeV for 5

ΛHe [22]. Since the empirical 5
ΛHe

separation energy is 3.102 ± 0.030 MeV [20] such a value
implies that the uncertainty could increase dramatically with
A. It should, however, be noted that the analysis in question
is limited to NN and three-nucleon (3N ) forces of next-to-
next-to-leading order (N2LO) in the chiral expansion and to
leading order (LO) with regard to the YN interaction. In the
earlier work of Wirth and Roth [23] variations of ≈ 200 keV
and ≈ 400 keV have been found for 7

ΛLi and 9
ΛBe, respec-

tively, utilizing N3LO and N4LO NN potentials (and N2LO
3NFs), but again only LO interactions for the YN system.

In the present work, we want to re-examine the uncer-
tainties of calculations for the separation energies of light
hypernuclei. One of the main motivations for the study comes
from the already mentioned fact that the analysis by Gazda
et al. [22] is based on two-body potentials of fairly low chiral
orders, a factor which could limit its conclusiveness. As a
matter of fact, and as likewise mentioned above, with regard
to the NN system, potentials up to N4LO [19,24] are now
the standard for computations of few-nucleon systems [25].
Also, for the YN interaction, LO is no longer the state-of-art.
Recently potentials up to N2LO in the chiral expansion have
become available [26]. Thus, contrary to the calculation in
[22] where the focus was on exploring solely a large family
of N2LO NN and 3N potentials, called NNLOsim [27], we
extend our analysis to variations observed when employing
potentials of different chiral order, for the NN as well as the
YN systems. Specifically, we consider NN potentials from
LO to N4LO, supplemented by 3NFs starting from N2LO,
and YN potentials from LO to N2LO.

The paper is structured in the following way: In the subse-
quent section we describe the strategy of our analysis and the
NN , 3N , and YN interactions used as input. In Sect. 3 uncer-
tainties related to the applied methods for treating few-body
systems are explored. Uncertainties due to the employed NN

and YN interactions are investigated in Sect. 4. The paper
closes with a brief summary.

2 Strategy and input

In the uncertainty analysis for NN interactions derived within
chiral EFT, several aspects have been considered such as the
error due to the truncation in the chiral expansion, statistical
uncertainties in the LECs of the NN contact terms, errors
associated with the pion-nucleon LECs, and the role of the
energy range when fitting the NN scattering data [19,27–
30]. In general the uncertainty is dominated by the truncation
error. Thus, in our analysis for the YN interaction the main
focus will be likewise on the uncertainty due to the trunca-
tion in the chiral expansion. We employ the most advanced
chiral NN potentials (N4LO+) of the Bochum group, which
provide the presently best possible representation of the NN
interaction, for the main part of our analysis. Here the +
in N4LO+ indicates that some of the short-range operators
appearing at N5LO are also included, see [19].

Our study is to some extend complementary to the work of
Refs. [21,22] where the focus was on a statistical exploration
of effects from the nuclear interactions, based on a family of
42 NN and 3N N2LO potentials. We restrict the number of
variations and combinations of NN (3N ) and YN potentials,
in view of our limited CPU resources, and give priority to pre-
cision and reliability of the computation within the FY and
the Jacobi-NCSM (J-NCSM) methods [31]. Accordingly, we
perform only selective calculations with lower-order NN
potentials for orientation and illustration—and also to con-
nect with some of the results presented in Refs. [21,22].
Of course, strict compliance with the power counting would
require that we treat the NN and YN systems on the same
level in studies of hypernuclei, i.e. combine a LO YN poten-
tial with a LO NN potential, etc. However, we think that this
procedure would provide little insight into the properties of
the YN force, given the fact that we are not able to achieve
the same accuracy for YN as for the NN interaction. Thus,
we believe that the strategy that we follow here minimizes
the bias from the NN potential and allows for the best pos-
sible estimate of the truncation error for the hypernuclear
separation energies due to the YN interaction.

In the following, we evaluate the 3
ΛH, 4

ΛHe and 5
ΛHe sepa-

ration energies using the SMS NN potential at order N4LO
+

and 3NFs at order N2LO (for all the available cutoffs of
ΛN = 400, 450, 500, 550 MeV), in combination with the
SMS YN potentials at orders NLO and N2LO with cutoff
ΛY = 550 MeV. In addition, for convergence study, we
also perform calculations using the NN interactions at lower
orders for the cutoff ΛN = 450 MeV and the YN interac-
tion at LO. Information on the employed SMS NN poten-
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Table 1 Parameters ci , cD and cE of the 3N interaction adjusted in conjunction with different orders and cutoffs ΛN of the NN interaction (see
[32] for details)

Order ΛN c1 c3 c4 cD cE

N2LO 400 –0.74 –3.61 2.44 8.0069 –0.94276

N2LO 450 –0.74 –3.61 2.44 2.4850 –0.52793

N2LO 500 –0.74 –3.61 2.44 –1.6262 –0.062696

N2LO 550 –0.74 –3.61 2.44 –6.6840 0.85320

N3LO 400 –1.20 –4.43 2.67 3.9998 –0.45796

N3LO 450 –1.20 –4.43 2.67 1.5281 –0.35397

N3LO 500 –1.20 –4.43 2.67 –0.4344 –0.31055

N3LO 550 –1.20 –4.43 2.67 –2.7685 –0.12613

N4LO 400 –1.23 –4.65 3.28 3.1275 –0.44217

N4LO 450 –1.23 –4.65 3.28 0.65260 –0.35275

N4LO 500 –1.23 –4.65 3.28 –1.5794 –0.32025

N4LO 550 –1.23 –4.65 3.28 –3.9867 –0.32235

N4LO+ 400 –1.23 –4.65 3.28 3.3278 –0.45405

N4LO+ 450 –1.23 –4.65 3.28 0.8918 –0.38595

N4LO+ 500 –1.23 –4.65 3.28 –1.2788 –0.38214

N4LO+ 550 –1.23 –4.65 3.28 –3.6257 –0.41022

ΛN is given in MeV, ci in [GeV−1] and cD /cE are dimensionless

tials can be found in Ref. [19], while the SMS YN potentials
are described in Ref. [26]. The 3NFs are identical to the
ones used in [32,33]. For completeness, we summarize the
parameters ci , cD and cE in Table 1 (see Eq. (1) in [32] for
the definition). The ci values used in [19] were obtained in
Ref. [34] from matching the results of a Roy-Steiner analysis
of pion-nucleon scattering to chiral perturbation theory. For
the 3NFs at N3,4LO, these values need to be shifted as out-
lined in [35] which is already taken into account in Table 1.
The cd and ce LECs are fitted to the 3H binding energy and
the proton-deuteron differential cross-section minimum at
the beam energy of EN = 70 MeV [32].

Since we will compare to some results from Gazda et
al. [22], the construction and the properties of the poten-
tial set NNLOsim used in [22] will be of relevance for the
discussion below. The interactions are described in Ref.
[27]. There, six different fitting regions for NN (namely
Tlab = 125, 158, 191, 224, 257, 290 MeV, and seven cutoffs
ΛN = 450, 475, . . . , 600 MeV are considered. The LECs of
these interactions are optimized by requiring a simultaneous
description of NN as well as πN scattering cross sections,
and binding energies and charge radii of the deuteron, 3H,
and 3He. The combined analysis leads to πN LECs that are
marginally consistent with the ones from the Roy-Steiner
analysis and with much larger uncertainties [34]. Thus, it
is preferable to use such knowledge directly as done e.g. in
Ref. [19].

The strategy followed in the construction of the SMS
NN potentials [19] that are employed in our investigation

is however different, cf. Sections 6.3 and 7.5.4 of that refer-
ence for a detailed discussion. Here a smaller (larger) energy
range was considered for establishing the lower (higher)
order NN potentials, which is in line with the expected per-
tinent validity range of the chiral expansion. Specifically,
at N2LO, N3LO and N4LO+ NN data up to 125, 200 and
260 MeV, respectively, were fitted. The χ2 obtained in the fit
for different orders and different energy regions are listed in
Table 3 of [19] for the cutoff ΛN = 450 MeV. With that cut-
off the overall best description of the NN data is achieved.
Corresponding results for all cutoffs can be found in [36]
(Table 6.9). One can see that for the N4LO+ potentials the
χ2/datum is excellent (close to 1) and practically independent
of the cutoff, while for N2LO the quality is rather different
for the different energy regions and depends strongly on the
cutoff. Clearly, the NN data at high energy cannot be well
described by the NN interactions at low order. To the best
of our knowledge, there is no detailed information on the
χ2 for the individual potentials of the set NNLOsim . Finally,
note that the NNLOsim potentials are based on a nonlocal
regulator throughout while in the SMS NN potentials a local
regulator is employed for the pion-exchange contributions.
Here the range of optimal cutoffs is 400 − 550 MeV [19], as
already indicated above.
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3 Uncertainties from the method

In the NCSM calculations, all potentials are evolved by a sim-
ilarity renormalization group (SRG) transformation based
on a flow parameter of λ = 1.88 fm-1 unless stated oth-
erwise, see Refs. [31,37] for the technical details. SRG-
induced YNN forces are taken into account (and, of course,
both SRG-induced and chiral 3N forces) but no chiral YNN
three-body forces (3BFs). In this section, we will discuss the
uncertainties of our numerical approaches and quantify the
effect of neglecting the SRG-induced four- and higher-body
forces on the Λ separation energies BΛ by carefully study-
ing the dependence of the BΛ’s on the SRG-flow parameters.
Note that results for the A = 3(4) hypernuclei have been
mainly obtained by solving a set of the FY equations, which
are formed by rewriting the corresponding non-relativistic
momentum-space Schrödinger equations, with the bare NN ,
3N and YN interactions. The FY method is more efficient for
light systems and has been very successfully applied to study
both nuclei and hypernuclei up to four baryons [9–11,38].
In addition, it has also been carefully checked that the FY
equations converge within less than 1(20) keV for A = 3(4)

hypernuclei, respectively (see also [11,18]). Hence, a direct
comparison between the J-NCSM and the FY results for 4

ΛHe
will provide the most accurate estimate for the size of the
neglected contributions from the induced higher-body forces
in this system. Finally, the FY approach, in principle, could
also be extended to 5

ΛHe, however, the computation is rather
challenging, therefore, for that system, we will only employ
the J-NCSM. For details of the method and its implementa-
tion, we refer the reader to [16,17,31].

3.1 ω- and Nmax-space extrapolation

As mentioned earlier, we will employ the J-NCSM to cal-
culate the binding energies of systems with A ≥ 4. This
method is of course also applicable to 3

ΛH, however, because
of its extremely small separation energy, the J-NCSM calcu-
lations for that system inhere an uncertainty that is signifi-
cantly larger than the value of 1 keV for the Faddeev method.
In general, the J-NCSM approach relies on an expansion of
the many-body wavefunction in harmonic oscillator (HO)
basis depending on relative Jacobi coordinates of all the par-
ticles involved. Such basis functions are characterized by the
HO frequency ω and the total HO energy quantum number
N . In order to get a finite number of basis states for practical
calculations, N is constrained by the model space size Nmax

[16,31]. In practice, we perform the J-NCSM calculations for
different sets of all the accessible model spaces up to Nmax

and for a certain range of HO frequencies (which are close
to the variational minimum at Nmax). The converged bind-
ing energies are then obtained by performing an additional
extrapolation to infinite model space. Several strategies have

been pursued to perform such extrapolations. Very often, an
empirical exponential extrapolation in Nmax at a fixed HO
frequency ω (usually the ones that yield the lowest bind-
ing energy for the largest computationally accessible model
spaces) is employed [33,39–41]. In our works in [16,17,31]
and also for this work, we pursue a slightly different strategy,
namely a two-step extrapolation procedure. Here the first step
is to minimize (eliminate) the HO-ω dependence of the bind-
ing energies E(ω,Nmax) utilizing the following (empirical)
ansatz,

E(ω,Nmax) = ENmax + κ(log(ω) − log(ωopt ))
2, (1)

with ENmax , ωopt and κ being fitting parameters. The
obtained lowest energies ENmax for each accessible Nmax

are then used for the extrapolation to infinite model space
assuming an exponential ansatz,

ENmax = E∞ + Ae−BNmax . (2)

The final uncertainty is assigned as the difference between
the infinite-model space extrapolated energy E∞ and the one
computed for the largest computationally accessible model
space. The described two-step extrapolation procedure is
applied to all nuclear and hypernuclear calculations of the
present work. As for demonstration, we show in Fig. 1 the
extrapolation for the 4He binding energies that have been
computed using the SMS N2LO(550) NN potential. Here, we
obtain a binding energy of E(4He) = −25.14 ± 0.06 MeV
which is in a good agreement with the value of E(4He) =
−25.15±0.02 MeV that resulted from solving the FY equa-
tions. Clearly, our way of assigning the numerical uncertainty
seems to be rather conservative, and a somewhat less con-
servative (but also empirical) estimate has been considered
for example in [33,39–41]. Nevertheless, as one will see in
the following section, using the SRG-evolved interactions,
our NCSM results for A = 4, 5 hypernuclei converge almost
perfectly (within several keV).

3.2 Infrared (IR) extrapolation

Let us further note that a truncation in the ω and Nmax model
spaces also implies a finite infrared (IR) length scale, (L I R),
and an ultraviolet (UV) cutoff, ΛUV , [41–44]. Hence, by
recasting the binding energies E(ω,Nmax) in terms of L I R

and ΛUV , E(L I R,ΛUV ), one can also perform the infinite
basis extrapolation with respect to the L I R and ΛUV cutoffs
[41–44]. In general, the IR length scale (and ΛUV ) depends
on the system considered and on how the basis functions
are truncated. In the case of the NCSM with a total energy
truncation a precise value for L I R has been derived in [45].
Furthermore, it has also been shown that, at a sufficiently
large and fixed ΛUV , the leading order IR correction to the
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Fig. 1 Upper panel: two-step extrapolation procedure for E(4He). ω-
space extrapolation (left). The solid lines are the 4He binding energies
computed for different Nmax from 10 to 28 with a step of 2. The dashed
lines are obtained by using the ansatz Eq. (1). Nmax-space extrapo-
lation (right). The horizontal line with shaded area shows the extrap-

olated binding energy and the estimated numerical uncertainty. The
calculations are based on the SMS N2LO(550) NN potential. Lower
panel: N -space extrapolation for E(4

ΛHe) (left) and E(5
ΛHe) (right).

The calculations are based on the SMS N4LO+(450) NN potential
with N2LO(450) 3N force, and the N2LO(550) YN potential

binding energy follows an exponential dependence on L I R

[41,45,46],

EΛUV
(L I R) = EΛUV ,∞ + aΛUV

e
−2κΛUV ,∞L I R . (3)

The UV correction is in general sensitive to the details of the
employed interaction or, more precisely, on how the inter-
action is regularized [44]. This correction is not yet well
understood in contrast to the IR energy correction. Hence,
in practice, one often performs the IR extrapolation at a
sufficiently large and fixed UV cutoff which yields reliable
IR extrapolations and for which the UV error is approxi-
mately minimized (or suppressed) [22,47]. As an example,
we show in Fig. 2 the IR extrapolated binding energy of 4He,
EΛUV ,∞(4He), as a function of ΛUV . The red triangles and
blue circles are the binding energies computed using the SMS
N2LO(550) and Idaho-N3LO(500) NN potentials, respec-
tively. It clearly sticks out that, with the Idaho-N3LO(500)

interaction (i.e. the one with a non-local regulator), the IR
extrapolated results are practically stable for a sufficiently

large UV cutoff (ΛUV ≥ 1300 MeV). Indeed, the over-
all variation of EΛUV ,∞(4He) for a range of UV cutoffs of
1300 ≤ ΛUV ≤ 2100 MeV is about 1 keV only. In con-
trast, for the N2LO(550) potential with a semi-local reg-
ulator, we observed a variation of about 90 keV even for
very large ΛUV but in a significantly smaller range, namely
1800 ≤ ΛUV ≤ 2100 MeV (see also the insert plot in Fig. 2).
Evidently, the UV correction for the SMS interactions seems
to be sizable and therefore should be carefully studied when
the IR extrapolation is being used.

Finally, we have also adopted a Bayesian approach for the
IR extrapolation as recently employed by Gazda et al. [22].
Here, we observed that the extrapolated results are rather
sensitive to the hyperparameter chosen for ΔEIR,max, see
Eqs. (28, 29) in [22]. By choosing ΔEIR,max to be twice
of the maximum extrapolation distance, we obtained the
4He binding energies of E(4He) = −25.06 ± 0.04 and
−25.12 ± 0.04 MeV for the N2LO(550) interaction at very
large UV cutoffs of ΛUV = 1800 and 2000 MeV, respec-
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Fig. 2 IR extrapolation based on Eq. (3) of E(4He) at different UV
cutoffs ΛUV . The calculations are based on the SMS N2LO(550) (red
triangles) and Idaho-N3LO(500) (blue circles) NN potentials. Dash-
dotted and dashed lines are the corresponding binding energies obtained
using the extrapolation formula in Eq. (1)

tively. One sees that the latter energy is in a good agree-
ment with the value of E(4He) = −25.14 ± 0.06 MeV
that resulted from the two-step ω- and Nmax extrapolation
and with the binding energy of E(4He) = −25.15 ± 0.02
obtained by solving the FY equations. Still, there is a non-
negligible discrepancy of 60 keV between the two IR extrap-
olated results at ΛUV = 1800 and 2000 MeV which could
be attributed to the UV truncation or the high-order IR cor-
rections. As discussed above, the latter is sensitive to the
underlying interactions and their regulator and seems to be
particularly significant for the SMS interactions. With the
SRG-evolved potentials, the dependence on the chosen UV
cutoff is somewhat reduced but it remains visible. In the fol-
lowing, we will therefore employ the two-step extrapolation
to extract the final binding energies for A = 4, 5 systems.
This extrapolation procedure is robust and it depends neither
on the systems investigated nor on the underlying interac-
tions. Let us finally stress that due to the SRG evolution and
the very large model spaces employed in the calculations, our
computed energies for A = 4, 5 hypernuclei at the largest
model spaces practically converge. The final results should
therefore not depend on the extrapolations.

3.3 Similarity Renormalization Group (SRG) for 4
ΛHe, 5

ΛHe

In order to study the different extrapolation methods, we
have employed so far only the bare two-body NN interac-
tions and provided examples for the 4He system. There, one
can clearly see that the NCSM calculations converge nicely
even when the bare chiral NN interaction is employed. Note
that 3N forces have been omitted in such calculations in
order to save computational resources, but we do not expect
that these change the convergence of the NCSM calcula-
tions significantly. However, when a hyperon is added to the
A = 3 (4) nuclear systems, the NCSM calculations for 4

ΛHe
( 5
ΛHe) with the bare chiral SMS NN , 3N and YN interac-

Table 2 Λ separation energies BΛ(4
ΛHe, 0+) and BΛ(5

ΛHe) in MeV
computed for different SRG flow parameters λ

λ [fm-1] BΛ(4
ΛHe, 0+) BΛ(5

ΛHe)
N2LO(550) NLO(550) N2LO(550)

1.88 1.992 ± 0.002 2.061 ± 0.001 3.712 ± 0.001

2.00 1.991 ± 0.005 – 3.70± 0.005

2.236 1.990 ± 0.007 2.06 ± 0.006 3.708 ± 0.006

2.60 1.989 ± 0.014 2.06 ± 0.012 3.744 ± 0.008

3.00 1.985 ± 0.024 2.058 ± 0.023 3.806 ± 0.028

4.00 – 2.052 ± 0.021 –

∞ 2.01 ± 0.02 2.08 ± 0.02 –

All calculations are based on the SMS NN potential N4LO
+
(450) and

the 3N force at N2LO(450). The SRG-induced 3N and YNN forces
are also included. BΛ(4

ΛHe, 0+) at λ = ∞ is obtained by solving the
FY equations employing the bare NN , 3N and YN potentials. Note
that BΛ(4

ΛHe, 0+) at λ = 4.0 (3.0) fm-1 has been computed for model
spaces up to Nmax = 34 (28), respectively, whereas values at lower λ

are computed for Nmax = 26

tions do not converge well even when the largest compu-
tationally accessible model space, namely Nmax = 34 (20),
is employed. Not well-converged hypernuclear binding ener-
gies may impact the final conclusion about the nuclear model
uncertainty in those hypernuclei. Therefore, to speed up the
convergence of the NCSM calculations, we will evolve all
the employed NN , 3N and YN potentials with an SRG trans-
formation [23,37,48–50]. Like in our previous work [37],
here both SRG-induced 3N and YNN forces are explicitly
taken into account, while the SRG-induced four- and higher-
body forces, whose contributions to the binding energies are
expected to be small, are omitted. In most of the calcula-
tions below, we will use an SRG flow parameter of λ = 1.88
fm-1 which is widely employed in both nuclear [25,33,51,52]
and hypernuclear calculations [23,37]. At that flow param-
eter, a numerical uncertainty of a few keV can be achieved
for both 4

ΛHe and 5
ΛHe for the model space Nmax = 26 and

18, respectively, see Fig. 1 (lower panels) and also Table 2.
It is therefore not necessary to perform the calculations for
the A = 4, 5 hypernuclei using our largest computationally
accessible model spaces, namely Nmax = 34 and 20, respec-
tively.

Since we do not include any SRG-induced interactions
beyond 3BFs in the current study, it is essential to quan-
tify the size of the possible contributions from those missing
forces to the separation energies in the A = 4, 5 hypernuclei.
For that purpose, we perform calculations for BΛ(4

ΛHe(0+))

and BΛ(5
ΛHe) for a wide range of SRG flow parameters,

namely 1.88 ≤ λ ≤ 3.0 (4.0) fm-1. The results are tabulated
in Table 2. Note that the separation energy BΛ(4

ΛHe(0+))

at λ = ∞ (i.e. non SRG-evolved) has been computed by
solving the FY equations with the bare NN , 3N and YN
potentials. Overall, one observes a negligible variation in
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Table 3 Separation energies (in MeV) for 3
ΛH, 4

ΛHe, and 5
ΛHe based on the N4LO

+
NN potential with cutoffs 400 − 550 MeV and with inclusion

of the chiral 3N force at N2LO

ΛN [MeV] BΛ(3
ΛH) BΛ(4

ΛHe, 0+) BΛ(4
ΛHe, 1+) BΛ(5

ΛHe)
FY NCSM FY NCSM FY NCSM

500 (N2LO) 0.118 ± 0.001 2.061 ± 0.002 2.06 ± 0.02 1.119 ± 0.009 1.12 ± 0.02 3.409 ± 0.007

450 (N2LO) 0.125 ± 0.001 2.119 ± 0.002 2.13 ± 0.02 1.141 ± 0.007 1.16 ± 0.02 3.518 ± 0.008

450 (N3LO) 0.122 ± 0.001 2.042 ± 0.002 2.07 ±0.02 1.07 ± 0.009 1.09 ± 0.02 3.287 ± 0.008

400 0.127 ± 0.001 2.084 ± 0.002 2.12 ± 0.02 1.08 ± 0.009 1.10 ± 0.02 3.308 ± 0.008

450 0.123 ± 0.001 2.061 ±0.001 2.08 ± 0.02 1.087 ± 0.009 1.10 ± 0.02 3.334 ± 0.008

500 0.118 ± 0.001 2.02 ± 0.001 2.03 ± 0.02 1.08 ± 0.009 1.09 ± 0.02 3.310 ± 0.008

550 0.113 ± 0.001 1.972 ± 0.001 1.96 ± 0.02 1.064 ± 0.009 1.07 ± 0.02 3.245 ± 0.009

Experiment [20] 0.164 ± 0.043 2.169 ± 0.042 (4
ΛH) 1.081 ± 0.046 (4

ΛH) 3.102 ± 0.030

2.347 ± 0.036 (4
ΛHe) 0.942 ± 0.036 (4

ΛHe)

For the interaction in the YN system the potential SMS NLO(550) is employed. Selected results for N2LO and N3LO NN potentials are included
too

BΛ(4
ΛHe) (of about 10±25 keV) over the considered range of

the SRG parameter which strongly indicates that the omitted
SRG-induced forces contribute insignificantly to BΛ(4

ΛHe).
In addition, there is a negligibly small difference of about
25 ± 30 keV between the separation energies at λ = ∞ and
at a finite flow parameter (λ = 3.00 fm-1) consistent with
zero within the numerical accuracy which again confirms
the smallness of the possible correction from the missing
induced higher-body forces to BΛ(4

ΛHe(0+)). We note that
similarly small discrepancies (about 20 ± 20 keV) are also
observed for the excited state separation energies 4

ΛHe(1+),
see Table 3. For the 5

ΛHe system, we do not have the result at
λ = ∞, nevertheless, with the available results, one can still
estimate a small contribution of about 100 ± 30 keV from
the neglected SRG-induced forces. We will see below that
this inaccuracy is significantly less than the uncertainty due
to the truncation of the chiral expansion. Hence, both our
numerical uncertainties and the truncated errors of the SRG
evolution are sufficiently small which in turn will allow for
an accurate estimate of the theoretical uncertainties due to the
underlying interactions considered in the following section.

4 Uncertainties from the NN and YN interactions

Recently performed estimates for the truncation error of
the chiral expansion for the nucleonic sector build primar-
ily on approaches that do not rely on cutoff variations
[19,25,28,30,33,53]. The cutoff dependence, or generally
speaking the residual regulator dependence, does provide a
measure for the effects of high-order contributions but it is
not a reliable tool for estimating the theoretical uncertainty
due to cutoff artifacts, see also the arguments in Sect. 7 of
Ref. [28]. Thus, in order to investigate the convergence pat-
tern of the separation energies of the considered hypernuclei

with increasing order, we have implemented the Bayesian
approach of Refs. [30,54] and summarized in Appendix 1
of Ref. [55].

The calculations presented in this section utilize NN
potentials from LO up to N4LO+ and include the leading
3NFs starting from N2LO. However, they are without the
leading chiral YNN interactions and, therefore, incomplete
starting from order N2LO. We refrain from using so-called
“projected results” (see [56]) which assume experimental
values for certain binding energies arguing that these results
can be fitted once LECs of the missing terms have been
adjusted. We will discuss below how the missing terms might
alter uncertainty estimates.

4.1 Discussion of the variations

Let us first inspect the variation of the separation energies
with the employed NN potentials. As already mentioned in
the introduction, previous bound-state calculations by us sug-
gested that the Λ separation energies of light hypernuclei are
not very sensitive to the employed NN interaction [11,18].
For example, the variation of the separation energy for the
SMS NN potential of Ref. [19] at order N4LO+ with cutoffs
ΛN = 400 − 550 MeV were found to be around 100 keV for
4
ΛHe/4

ΛH [18]. Those for the hypertriton were in the order
of only 10 keV. Variations of similar magnitude have been
observed in earlier calculations based on phenomenological
interactions [11].

Separation energies for A = 3−5 Λ hypernuclei, obtained
within the NCSM approach and from solving FY equations,
are summarized in Table 3. The calculations are based on the
NN and 3N potentials at N4LO+ and N2LO, respectively,
with four different cutoffs. To describe the YN interaction
the SMS NLO(550) potential has been employed. We con-
sider also NN potentials up to N2LO and N3LO with selected
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Fig. 3 Separation energies for 3
ΛH, 4

ΛHe (0+, 1+), and 5
ΛHe, for dif-

ferent combinations of NN and YN interactions. YN : LO(600) (green
triangles), SMS NLO(550) (blue diamonds), and SMS N2LO(550) (red
circles). 3NFs are included starting from N2LO. The employed NN

interactions are specified on the x-axis. Shaded areas show the overall
variation of the separation energies for the employed YN potentials at
the given order. The band for LO in 3

ΛH was omitted since it covers 3/4
of the plot and obscures the size of the other bands

cutoffs for illustration. As already discussed above, the small
deviations between the NCSM and FY results are due to SRG
induced four-baryon interactions that are omitted in the cal-
culations. It sticks out that the numerical uncertainty of the
FY results is similar or even larger than the deviation to the
NCSM results. Therefore, below we will estimate our uncer-
tainties based on the NCSM results if available. A graphical
representation of the separation energies is provided in Fig. 3.
Here, in addition, results for the SMS N2LO(550) YN poten-
tial as well as some results for the LO(600) YN potential are
shown.

One can see from Table 3 that the overall variation of the
5
ΛHe separation energy is indeed very small. Furthermore,
in general, the variations are smaller than the difference to
the experimental value. The latter difference will eventually
be accounted for via inclusion of YNN 3BFs and/or with
improved YN interactions. The situation for the 4

ΛHe sepa-
ration energies is similar. Also here for the 0+ as well as for
the 1+ state, the variations due to the employed NN poten-
tial are small and specifically smaller than the difference to
the empirical separation energies. Note that, since we do not
include charge symmetry breaking potentials in the current
study, our results for BΛ(4

ΛHe) should be compared to the
experimental values for both 4

ΛHe and 4
ΛH hypernuclei.

A detailed overview of the variation of the separation ener-
gies for the considered hypernuclei due to different chiral
orders and different cutoffs ΛN of the underlying NN poten-
tials is provided in Table 4, see also Fig. 3. For the set of
N4LO+ NN potentials combined with the NLO or N2LO
YN interactions the variations of BΛ(5

ΛHe) are 45 − 90 keV.
They increase to 295 keV when NN potentials of lower order
are considered additionally. With regard to BΛ of the 4

ΛHe
1+ state, the variation for the N4LO set is only of the order
of 25−44 keV and increases to 114 keV when N2LO/N3LO
NN interactions are taken into account. Concerning the 0+
state, the variation for the N4LO+ set is 43 − 110 keV. It
becomes slightly larger but remains of similar magnitude by
considering lower order NN interactions. Clearly, using the
most sophisticated (and most accurate) NN interactions sig-
nificantly reduces the sensitivity of BΛ to the employed NN
potentials. In passing, let us also mention that, as shown in
Ref. [25], by including the higher-order corrections to the NN
potentials up through fifth order, the systematic overbinding
observed in nuclei with A > 10 reported in their earlier study
in Ref. [32] when only NN and 3N interactions at N2LO were
employed, is practically resolved.

In order to compare the variations found by us with the
ones reported by Gazda et al., we simply digitized their results
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Table 4 Variation (ΔBΛ) of A = 3 − 5 separation energies for SMS N4LO+ NN and N2LO 3N potentials with cutoffs 400 − 550 MeV and YN
potentials of LO, NLO, and N2LO (in keV)

Considered NN +YN potentials ΔBΛ(3
ΛH) ΔBΛ(4

ΛHe, 0+) ΔBΛ(4
ΛHe, 1+) ΔBΛ(5

ΛHe)

NCSM/FY N4LO++N2LO(550) 3 43 44 45

N4LO++NLO(550) 14 110 25 90

N4LO++LO(600) 25 194 223 970

(N2LO,N3LO,N4LO+)+N2LO(550) 11 114 114 295

(N2LO,N3LO,N4LO+)+NLO(550) 14 147 88 273

FY [18] N4LO++NLO19(650) 10 85 50

Refs. [21,22] Variation with cutoff 50 270 240 1150

Ref. [22] Standard deviation σmodel 20 100 100 400

(N2LO,N3LO, N4LO+) means that results for N2LO and N3LO NN potentials for selected cutoffs are considered, too

from Figs. 3 and 7 of Refs. [21,22], respectively. The cor-
responding values are also listed in Table 4. Actually, those
authors considered variations due to the cutoff as well as
variations due to the fitting region. The values we provide
in the table are an average over those for different fitting
regions. Obviously, the variations observed in that study are
about 3 times larger for 4

ΛHe (0+), and practically a factor
10 larger for 4

ΛHe (1+) and 5
ΛHe than the variations we find

for the NLO and N2LO YN potentials in combination with
N4LO+ NN potentials. The variation for BΛ(3

ΛH) is likewise
a factor 3 larger than ours. However, when we use a LO YN
potential (see the corresponding line in Table 4 and Fig. 3)
the variations become comparably large as those reported in
[21,22].

We identified three possible sources for the differences in
the variations. First, we expect a sensitivity to the actual size
of the separation energies. In general, the LO YN interac-
tions overbind the considered hypernuclei substantially (see
Fig. 3 and also Tables I, II in [22]), and naturally, a signifi-
cantly larger variation is expected. For 3

ΛH, the value of BΛ

is fixed by construction, for all considered YN potentials.
Since here we observe an increased dependence on the NN
interaction too, when a LO YN potential is used, we believe
that the lack of short-range repulsion in the LO YN poten-
tials is also a potential source for the difference to the results
with NLO and N2LO. This deficiency of the LO interac-
tions can lead to an increased sensitivity to the details of the
short-range part of the NN interactions. Third, there is pre-
sumably an effect from the employed regularization scheme.
The N2LOsim potentials employed by Gazda et al. build on
a non-local regulator for all components of the interaction.
The SMS NN potentials by Reinert et al. are based on a novel
regularization scheme where a local regulator is applied to
the pion-exchange contributions and only the contact terms,
being non-local by themselves, are regularized with a non-
local function. As discussed thoroughly in [19,28], a local
regulator for pion-exchange contributions leads to a reduc-

tion of the distortion in the long-range part of the interaction
and, thereby, facilitates a more rapid convergence already at
low chiral orders. This affects predominantly P- and higher
partial waves. In this context note that the optimal cutoff
range is shifted from 450 − 600 MeV (Carlsson et al. [27])
to 400 − 550 MeV (Reinert et al [19]).

Finally, and for clarification, we want to emphasize that
the “model uncertainties” quoted in the abstract and in the
summary of Ref. [22], have been deduced from the vari-
ance σ 2(NNLOsim) as specified in Eq. (33) of that paper. As
for reference those uncertainties are listed in the last line of
Table 4. It is important to stress that those values, which are
noticeably smaller than the variations, cannot and should not
be compared with our results.

4.2 Estimate for the truncation error

Given that we have results for different orders of the chiral
NN and YN interactions at our disposal, we are now able to
perform a more complete analysis of the uncertainties due to
truncation in the chiral expansion. To this aim, we follow the
Bayesian approach of [54] and Ref. [55], cf. the appendix
on the pointwise model. Assume that the observable X (here
the separation energies) also follow the power counting of
the potential. If the chiral expansion is truncated at order K ,
the observable XK and the corresponding truncation error
δXK can be expressed as

XK = Xref

(
K∑

k=0

ck Q
k

)
; δXK = Xref

( ∞∑
k=K+1

ckQ
k

)
.

(4)

where Q = Meff
π /Λb is the chiral EFT expansion parame-

ter [57], Xref is a dimensionful quantity that sets the overall
scale and ck are the dimensionless expansion coefficients.
The expansion parameter is given by an effective pion mass
Meff

π and the breakdown scale Λb. The expansion coeffi-
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Fig. 4 (Left) Consistency plots for comparing the actual changes in
higher orders to the expected values for p[%] DoB intervals. (Right)
Values of the ck coefficients extracted using the corresponding experi-

mental separation energies as the reference value. Also shown are the
average and standard variation order by order and in total

cients ck (k = 0, 2, · · · K ) are obtained from the separa-
tion energies computed at two consecutive orders, ck+1 =
(B(k+1)

Λ − B(k)
Λ )/(Qk+1Xref). In order to obtain the posterior

probability distribution for the truncation error δXK based
on our knowledge of the coefficients ck (k = 0, 2, · · · K ), we
further assume that all the expansion coefficients are inde-
pendently and identically distributed (iid). The priors follow
the “pointwise” distribution given in Eq. (A2) in the appendix
of Ref. [55], namely a normal distribution with variance c2

ck |c2 iid∼ N (0, c2) (5)

where the distribution of c2 follows an inverse χ2 distribution

c2 ∼ χ−2(ν0, τ
2
0 ) (6)

depending on the two hyperparameters ν0 and τ 2
0 . The analyt-

ical expression for the posterior distribution of the truncation
error δXK is also given in Eq. (A12) of the same appendix.

Clearly, the truncation error will be contingent on the
expansion parameter Q as well as on our choices for the
parameters ν0 and τ 2

0 . We have compared results for non-
informative priors (not preferring any maximal value of ck ,
i.e. using the parameter ν0 = 0) and more informative priors
for ck with ν0 > 0. It turns out that the estimated truncation
errors were not very sensitive to this parameter, therefore,
we finally chose ν0 = 1.5 which was also used in [25] for
studying the convergence of calculations of ordinary nuclei.
We also followed [25] and selected τ 2

0 = 2.25.
To learn the expansion parameter Q, we assume a nor-

mal distribution for the prior of Q and use the expression in
Eq. (A19) of Ref. [55] to compute the posterior distribution
of Q. In order to increase the statistics, when learning the
expansion parameter Q we employ the combined data that
contains all the separation energies for A = 3 − 5 hypernu-
clei computed at different orders of NN and of YN interac-

tions. We obtained the value of Q = 0.4, which is slightly
larger than the one used for ordinary nuclei [25]. This could
probably be related to the small number of our data that are
available for determining the distributions. We also test the
validity of our choice for Q by generating consistency plots
as proposed in Ref. [54] that show the comparison between
the obtained rates of the overlap of higher-order calculations
with lower-order degree of believe (DoB) intervals and the
expected values, see Fig. 4. Clearly, with the chosen value
of Q = 0.4, our uncertainty estimates are statistically con-
sistent with the observed changes due to higher-order con-
tributions. Finally, let us remark that we also extracted the
Q parameter using two other sets of data, referring to as the
NN and YN convergence studies. In the former case, the data
are composed of separation energies at various NN orders
(k = 0, 2, 3, 4, 5) but with a fixed YN order. In the latter
case, we used the data set that consists of the energies at a
fixed NN order but for different YN orders (k = 0, 2, 3). The
obtained Q values in the two cases are in general consistent
with each other and with the result obtained when the com-
bined data is used. The most relevant difference between the
NN and YN convergence studies was probably the fact that
the expansion parameter Q tends to be smaller for NN than
for YN . The deviation was, however, small enough so that
a combined-data analysis is preferred because of its higher
statistics. Therefore, we will use the expansion parameter
Q = 0.4 for estimating the truncation errors.

The obtained distribution of ck coefficients is also inter-
esting. Their dependence on the order k of the expansion is
shown on the right panel of Fig. 4 together with the average
values per order and the complete average with standard devi-
ation. For their extraction, we chose reference values close to
the corresponding experimental separation energies in order
to be independent of the LO result. The latter might be altered
by choosing a quite small singlet scattering length in order
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to match the 3
ΛH separation energy [58]. In addition, because

of this choice for Xref , we are able to use all coefficients for
determining the posteriors. We stress that the final truncation
errors are independent of the reference value. Interestingly,
the NLO coefficients have a tendency to be larger than all
the other ones. This tendency is also observed for the expan-
sion coefficients obtained for light nuclei [25]. Overall, all the
expansion coefficients are however of natural size and, there-
fore, the value of Q = 0.4 for the expansion scale seems to be
consistently chosen. For this extraction, it has been assumed
that the differences of the higher-order contributions are of
the order naively expected. We have also attempted to analyse
the results assuming that the expected corrections at N2LO
and at higher orders are of the order k = 3 because the chiral
YNN forces contributing at this order is missing. In this case,
the higher-order NN expansion coefficients become unnatu-
rally small. This in turn supports our assumption that these
differences are indeed of the expected order. Note that this
assumption is however not true for the regulator dependence
which will ultimately be counterbalanced by a YNN 3BF
once it has been taken into account. The cutoff dependence
is therefore a Q3 effect for NLO and all higher orders.

Having the hyperparameters and the expansion scale fixed,
we are now at the position to analyze the convergence pat-
tern of the separation energies with respect to chiral order. As
already documented in the previous section, the separation
energies are much less sensitive to the NN than to the YN
interaction. This is also manifest in a different size of ck coef-
ficients for the NN convergence and the YN convergence. We
therefore analyze the convergence and extract the truncation
uncertainties for NN and YN separately. The convergence
of the separation energies for A = 3 − 5 hypernuclei with
respect to NN and YN orders are shown in the left and right
panels in Fig. 5, respectively. The bands show the expected
truncation errors at each orders. Clearly, the large expansion
parameter leads only to a slow decrease of this uncertainty
at higher orders.

It clearly sticks out that the variation due to the NN inter-
action is much smaller than the one due to the YN interaction.
In order to compare the NN cutoff variation with the rele-
vant uncertainty estimate, we include also results for differ-
ent NN cutoffs, see green points. Although these calculations
were performed at order N4LO+, we show them in the figure
at NLO since the cutoff variation will be ultimately mostly
observed by the only N2LO contribution that we are not tak-
ing into account, namely the leading YNN 3BF . As can be
seen, the NN cutoff variation is consistent with but in most
of the case smaller than the 68% DoB interval. This is con-
sistent with our observation in the previous section and with
the general expectation that the cutoff variation as well as the
dependence on the chiral order of the NN interaction is of
less relevance when predicting Λ separation energies.

The most dominant uncertainty is due to the truncation of
the chiral expansion of the YN interaction, as can be clearly
seen in the right panel in Fig. 5. Here the grey bands indicate
the uncertainty at NLO attached to the result at order N2LO.
This is the relevant quantity for the comparison to the exper-
imental separation energies shown in red symbols since all
calculations do not include the leading chiralYNN 3BF . Note
that both experimental separation energies of 4

ΛH and 4
ΛHe

are included in the figure because our calculations have been
performed with isospin conserving interactions that cannot
properly predict the charge symmetry breaking differences of
the separation energies of these mirror hypernuclei. It can be
seen that all experimental energies are within the 68% DoB
intervals. The NLO uncertainties are substantial and signifi-
cantly larger than the experimental uncertainties for A = 4
and 5. Only for 3

ΛH, the experimental and theoretical uncer-
tainty are comparable, justifying our choice to constrain the
strength of the YN interaction in the 1S0 partial wave by the
3
ΛH separation energy [26,59].

In order to obtain an estimate of the size of the missing
YNN force contributions, we have summarized half the size
of the NLO 68% DoB interval in Table 5 for both, the NN
and the YN convergence. The dependence on the NN inter-
action is generally a factor of two smaller than the one on the
YN interaction. It is however larger than the one anticipated
from older calculations comparing results for different phe-
nomenological NN interactions [11]. Incidentally, the val-
ues are roughly in line with the “model uncertainties” from
Ref. [22] that were based on averaging of the interactions
dependence. As discussed in the previous subsection, the
true dependence on the NN interaction is actually larger,
c.f. Table 4.

The relevant quantity for assessing the size of the YNN
3BF is the NLO 68% DoB for YN since this quantity is
larger. The 3BF contribution for the hypertriton is estimated
to be roughly 15 keV. It is compatible with the result of
a first explicit (though incomplete) evaluation of 3BFs for
3
ΛH by Kamada et al. [60], which suggests a contribution of
around 20 keV. In that work only the contribution due to 2π -
exchange has been taken into account. We consider the nice
agreement as a confirmation for the procedure we follow.
In any case, it is important to note that the 3BF effect on
the hypertriton separation energy is found/estimated to be
smaller than the experimental uncertainty.

For A = 4, the YNN 3BF can be expected to contribute
in the order of 200 keV. Also this estimate is in line with
previous results. In Ref. [18], we observed that the NLO13
and NLO19 YN potentials exhibit a regulator dependence
of up to 210 keV and variations of the separation energies
of up to 320 keV due to dispersive effects associated with
the ΛN -ΣN coupling which both can be taken as estimate
for YNN 3BF contributions. The estimate here, based on
the convergence pattern of the chiral expansion, is of similar
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Fig. 5 Comparison of the
convergence with respect to the
chiral order of the employed NN
(left) and YN (right) potentials
for 3

ΛH, 4
ΛHe(0+), 4

ΛHe(1+)and
5
ΛHe (from top to bottom)

Table 5 Half the size of the
68% DoB intervals for the Λ

separation energy at NLO based
on the convergence with respect
to the YN and NN interactions
(in MeV)

Nucleus Δ68(NN ) Δ68(YN )

3
ΛH 0.01 0.02
4
ΛHe (0+) 0.16 0.24
4
ΛHe (1+) 0.11 0.21
5
ΛHe 0.53 0.88
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size. For 5
ΛHe, the comparison of NLO19 and NLO13 can

again provide hints to the size of 3BF effects. We found
in Ref. [37] that the result for NLO13 and NLO19 differs
by 1.1 MeV which gives a lower bound of possible YNN -
force contributions. Therefore, also the estimate in Table 5
of 900 keV appears to be reasonable.

Additionally, we employed the approach proposed by
Epelbaum, Krebs and Meißner (EKM) [28] for estimating
the uncertainty as outlined in the appendix. This estimated
error depends strongly on the expansion parameter chosen. It
turns out that for standard values of Q = 0.31, the estimates
are well in line with the Bayesian results. For Q = 0.4, the
EKM estimates are somewhat larger but still of similar order
as the statistically motivated ones.

It is also interesting to look at the prospective N2LO uncer-
tainties once the leading YNN interactions are included. In
our analysis, we find 6, 100 and 350 keV for the A=3, 4
and 5 hypernuclei, respectively. These estimates are how-
ever strongly dependent on the expansion parameter Q. For
example, for Q = 0.3 as in [25], we find N2LO uncertainties
of 3, 50 and 200 keV.

5 Summary

In this work, we have investigated various aspects relevant
for the theoretical uncertainties of calculations of separation
energies of Λ hypernuclei with A ≤ 5. These light hyper-
nuclei have attracted some attention recently because their
properties are mostly determined by the S-wave YN interac-
tions which are reasonably well constrained by the available
YN data and the hypertriton separation energy. To a great
extent the effort for providing a quantitative assessment of
the uncertainties of our few-body calculations was motivated
by the study of Gazda et al. [22] which suggested that even
the employed NN (3N ) interactions might have an significant
impact on the uncertainty of the predicted hyperon separation
energies.

In the present work, we considered two possible sources
for uncertainties. First, there is the numerical uncertainty
which, in our case, is caused by discretization and/or trun-
cation of the model space in the no-core shell model cal-
culation, and also due to neglected contributions of SRG-
induced four- and more-baryon interactions. By comparing
two extrapolation methods and benchmarking to results from
FY calculations, we found that the numerical uncertainties
are well under control and are actually irrelevant in compari-
son to other effects. The other source of uncertainties consid-
ered are differences in the employed NN (plus 3N ) and YN
potentials. Our results for the hyperon separation energies
do show some dependence on the underlying NN interac-
tion. However, compared to Gazda et al. [22], the variations
are considerably smaller. A detailed analysis of our calcu-
lations suggests that the significant reduction is very likely

due to the use of higher order YN interactions and of higher
order NN interactions. In fact, the effects due to truncating
the chiral order of the YN interaction are the larger and most
relevant ones and have been quantified in this work for the
first time. It should be said that the way how regularization is
implemented (all non-local or semi-local) could play a role,
too, though on a less significant level.

Altogether, it is reassuring to observe that our NLO and
(incomplete) N2LO results agree with the experimental sep-
aration energies within the estimated NLO truncation error.
They show that it is now of high importance to also include
the missing chiralYNN three-body force that starts contribut-
ing at order N2LO. Work in this direction is in progress. The
present calculation indicates that their contribution is needed
and can lead to a consistent and accurate description of all
s-shell hypernuclei.

Independently, it is important to get more experimental
input to facilitate a better determination of the YN interac-
tion. Indeed, in the future more extensive data on the Λp
system, i.e. angular distributions and possibly polarizations,
should become available thanks to the J-PARC E86 experi-
ment [61]. A major advantage of the 3N system is that there
the underlying NN interaction can be examined also via Nd
scattering and/or break-up observables. Some of the observ-
ables accessible in this way are known to be not very sensitive
to the 3NF and, thus, provide an excellent direct and reli-
able testing ground for the properties of the NN potentials.
Unfortunately, so far, for Λd scattering, we have neither data
nor calculations based on modern YN interactions. However,
there are plans for measurements of Λd scattering at JLab
[62] and experimental studies of the Λd correlation function
[63] are under way at CERN by the ALICE Collaboration
[64]. Finally, also a Λnn resonance [65] would provide an
important additional constraint, though its existence is still
under debate.

Acknowledgements This project is part of the ERC Advanced Grant
“EXOTIC” supported the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101018170). This work is further supported in
part by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) and the NSFC through the funds provided to the Sino-
German Collaborative Research Center TRR110 “Symmetries and the
Emergence of Structure in QCD” (DFG Project ID 196253076 - TRR
110, NSFC Grant No. 12070131001), the Volkswagen Stiftung (Grant
No. 93562) and by the MKW NRW under the funding code NW21-024-
A. The work of UGM was supported in part by The Chinese Academy
of Sciences (CAS) President’s International Fellowship Initiative (PIFI)
(grant no. 2018DM0034). We also acknowledge support of the THEIA
net-working activity of the Strong 2020 Project. The numerical cal-
culations were performed on JURECA of the Jülich Supercomputing
Centre, Jülich, Germany.

Funding Open Access funding enabled and organized by Projekt
DEAL.

123



3 Page 14 of 16 Eur. Phys. J. A (2024) 60 :3

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The results from
our calculations are given in the text, and displayed in the tables and
figures.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Uncertainty estimate following EKM

For estimating the truncation error of the chiral expan-
sion we also applied the EKM approach [28]. The concrete
expression used to calculate an uncertainty δXNLO to the
NLO prediction XNLO of a given observable X is [28,56]

δXNLO(Q) = max

(
Q3 ×

∣∣∣XLO(Q)

∣∣∣,
Q ×

∣∣∣XLO(Q) − XNLO(Q)

∣∣∣). (A.1)

We also note that the additional constraints specified in
Eq. (8) of Ref. [56] are imposed. In Refs. [53,57], the expan-

Table 6 EKM uncertainty estimates in MeV at order NLO using dif-
ferent YN (1st and 2nd line) and NN (3rd and 4th line) orders for 3

ΛH,
4
ΛHe, 5

ΛHe for two values of the expansion parameter Q

Q 3
ΛH 4

ΛHe(0+) 4
ΛHe(1+) 5

ΛHe

0.31 0.015 0.30 0.36 1.1

0.40 0.015 0.39 0.47 1.4

0.31 0.005 0.06 0.07 0.64

0.40 0.008 0.13 0.09 0.83

sion parameter Q was estimated to be Q = 0.31. This value
was also used in nucleonic few-body studies [32,53]. We
adopt here also the value of Q = 0.4 obtained in the Bayesian
analysis, cf. Section 4.2. Using this ansatz to estimate the
uncertainty, we obtain the results listed in Table 6 for the
uncertainties due to the truncation.

In Ref. [54], it was found that the EKM uncertainty esti-
mates correspond at NLO to the 68% DoB interval for a
specific choice of the prior. Here, we find that the values are
of similar order as the Bayesian analysis. Choosing the same
expansion coefficient as in our Bayesian analysis, the actual
values are somewhat larger. Only for the standard choice
Q = 0.31, we find good agreement between the two uncer-
tainty estimates.
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