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Abstract It is an experimental fact that multi-particle cor-
relations in the final states of high-energy nucleus-nucleus
collisions are sensitive to collective correlations of nucleons
in the wave functions of the colliding nuclei. Here, I show
that this connection is more direct than it intuitively seems.
With an energy deposition scheme inspired by high-energy
quantum chromodynamics, and within a linearized descrip-
tion of initial-state fluctuations in the quark-gluon plasma, I
exhibit relations between N -particle correlations in the final
states of nuclear collisions and N -nucleon density distribu-
tions in the colliding nuclei. This result formally justifies the
sensitivity of the outcome of high-energy collisions to fea-
tures such as nuclear deformations. It paves the way, thus,
to systematic studies of the impact of state-of-the-art nuclear
interactions in such processes.
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1 Introduction

Multi-particle correlations in the final states of ultrarelativis-
tic nuclear collisions provide crucial insights about the ini-
tial condition and the dynamics of the quark-gluon plasma
(QGP [1–4]) formed in such processes. For this reason they
have been extensively studied at the BNL Relativistic Heavy
Ion Collider (RHIC) and the CERN Large Hadron Col-
lider (LHC) [5–21]. In the limit of central collisions, where
the nuclei overlap nearly head-on, these measurements are
strongly sensitive to collective spatial correlations of nucle-
ons in the colliding nuclear wave functions. In a classical
treatment where correlations are encapsulated in intrinsic
shapes [22], high-energy experiments have indeed provided
complementary evidence of the quadrupole, octupole, and
hexadecapole deformations of several species [17,20,23–
27]. These findings support a picture of high-energy scatter-
ing as an imaging process giving access to correlated (includ-
ing up to A-body correlations) spatial distributions of nucle-
ons in the ground states of the colliding ions [28], and have
attracted considerable attention in the theoretical community
in the past couple of years (see e.g. [29–67]).

One is naturally led to ask what features of the strong
nuclear force experiments at high energy enable us to probe.
This is especially compelling in the context of modern ab
initio approaches to the nuclear many-body problem [68–
72], where the nuclear force emerges in an effective the-
ory of low-energy QCD, dubbed chiral effective field the-
ory [73–76]. To elucidate the complementarity of low- and
high-energy experiments, it would be thus desirable to per-
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form systematic implementations of state-of-the-art nuclear
theory predictions in simulations of high-energy collisions.
More concretely, it would be insightful to assess how the
outcome of the simulations changes under parameter varia-
tions, different resolution scales and truncations of the chiral
effective field theory expansion.

Connection between more or less advanced ab initio cal-
culations of nuclear structure and high-energy collisions has
been made in the past to highlight the effects of nuclear geom-
etry and nucleon-nucleon correlations in collisions of light
nuclei, from deuteron to 16O [32,77–80]. In these works,
the Schrödinger equation is solved via Monte Carlo meth-
ods which give access to fully-correlated nucleon config-
urations sampled from the A-body nuclear wave function.
While these results provide state-of-the-art information for
the simulation of the collider processes, we have at present
no understanding in regards to what properties of the sam-
pled wave functions are important for the phenomenology.
This is also a open question in nuclear structure itself, as
what precisely drives nuclear deformations in ab initio cal-
culations based on chiral effective field theory is yet to be
fully clarified [81]. Likely, the most prominent deformations
are captured by 2-, 3- and possibly 4-nucleon correlations in
the considered ground states. At high energy, what is missing
is a theoretical description connecting multi-hadron correla-
tion observables to N -nucleon correlations in the colliding
ions. This would pave the way to more systematic analyses
connecting nuclear structure predictions to high-energy col-
lisions, as N -nucleon densities may be simpler to obtain than
correlated A-body configurations.

In this paper, a step is taken in this direction. I show that,
indeed, under certain conditions N -hadron correlations in
the final states of nuclear collisions (whose definition I recall
in Sect. 2) can be directly linked to N -nucleon densities in
the colliding ions. This is achieved in a two-step procedure.
First, in Sect. 3 I invoke a linearized description of initial-state
fluctuations in the QGP to relate final-state hadron correla-
tions to correlation functions of the fluctuating energy density
field characterizing the QGP on an event-by-event basis. In
a second step, discussed in Sect. 4, a simple and yet realis-
tic parametrization of the QGP energy density is employed,
which involves the product of nuclear profiles. This model
leads then to a straightforward link between energy-density
correlators in the QGP and many-body densities in the col-
liding nuclei, connecting thus nuclear structure properties
and final-state observables (including the output of photon-
mediated interactions at high energy, as discussed in Sect. 5).
In Sect. 6, comprehensive numerical tests are carried out
to assess the validity of the approximations underlying the
present analysis and their applicability. The corresponding
figures are reported in Appendix A. Section 7 concludes the
paper with a summary and an outlook on possible research
directions opened by this study.

2 Multi-particle correlations in heavy-ion collisions

The detectable outcome of a nuclear collision at high energy
is a hadron spectrum differential in momentum:

dN

dφptdptdη
, (1)

where pt is the magnitude of the momentum in the transverse
plane, orthogonal to the collision axis, φ is its azimuthal
direction, while η is the so-called pseudorapidity, related
to the longitudinal component of the momentum via its
polar angle of emission relative to the beam pipe, θ =
2 arctan

(
e−η

)
, such that η = 0 implies an emission orthogo-

nal to the beam direction at z = 0 in Fig. 1. In the lab frame,
the part of the wave function of the colliding nuclei that deter-
mines the spatial positions of the nucleons, or, in general, of
the degrees of freedom having large values of the Bjorken-x
variable (such as valence quarks) is squeezed in beam direc-
tion by a Lorentz factor, γ , which at top BNL RHIC and
the CERN LHC energy satisfies γ > 100. The longitudinal
extent of the nuclei is therefore negligible and the collision
is that of two flat disks (see Fig. 1). All the relevant informa-
tion about the collision dynamics is carried as a consequence
by the hadron spectrum measured at midrapidity, on which I
shall focus:

dN

dφptdpt
= dN

dφptdptdη

∣∣∣∣
η=0

. (2)

The total yield of hadrons in a collision event is:

Nch =
∫

dφptdpt
dN

dφptdpt
, (3)

Fig. 1 Sketch of an ultrarelativistic collision between nuclei in the lab
frame, where the nuclei are flattened along the beam direction, z, by a
large Lorentz factor. The coordinates x and y define the transverse plane.
The collision occurs at zero impact parameter, with the center-of-mass
of each nucleus lying at x = y = 0.
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coming from the contribution of several species (typically
80% pions, 15% kaons, and 5% heavier particles).

At high enough energy, the rescattering of partons in the
interaction region leads on a time scale of order 1 fm/c to
the formation of a system that is close to thermal equilib-
rium [82], the QGP, a near-perfect fluid characterized by the
equation of state of hot QCD [83,84]. One of the main goals
of the high-energy nuclear collision programs is indeed the
characterization of this medium from experiments [85,86].

The hydrodynamic expansion affects mainly the produc-
tion of soft particles sitting at low values of pt , typically
pt < 2 GeV. Precise information about the flow of the QGP
can be reconstructed from global properties of the observed
spectra. One such property is the average magnitude of the
hadron momenta,

[pt ] = 1

Nch

Nch∑

i=1

pt,i (4)

quantifying the explosiveness of the QGP expansion. Sec-
ond, one looks at the azimuthal distribution of the produced
hadrons via a Fourier decomposition [87],

dN

dφptdpt
= dN

ptdpt

∞∑

n=−∞
Vn(pt )e

inφ, |Vn| = vn, (5)

where the complex harmonics,Vn(pt ), dubbed coefficients of
anisotropic flow, encode the anisotropy of the particle emis-
sion. In their pt -integrated form, they read:

Vn = 1

Nch

Nch∑

i=1

e−inφi . (6)

In spite of the abundant production of hadrons, well-defined
values of Vn and [pt ] on an event-by-event basis can not be
obtained, due to large statistical fluctuations associated with
the finite Nch ∼ O(1000). To measure meaningful quanti-
ties, experiment sort the collected collisions (or events) into
classes, and evaluate averages ofVn and [pt ] from these larger
samples. Suppose an event class contains Nevent collisions
producing Nch hadrons on average. The effective number of
particles used in the calculation of observables becomes of
order Nch × Nevent, which is infinite in practice.

The simplest observable is the mean value of the average
momentum in the event class,

〈[pt ]〉ev = 1

Nevent

Nevent∑

ev=1

[pt ], (7)

where I have introduced the notation

〈. . .〉ev = 1

Nevent

Nevent∑

ev=1

. . . . (8)

Fluctuations of [pt ] are also important [88–92]. The variance,
var([pt ]), and the skewness, skew([pt ]), of the distribution
of [pt ] in the event class can be obtained from correlations
of momenta [93–97]:

var([pt ]) =
〈∑

i �= j (pi − 〈[pt ]ev〉)(p j − 〈[pt ]ev〉)
Nch,ev(Nch,ev − 1)

〉

ev

, (9)

skew([pt ])

=
〈∑

i �= j �=k(pi −〈[pt ]ev〉)(p j −〈[pt ]ev〉)(pk−〈[pt ]ev〉)
Nch,ev(Nch,ev−1)(Nch,ev−2)

〉

ev

,

(10)

where Nch,ev is the event-to-event multiplicity. These observ-
ables represent two examples of the aforementioned multi-
particle correlations constructed in the final state of high-
energy nuclear collisions. Specifically, Eq. (9) is a two-
particle correlation, while Eq. (10) is a three-particle corre-
lation. Note that the sums over particle pairs (i, j) in Eq. (9)
and over all particle triplets (i, j, k) in Eq. (10) excludes all
double-counting of the same particles, such that physically-
uninteresting self-correlations are not included in the observ-
able.

Moving on to the anisotropic flow coefficients, one has
to first note that an average of Vn in the event class must be
zero, 〈Vn〉ev = 0, because the orientation of the anisotropy of
the particle emission is random on an event-by-event basis.
Hence, one can only measure the mean squared modulus of
the Fourier harmonic, which cancels the random phase,

vn{2}2 ≡ 〈VnV ∗
n 〉ev =

〈 ∑
i �= j e

in(φi−φ j )

Nch,ev(Nch,ev − 1)

〉

ev

, (11)

corresponding to a two-particle azimuthal correlation. Higher-
order moments of the v2

n ≡ VnV ∗
n distribution can be con-

structed by taking further azimuthal angles in the aver-
age, though I do not consider this possibility here. In the
present study I need, however, a three-particle covariance
[13,17,20,98],

cov([pt ], v2
n) =

〈∑
i �= j �=k(pi − 〈[pt ]ev〉)ein(φ j−φk )

Nch,ev(Nch,ev − 1)(Nch,ev − 2)

〉

ev

.

(12)

quantifying the statistical correlation between the explosive-
ness and the anisotropy of the particle flow [99–101].
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This clarifies what multi-particle correlation measure-
ments represent and what experimental information they
involve. The goal of this manuscript is to relate these observ-
ables to multi-nucleon correlations in the wave functions of
the colliding nuclei. The next step is to discuss the physical
origin of [pt ], Vn , and their fluctuations to relate early-time
properties of the QGP to experimental data.

3 Origin of flow fluctuations in heavy-ion collisions

Before proceeding, I stress that this study deals with multi-
particle correlations that are sourced at the level of the initial
conditions of the QGP. The key realization is that, even in
collisions at fixed impact parameter, the QGP is shaped by
a distribution of energy density whose geometry fluctuates
on an event-by-event basis. The hydrodynamic expansion is
driven by pressure-gradient forces. The flow velocity and its
anisotropy are thus determined by the initial spatial distri-
bution of pressure gradients. If this geometry is different in
every realization of the QGP, then each expansion leads to a
different flow pattern.

Additional sources of fluctuations associated with the
dynamics of particlization of the QGP to detectable hadrons
are present in the picture and can lead to contributions to the
multi-particle observables introduced in the previous section.
These correlations go under the name of non-flow contribu-
tions, and are routinely suppressed in the considered event
samples with appropriate experimental techniques [102].

3.1 Properties of the energy-density field

A collision event yields a distribution of energy density, ε(x),
in the transverse plane, parametrized as x = (x, y) (see
Fig. 1). Concerning the selection of event classes, experimen-
tally this is typically done by grouping together collisions that
present the same value of charged-particle multiplicity, Nch,
in the final state. At ultrarelativistic energy, the energy of a
particle equals its momentum, therefore, the average momen-
tum [pt ] measures the energy per particle. In view of this, in
a sample of events having the same number of particles, [pt ]
is essentially determined by the amount of energy stuffed in
the collision area [92,101,103]. This is the integral of the
density field,

E =
∫

x
ε(x). (13)

Similarly, the Fourier harmonics Vn are sourced by the
anisotropy that characterizes the spatial distribution of energy
density (|x| ≡ √

x2 + y2, φx = atan2(y/x)):

En = −
∫
x ε(x) |x|neinφx

∫
x ε(x) |x|n , (14)

in the sense that if En = 0, then the hydrodynamic expansion
leads to Vn = 0. Note that for n = 2 and n = 3 (on which
I focus here), the multipole moments in the numerator of
Eq. (14) can be rigorously derived from a cumulant expansion
of ε(x), and shown to represent the relevant measures of nth
order anisotropy associated with long wavelength modes of
the system [104].

Therefore, in the hydrodynamic paradigm, understanding
the fluctuations of [pt ] and Vn requires knowledge of the
fluctuations of the initial total energy, E , and of the initial
spatial anisotropies, En , of the QGP. The following relations
are almost exact in a class of collisions at the same multiplic-
ity,

[pt ] ∝ E,

Vn ∝ En . (15)

Consequently, similar relations can be written for the
moments of the final-state quantities,

var([pt ]) ∝ var(E), (16)

skew([pt ]) ∝ skew(E), (17)

v2{2}2 ∝ ε2{2}2, (18)

cov([pt ], v2
n) ∝ cov(E, ε2

n). (19)

In this way, one is able to connect the measured multi-particle
correlations, from Eqs. (9), (10), (11), and (12) to statistical
correlations of the quantities E and En which are determined
by the event-by-event fluctuations of the initial energy den-
sity field.

A concrete example makes this discussion more transpar-
ent. I construct an energy density profile, ε(x), in two realistic
models of the collision event, that also help set the notation
for the later parts of this manuscript. Consider a symmet-
ric collision of nuclei at zero impact parameter. I consider
here nuclei containing A = 96 nucleons distributed inde-
pendently according to a one-nucleon density (integrated
over spin and isospin), P1(x, z), to be precisely defined in
Eq. (45), given by a Woods-Saxon profile,

P1(x, z) ∝ 1

1 + exp
( r−R

a

) , r =
√
x2 + z2 , (20)

where R = 5 fm is the half-width radius, and a = 0.5 fm is
the surface diffuseness.

In a first approach, I consider a collision between two
nuclei whose spatial profile is described by a smooth function
in the plane given by the Lorentz-contracted one-body den-
sity, t (x) = ∫

dzP1(x, z). The upper panels of Fig. 2 shows
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Fig. 2 Energy density (in arbitrary units) deposited in the transverse
plane in the collision of two nuclei with mass number A = 96 at zero
impact parameter, b = 0. The energy density, ε(x), is given by the
product of the transverse profiles of the two colliding nuclei, t (x) and
t ′(x), respectively, at the time of scattering. Top: the colliding nuclei
are identified with spin- and isospin-integrated one-nucleon densities,
P1(x, z), integrated over z to include the effect of a Lorentz contrac-
tion. Here a Woods-Saxon profile is used for P1(x, z), as in Eq. (20).
The resulting energy density profile (rightmost panel) is consequently
a smooth and isotropic function over the plane. Bottom: quantum fluc-

tuations associated with the finite number of nucleons are introduced
in the picture. The transverse nuclear profile, t (x), is now an individual
realization of the one-body density, and is computed as the sum of A
Gaussian peaks, g(xi ), with a size of 0.5 fm, whose center positions are
distributed according to P1(x, z). The product of the two transverse pro-
files leads to an energy density with peaks and valleys. Spatial isotropy
in the plane is broken to all orders, En �= 0. The total energy of the
system, E = ∫

ε(x), fluctuates as a consequence on an event-by-event
basis.

such a situation. I consider, then, that the energy density is
given by the product of two such transverse nuclear profiles,
ε(x) = t (x)t ′(x). The resulting energy density (upper-right
panel) is a smooth and isotropic function. Therefore, in a
sample of such collisions one has a constant value of total
energy, E , while spatial anisotropies vanish by construction,
En = 0 by construction. As nothing fluctuates, all multi-
particle correlations in the final state are zero following the
hydrodynamic expansion.

In a second implementation, I consider that each collid-
ing nucleus is obtained from an individual realization of the
one-body density of the system. One samples randomly and
independently from P1(x, z) the coordinates of A nucleons
in 3D, for both nuclei. The transverse nuclear profile is then
obtained from a superposition of nucleons:

t (x) =
A∑

i=1

g(x − xi ), (21)

where g(x) is a two-dimensional nucleon form factor appro-
priate for high-energy scattering mediated by gluons, while
xi is the nucleon center within the scattering nucleus. Note
that, as one sums over all nucleons irrespective of their z
coordinate, the relevant density in the transverse plane is
again

∫
dzP1(x, z). The standard choice for the high-energy

gluonic form factor is a two-dimensional Gaussian

g(x − xi ) = 1

2πw2 exp

(
− (x − xi )2

2w2

)
, (22)

with a nucleon size w = 0.5 fm. In the bottom panels of
Fig. 2, the two transverse nuclear profiles t (x) and t ′(x) are
now different. As a consequence, the energy density defined
via their product becomes a fluctuating field, which breaks
isotropy to all orders, En �= 0, such that the hydrodynamic
expansions will yield anisotropic flow, Vn . In a sample of
events of this type, then, the total energy, E , becomes a fluctu-
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ating quantity, and all correlations such as var(E), skew(E),
εn{2}2, and cov(E, ε2

n) are nonzero.
Twenty years of phenomenological studies have estab-

lished the picture provided in the bottom panels of Fig. 2
as the only viable description of heavy-ion collisions. In
other words, fluctuations and correlations associated with
the finite number of nucleons in the colliding nuclei are
essential to explain the measured multi-hadron correla-
tions [105,106]. While the calculation above employs an
independent-nucleon picture for the sampling of their coordi-
nates, a real collision corresponds instead to a sampling from
a correlated wave function that contains up to A-body cor-
relations. Most of nuclei are indeed characterized by strong
spatial correlations at the heart of phenomena such as nuclear
deformations and clustering. From the discussion of Fig. 2,
one can evince that the fluctuations of the field ε(x) are
sensitive to the details of the spatial distributions of nucle-
ons. Relating information about many-body correlations in
the colliding ions to the measured multi-particle correlation
observables is the primary goal of this article.

3.2 Formalism of N -point correlation functions

The next step is to relate features of the initial conditions,
such as the fluctuations of E and En , to more fundamental
properties of the energy density field. To do so, I perform a
background-fluctuation splitting [107,108]:

ε(x) = ε̄(x) + δε(x), (23)

where ε̄(x) is the local average of the energy density in the
event sample (here events at zero impact parameter), whose
integral gives the average system’s energy:

〈E〉ev =
∫

x
C1(x), C1(x) ≡ ε̄(x), (24)

while δε(x) is the fluctuation, satisfying 〈δε(x)〉ev = 0.
I evaluate now the correlation in Eqs. (16)–(19), by insert-

ing Eq. (23) into the expressions of the observables and then
truncating at the first nontrivial order in the perturbation,
δε(x). For observables related to the fluctuations of E , one
finds the following exact expressions. The variance reads:

var(E) =
∫

x,y
C2(x, y),

where I have introduced the connected 2-point function of
the density field,

C2(x, y) ≡ 〈δε(x)δε(y)〉ev =〈ε(x)ε(y)〉ev

− 〈ε(x)〉ev〈ε(y)〉ev. (25)

Analogously, the skewness of the total energy reads:

skew(E) =
∫

x,y,z
C3(x, y, z), (26)

which involves the connected 3-point function of the density
field,

C3(x, y, z) = 〈δe(x)δe(y)δe(z)〉ev. (27)

For observables involving the spatial anisotropy, I insert
Eq. (23) into Eq. (14), and then expand the denominator.
As I consider only collisions at zero impact parameter, the
expressions are simplified by the fact that the density back-
ground is isotropic,

0 =
∫

x
C1(x)|x|neinφ. (28)

The leading expression of the mean squared anisotropy
involves only the two-point function of the density [107]:

εn{2}2 ≡ 〈EnE∗
n 〉ev =

∫
x,y |x|n|y|nein(φx−φy)C2(x, y)

(∫
x C1(x)|x|n

)2 .

(29)

Similarly, the energy-anisotropy correlator involves the con-
nected three-point function:

cov(E, ε2
n) =

∫
x,y,z |x|n|y|nein(φx−φy)C3(x, y, z)

(∫
x C1(x)|x|n

)2 . (30)

The validity of the approximate expressions (29) and (30)
will be checked through Monte Carlo simulations in Sect. 6
for different collision systems.

3.3 Discussion

In summary, high-energy nuclear collision experiments mea-
sure event-by-event hadron distributions from which precise
information about the statistical properties of pt and Vn , and
their correlations can be quantified via multi-particle corre-
lation observables. In the hydrodynamic framework, these
observables probe properties of the initial condition of the
QGP, such as the total energy, E , or of the spatial anisotropies,
En , which fluctuate on an event-by-event basis due to quan-
tum fluctuations in the colliding nuclei. Fluctuations and cor-
relations of E and En can in turn be related to the correlation
functions 〈ε(x)〉ev, 〈ε(x)ε(y)〉ev, etc., of the energy density
field, ε(x), from which they are computed.
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4 Correlations from the QGP to the colliding nuclei

I exhibit now a link between the energy-density correlation
functions, C1(x), C2(x, y), C3(x, y, z) and N -nucleon den-
sities in the colliding nuclei. To do so, one first needs a
parametrization of the density field, ε(x).

4.1 Glasma-inspired model of high-energy scattering

The idea is to take an energy deposition in the transverse plane
motivated by the color glass condensate effective field theory
of high-energy QCD [109]. Consider two nucleons described
as color glass condensates colliding at very high energy.
Immediately after the collision, at proper time τ = 0+, the
produced system, dubbed the glasma [110], is amenable to a
classical description with an expectation value of the energy
density that has a simple binary-collision scaling [111]1:

〈
ε(x, τ = 0+)

〉 ∝ g(x)g′(x), (31)

where the prefactors are in principle divergent at τ = 0
(though logarithmically, such that the energy density per unit
rapidity, τε(x), is finite at τ = 0+). Here ε(x) is a compo-
nent of the glasma stress-energy tensor, while g(x) and g′(x)
encode respectively the spatial dependence of the average
density of gluons at small x within the colliding nucleons,
e.g., a Gaussian profile as in Eq. (22). In the language of the
color glass condensate theory, I thus consider that the gluon
density in a nucleon is proportional to its saturation scale
(Qs), typically obtained through the IP-Sat model [113].

The generalization to the case of a collision of nuclei, as
included in the IP-Glasma framework [114], takes a super-
position of nucleons for the overall nuclear density, akin to
Eq. (21)2

t (x) =
A∑

i=1

g(x − ξi ). (32)

where from now on I denote by ξi the transverse coordinate
of nucleon i within the nucleus. The saturation scale obtained
through the IP-Sat model remains to a good approximation
proportional such a superposition. To achieve the scaling of
Eq. (31) where g(x) is replaced by the average nuclear profile,
one can take the energy density in an event equal to a product,
as done in the lower panels of Fig. 2,

1 Note that this result is nowadays textbook material, see Exercise 11.9
in Ref. [112].
2 The superposition usually involves a random normalization for
the nucleon profiles (so-called Qs fluctuation [114]), i.e., t (x) =∑A

i=1 λi g(x − ξi ), where λi is a random number drawn from a more
or less physically-motivated distribution. This feature could be easily
added as well to the present analysis.

ε(x, τ = 0+) = t (x)t ′(x), (33)

where dimensionful constants are absorbed in the functions
t (x) and t ′(x). This is a modified binary collision scaling
where the amount of deposited energy depends on the degree
of overlap of the colliding nucleons. This prescription is also
called IP-Jazma model [115], and I shall follow it in this
manuscript. In terms of global collision geometry proper-
ties at τ = 0+, it provides a good approximation of the
IP-Glasma implementation [116]. Equation (33) defines in a
sense the simplest, realistic parametrization of high-energy
nuclear collisions.

4.2 Energy density correlators

Straightforward computations lead to the correlation func-
tions of the energy density field in this model. For the local
average, C1(x), one has3:

〈ε(x)〉ev = C1(x) =
〈

A∑

i=1

A∑

i ′=1

g(x − ξi )g(x − ξi ′)

〉

ev

.

(34)

Since i and i ′ label coordinates from two different nuclei, ξi
and ξi ′ are independent variables, such that

C1(x) =
〈

A∑

i=1

g(x − ξi )

〉2

ev

= A2
(∫

ξi

P1⊥(ξi )g(x − ξi )

)2

,

(35)

where P1⊥(ξi ) is the probability density of finding a nucleon
at transverse position ξi , irrespective of the positions of the
other nucleons. The precise definition of P1⊥(ξi ) will be dis-
cussed below.

I evaluate now the connected two-point function of the
field. Recalling that i and i ′ label different nuclei, the average:

〈ε(x)ε(y)〉ev

=
〈

A∑

i, j=1

A∑

i ′, j ′=1

g(x−ξi )g(y−ξ j ) g(x−ξi ′)g(y − ξ j ′)

〉

ev

=
〈

A∑

i, j=1

g(x − ξi )g(y − ξ j )

〉2

ev

, (36)

3 I consider symmetric processes where identical nuclear species are
collided. It is straightforward to generalize Eq. (34), and all the subse-
quent formulas, to asymmetric collisions of nuclei with different mass
numbers, A �= A′.
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involves a two-nucleon density in the transverse plane:

〈ε(x)ε(y)〉ev =
(
A

∫

ξi

P1⊥(ξi )g(x − ξ i )g(y − ξ i )

+ (A2 − A)

∫

ξi �=ξ j

P2⊥(ξi , ξ j )g(x − ξ i )g(y − ξ j )

)2

,

(37)

where I separate A diagonal and A(A−1) off-diagonal terms
[117,118]. From this, the connected two-point function is
obtained:

C2(x, y) = 〈ε(x)ε(y)〉ev − C1(x)C1(y). (38)

Analogously, the evaluation of the three-point function
involves a three-point correlator:

〈ε(x)ε(y)ε(z)〉ev

=
〈 A∑

i, j,k=1

A∑

i ′, j ′,k′=1

g(x − ξ i )g(y − ξ j )g(z − ξ k)

× g(x − ξ i ′)g(y − ξ j ′)g(z − ξ k′)

〉

ev
. (39)

Again, this can be factorized as a product of two nuclei,

〈ε(x)ε(y)ε(z)〉ev =
〈

A∑

i, j,k=1

g(x−ξ i )g(x−ξ j )g(x−ξ k)

〉2

ev

,

(40)

which involves a transverse three-nucleon density,

〈ε(x)ε(y)ε(z)〉ev

=
(
A

∫

ξi

P1⊥(ξi )g(x − ξ i )g(y − ξ i )g(z − ξ i )

+ A(A − 1)

∫

ξi �=ξ j

P2⊥(ξi , ξ j )g(x − ξ i )g(y − ξ i )g(z − ξ j )

+ A(A − 1)

∫

ξi �=ξ j

P2⊥(ξi , ξ j )g(x − ξ i )g(y − ξ j )g(z − ξ i )

+ A(A − 1)

∫

ξi �=ξ j

P2⊥(ξi , ξ j )g(x − ξ j )g(y − ξ i )g(z − ξ i )

+ (A3 − 3A(A − 1) − A)

×
∫

ξi �=ξ j �=ξk

P3⊥(ξi , ξ j , ξk)g(x − ξ i )g(y − ξ j )g(z − ξ k)

)2

.

(41)

The connected three-point function reads then:

C3(x, y, z)

= 〈δε(x)δε(y)δε(z)〉ev = 〈ε(x)ε(y)ε(z)〉ev

− C1(z)C2(x, y) − C1(y)C2(x, z) − C1(x)C2(y, z)

− C1(x)C1(y)C1(z). (42)

4.3 Connection to nuclear structure

The input from nuclear structure are the transverse nucleon
densities Pn⊥, for n = 1, 2, 3. They have an elementary
derivation.

The nuclear ground state is characterized by the many-
body wave function:

(ξ1, z1, ξ2, z2, . . . , ξA, zA, s1, . . . , sA, t1, . . . , tA), (43)

where ξi is a coordinate in the (x, y) plane, the Cartesian
frame (x, y, z) has its origin at the center of the nucleus, and
s and t are, respectively, projections of spin and isospin. I
consider an even-even nucleus with a spherically-symmetric
ground state (J = 0). The wave function satisfies the proba-
bility condition:

1 =
∑

s,t

∫
d2ξ1dz1 . . . d2ξAdzA∗. (44)

I am interested in marginalized A-nucleon densities. The one-
body density is given by (where the subscript “1” refers to
any nucleon in the system)

P1(ξ1, z1) =
∑

s,t

∫
d2ξ2dz2 . . . d2ξAdzA∗. (45)

Now, as anticipated in the calculation of Fig. 2, in high-energy
scattering the z component is integrated out, defining a trans-
verse density of nucleons:

P1⊥(ξ1) =
∫

dz1P1(ξ1, z1). (46)

Analogously, the two-body and three-body densities read:

P2(ξ1, z1, ξ2, z2) =
∑

s,t

∫
d2ξ3dz3 . . . d2ξAdzA∗, (47)

P3(ξ1, z1, ξ2, z2, ξ3, z3)=
∑

s,t

∫
d2ξ4dz4 . . . d2ξAdzA∗,

(48)

along with their transverse projections:

P2⊥(ξ1, ξ2) =
∫

dz1dz2P2(ξ1, z1, ξ2, z2), (49)

P3⊥(ξ1, ξ2, ξ3) =
∫

dz1dz2dz3P3(ξ1, z1, ξ2, z2, ξ3, z3). (50)

Analogous expressions give the A-body densities.
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4.4 Discussion

I recap the results of the formal discussion. With an energy
deposition Ansatz following Eq. (33), the 1-point function
of the energy density field, C1(x), is only determined by
the 1-nucleon transverse density, P1⊥(ξ1), in the colliding
nuclei. The 2-point function of the field, C2(x, y) requires
in addition the 2-nucleon density distribution, P2⊥(ξ1, ξ2),
while C3(x, y, z) requires as well P3⊥(ξ1, ξ2, ξ3). Coupled
to a linearized description of energy density fluctuations and
the linear hydrodynamic response of Eq. (15), one arrives
thus at a direct relation between experimentally observable
N -particle correlations and the transverse nucleon densities
PN⊥. This points to a straightforward connection between
low-energy nuclear structure to the outcome of high-energy
experiments, and represents my main result.

This finding motivates the following conjecture: In col-
lisions at fixed impact parameter, N -point correlation func-
tions of the energy density field at τ = 0+ are solely deter-
mined by up to N -nucleon density distributions in the collid-
ing nuclei. While there does not seem to be any fundamental
argument to support such a statement, the conjecture appears
to be fulfilled in the IP-Glasma model of initial conditions.
There, at τ = 0+ the scaling of the energy density field in
the transverse plane follows Eq. (33) very closely [116,119].
An additional potential source of correlations comes from
the sampling of so-called color charge fluctuations [120]
in the transverse plane. However, in spite of recent claims
[121,122], these fluctuations seem to contribute to C2(x, y)
only with a delta-like signal which is negligible both in cor-
relation length and in amplitude [116]. Therefore, at τ = 0+
correlations are only sourced by nucleon positions within the
colliding ions. 4

5 Digressions

5.1 Properties of the energy deposition formula

The main result of this analysis stems from the fact that the
products of source profiles in Eqs. (34), (36), and (39) can
be factorized in the sum of pairwise products of sources.
State-of-the-art calculations of heavy-ion collisions do not
implement the Jazma-type scaling of Eq. (33), but rather
parametrize the energy density per unit rapidity at the ini-
tial time in a way that can be fine-tuned from experimental

4 In the current IP-Glasma setup [114], this is however only true across
length scales larger than the nucleon size, w ≈ 0.4 fm. At shorter
scales, the inner structure of the nucleons, parametrized in the model
via the inclusion of fluctuating hot spots that source small-x gluon (akin
to valence quarks), will generate further correlations in the transverse
plane after the collision takes place. It will be interesting to generalize
the present study to include features related to the structure of nucleons.

data. The most generic parametrization proposed in the lit-
erature is an extended version of the TRENTo Ansatz [123]
for the energy density per unit rapidity at τ = 0+ [119]:

lim
τ→0+ τε(x, τ ) =

(
t (x)p + t ′(x)p

2

)q/p

, (51)

where dimensionful factors have been absorbed into t (x) and
t ′(x). Of all combinations of p and q, only p = 0 leads to
an energy deposition that involves the product of the trans-
verse nuclear densities, as it can be seen from a Maclaurin
expansion of the previous equation:

lim
τ→0+ τε(x, τ ) = (

t (x)t ′(x)
)q/2 + O(p). (52)

Remarkably, all global Bayesian analyses of heavy-ion col-
lision data show a strong preference for p ≈ 0 [80,83,119,
124–128], supporting an energy density that emerges as a
simple correction to the modified binary collision picture.
The value q ≈ 4/3 is currently favored by CERN LHC data
[119]. 5

Starting from Eq. (52), and with the usual assumption that
t (x) is a superposition of nucleons, at fixed impact parameter
the average energy density reads (for some real coefficient
κ):

C1(x) =
〈[

A∑

i

A∑

i ′
g(x − xi )g(x − xi ′)

]κ〉

ev

. (53)

The correlator no longer factorizes inside the sum. This
implies that C1(x) is determined by all nucleon densities
in the colliding wavefunctions, up to PA⊥(ξ1. . . . , ξA). To
avoid this, a simple possibility is to explore a modified Ansatz
where the power is taken only at the level of the individual
nucleon products:

C1(x) =
〈

A∑

i

A∑

i ′
[g(x − xi )g(x − xi ′)]

κ ′
〉

ev

. (54)

For Gaussian nucleons, this is a rescaling of the nucleon
width parameter, w. This prescription enables factorization,
such that C1(x) involves only P1⊥(ξ1), C2(x, y) involves
only up to P2⊥(ξ1, ξ2), and so on. It is plausible that the
Ansatz in Eq. (54) can be fine-tuned via a Bayesian analysis
to have a good description of experimental data in hydro-
dynamic simulations. This would permit one to do so while
keeping a simple relation with the nuclear structure.

5 This is so when t (x) and t ′(x) are determined by the participant nucle-
ons, i.e., nucleons that undergo at least one nucleon-nucleon interaction.
I do not discuss the implications of the participant selection. I emphasize
that in the IP-Glasma model participants are not selected.
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5.2 Diffractive photo-production of vector mesons

As originally pointed out in Ref. [129], the transverse two-
body density, P2⊥(ξ1, ξ2), appears as well in the context of
high-energy scattering, albeit in a different kind of process.
This is the diffractive photo-production of vector mesons
(V ), where an incoming virtual photon (γ ∗) interacts with
a nuclear target via a virtual qq̄ dipole, which is then pro-
duced to the final state as, e.g., a ρ meson or a J/. In the
small-x formalism, the scattering amplitude for the produc-
tion process is proportional to the Fourier transform of the
dipole scattering amplitude [130]

Aγ ∗A→V A ∝
∫

b
e−ib·�N (r,b, x). (55)

Here r is the size of the scattering dipole, b is the distance
between the dipole and the center of the nucleus, � is the
transferred transverse momentum, while N (r,b, x) is the
dipole scattering amplitude, usually taken in the IP-Sat for-
malism for a dipole scattering off a dense target [113],

N (r,b, x) ∝ 1 − e−r2F(r,x)g(b), (56)

where F(r, x) ∝ xg(x, μ(r)) carries the longitudinal
momentum, x , and scale, μ(r), dependence of the gluon
distribution function, while g(b) is a phenomenological
parametrization of the spatial density of gluons in the tar-
get.

Consider now a nuclear target with a density of gluons
given by the superposition of nucleon densities

t (b) =
A∑

i=1

g(b − ξi ). (57)

In the weak field limit with r2t (b) � 1, Eq. (56) yields

N (r,b, x) ∝ t (b), (58)

such that the scattering amplitude in Eq. (55) involves the
Fourier transform of the nuclear configuration at the instant
of scattering.

If the nuclear target breaks up or changes quantum state,
the diffractive cross section has the form of a variance (inco-
herent production, t = −�2)

dσγ ∗A→V A∗

d|t | ∝ 〈|A|2〉 − |〈A〉|2 ∝
∫

b1,b2

[〈t (b1)t (b2)〉 − 〈t (b1)〉〈t (b2)〉] e−i�·(b1−b2). (59)

The same convolutions of the previous sections appear (see
also [131]):

〈t (b1)〉 = A
∫

ξi

P1⊥(ξi )g(b1 − ξi ), (60)

〈t (b1)t (b2)〉 = A
∫

ξi

P1⊥(xi )g(b1 − ξi )g(b2 − ξi )

+ (A2 − A)

∫

ξi �=ξ j

P2⊥(ξi , ξ j )g(b1 − ξi )g(b2 − ξ j ).

(61)

where the nucleon profile, g(b), is typically a 2D Gaussian
with a width close to 0.4 fm [129,132].

Experimentally, these processes can be accessed either
via electron-nucleus scattering or ultra-peripheral nucleus-
nucleus scattering mediated by the Coulomb fields surround-
ing the colliding nuclei. In the context of ultra-peripheral col-
lisions, a measurement of the coherent cross section (involv-
ing |〈A〉|2, i.e., only the one-body density of the nucleus) for
ρ meson photo-production in ultra-peripheral 197Au+197Au
and 238U+238U collisions has been recently achieved by
the STAR collaboration [133]. This has lead, in particular,
to a precise determination of the neutron skin of 197Au.
Even more recently, the first measurement of the incoherent
cross section for J/ photo-production in ultra-peripheral
nucleus-nucleus collisions has been reported by the ALICE
collaboration [134]. From the side of theory, Mäntysaari et
al. [63] have instead performed predictions for J/ photo-
production using the deformed 238U nucleus as target. The
resulting cross section as a function of the momentum trans-
fer shows an enhancement in the low-t region, corresponding
to large spatial separations, that is consistent with the pres-
ence of a large quadrupole deformation. The same signal is
observed as well with highly-deformed 20Ne targets.

It will be of fundamental importance, and a major chal-
lenge for nuclear physics in the future, to assess whether the
same nuclear structure knowledge leads to a unified picture of
different processes. In other words one should clarify whether
the same nucleon density P2⊥(ξi , ξ j ) leads to a consistent
understanding of the phenomenology of nuclei from low-
energy experiments, to high-energy electron-nucleus col-
lisions, to both ultra-central and ultra-peripheral nucleus-
nucleus collisions.

6 Numerical validation of the linearized approximation

Whether or not the present analysis has a phenomenological
relevance depends on the validity of the linearized formu-
las, Eqs. (29) and (30) in a realistic scenario of heavy-ion
collisions. I perform now a check of their goodness in the
IP-Jazma implementation.
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6.1 Setup

For this, a script in Python 3 has been developed to perform
simulations of nuclear collisions. The script calculates on an
event-by-event basis the energy density of the system starting
from a simple model of the colliding ions. As in Fig. 2, I
consider a mean-field description where the colliding nuclei
are made of independent nucleons with an underlying particle
density given by the Woods-Saxon profile:

ρ(r, θ,�) ∝ 1

1 + exp
(
r−R(θ,�)

a

) . (62)

To include the effect of many-body correlations, the half-
width radius is expanded in (complex) spherical harmonics,
Ym
l (θ,�), including the magnitude of the quadrupole defor-

mation, β2, the triaxiality parameter, γ ∈ [0, 60◦], and the
magnitude of the octupole deformation, β3,

R(θ,�)

= R

{
1 + β2

[
cos γ Y 0

2 (θ,�) + √
2 sin γ Re

{
Y 2

2 (θ,�)
}]

+ β3Y
0
3 (θ,�)

}
. (63)

A nucleus is then randomly oriented in space before the
nucleons are sampled. The spherical one-body density results
thus from an average over orientations:

P1(r1, θ1,�1) = 1

8π2

∫

�

ρ�(r1, θ1,�1), (64)

where ρ�(r, θ,�) denotes the intrinsic density rotated by a
set of three Euler angles, � = (α1, α2, α3), in the lab frame. 6

The two-body density of the system is instead obtained from
the angular average of the two-point function of the intrinsic
density, that is:

P2(r1, θ1,�1, r2, θ2,�2)

= 1

8π2

∫

�

ρ�(r1, θ1,�1)ρ�(r2, θ2,�2). (66)

6 For the average over orientations, we follow the standard convention
where α1 is a rotation in the (x, y) plane uniformly distributed between
0 and 2π , α2 is a rotation in the (y, z) plane distributed such that cos(α2)

is uniformly distributed between −1 and 1, α3 is a rotation in the (x, y)
plane uniformly distributed between 0 and 2π . This implies:

∫

�

=
∫ 2π

0
dα1

∫ π

0
sin α2 dα2

∫ 2π

0
dα3 = 8π2. (65)

Now, if the intrinsic density in Eq. (62) is spherical one has
that:

P2(r1, θ1,�1, r2, θ2,�2) = P1(r1, θ1,�1, )P1(r2, θ2,�2),

(67)

and analogously for the three-body density. On the other
hand, correlations are produced as soon as deformation is
included in the picture.

The simulations are performed on a transverse grid with
24 × 24 points, which ensures that the three-point correla-
tions function (which has a total of 246 ≈ 2 × 108 entries)
can be easily stored on a laptop. I have tested that increasing
the number of points has no visible influence on the com-
puted quantities, which represent indeed global large-scale
properties of the geometry of the sampled profiles. Runs are
performed with six different combinations of deformation
parameters:

– spherical nuclei: β2 = 0, γ = 0, β3 = 0;
– prolate quadrupole-deformed nuclei: β2 = 0.5, γ = 0,

β3 = 0;
– octupole-deformed nuclei: β2 = 0, γ = 0, β3 = 0.5;
– prolate quadrupole- and octupole-deformed nuclei: β2 =

0.5, γ = 0, β3 = 0.5;
– Triaxial quadrupole- and octupole-deformed nuclei:β2 =

0.5, γ = 30◦, β3 = 0.5;
– Oblate quadrupole- and octupole-deformed nuclei: β2 =

0.5, γ = 60◦, β3 = 0.5.

For all these scenarios, I simulate:

– Collisions of nuclei with A = 192, R = 6 fm, a = 0.5
fm. The grid size is 9.9 × 9.9 fm2. The grid step is 0.825
fm. The results are shown in Fig. 3.

– Collisions of nuclei with A = 96, R = 5 fm, a = 0.5
fm. The grid size is 9 × 9 fm2. The grid step is 0.750 fm.
The results are shown in Fig. 4.

– Collisions of nuclei with A = 48, R = 4 fm, a = 0.5
fm. The grid size is 8.1 × 8.1 fm2. The grid step is 0.675
fm. The results are shown in Fig. 5.

– Collisions of nuclei with A = 16, R = 3 fm, a = 0.5
fm. The grid size is 7.2 × 7.2 fm2. The grid step is 0.600
fm. The results are shown in Fig. 6.

For each setup, 50 k collisions at zero impact parameter are
simulated, leading to small enough statistical uncertainties.

After the sampling of coordinates, each nucleon is associ-
ated with a Gaussian transverse profile as in Eq. (22), which
is evaluated up to a distance of 5w = 2.5 fm from its cen-
ter. For both nuclei the transverse densities t (x) and t ′(x) are
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then constructed as the superposition of nucleon profiles. The
energy density in one event is obtained as ε(x) = t (x)t ′(x).

The observables analyzed in these calculations are those
discussed in the previous sections (we consider hereafter
〈E〉ev ≡ 〈E〉):

– var(E), skew(E), divided, respectively, by 〈E〉2 or 〈E〉3

to obtain dimensionless measures;
– εn{2}, for n = 2 and n = 3;
– cov(E, ε2

n), for n = 2 and n = 3, divided by 〈E〉.

These quantities are evaluated either directly by calculat-
ing E and En from the energy density field on an event-by-
event basis (exact results), or perturbatively via Eq. (29) and
Eq. (30) (perturbative results), for which the the connected
N -point functions of the density are computed. In the plots
of Appendix A, the red symbols represent the exact eval-
uations, whereas the results displayed as black dashes are
from the perturbative formulas. Further details are available
in Appendix A.

6.2 Results

I first discuss the results related to collisions of nuclei with
A = 192, shown in Fig. 3.

Concerning the fluctuations of E (upper panels of Fig. 3),
the perturbative result matches the Monte Carlo result as
Eqs. (9) and (10) are exact. The expected nontrivial behavior
is observed. Both var(E) and skew(E) are enhanced by β2,
though are not affected by an increase in the sole β3, as also
expected from Glauber-type calculations of the system size
in the limit of central collisions [38]. One sees in addition that
variations of γ have a subleading (though visible) impact on
the integral of C2(x, y) that determines var(E), while they
yield a leading contribution to skew(E), determined by the
connected three-point function, in qualitative agreement with
the parametric expectation skew(E) = s0 + s1β

3
2 cos(3γ )

[38], where s0,1 are positive coefficients.
Moving on to εn{2} (middle panels of Fig. 3), the lin-

earized formula is essentially exact for collisions of spherical
ions with β2 = β3 = 0, which strongly motivates its use. The
large increase of ε2{2} (ε3{2}) due to β2 = 0.5 (β3 = 0.5),
expected from the parametric relation εn{2}2 = c0 + c1β

2
n

[34,36,135], is precisely captured by the variation in the inte-
gral of C2(x, y). The linearized formula lies within 10% of
the exact result when εn{2} is of order 0.3, in agreement with
previous studies within independent-source models [118]. I
find in addition that the expected independence of εn{2} on
the value of γ is verified by the estimate of Eq. (29).

This demonstrates the impact of nuclear deformations on
rms anisotropies in the context of the perturbative calcula-
tions. These results can lead to a better understanding of
the implementation of nuclear structure in high-energy col-

lisions. In the current modeling, for large nuclei one takes
a deformed one-body density from a mean field calculation
and uses it for the independent sampling of nucleon coor-
dinates [61], as done in the present numerical study. If one
could verify that the random rotation of an intrinsic shape
leads to an appropriate description of the two-body density
of the nuclear system, one could then conclude that the cur-
rent use of the results of mean-field calculations in hydro-
dynamic simulations is justified. This is particularly relevant
for octupole-deformed nuclei, such as 96Zr [27,39], whose
deformation emerges from correlations on top of the mean
field picture [43]. For such type of deformations, the literature
suggests the following [37,59] in the theoretical framework
of energy-density functional theory and the Projected Gen-
erator Coordinate Method (PGCM) [136]. After the symme-
try restoration and the mixing of states, one can identify the
most important deformed point contributing to the correlated
PGCM ground state. Then, one can use that information and
determine a mean-field state in a Hartree-Fock-Bogoliubov
calculation with deformations constrained to that point. The
one-body density associated with the resulting state can sub-
sequently be used as a randomly-oriented density of inde-
pendent nucleons. To somehow validate this prescription, one
possibility is thus to compute the one- and the two-body den-
sities of the correlated PGCM wave function, inject into the
formulas of this paper and see if the resulting εn{2} matches
that obtained from the randomly-oriented shape at the rele-
vant deformed point. This would help motivate the current
implementation of dynamical deformations in high-energy
collisions.

I move to the lower panels of Fig. 3. For collisions of
spherical nuclei, the exact results are

cov(E, ε2
2)/〈E〉 = 47(3) × 10−6,

cov(E, ε2
3)/〈E〉 = 38(4) × 10−6, (68)

while the perturbative expressions lead to

cov(E, ε2
2)/〈E〉 = 44 × 10−6,

cov(E, ε2
3)/〈E〉 = 15 × 10−6. (69)

The latter value points, thus, to a shortcoming of the perturba-
tive formula. The parametric expectation for the covariance
of E and ε2

2 is cov(E, ε2
2) = s′

0 − s′
1β

3
2 cos(3γ ) [38]. An

analogous formula is likely to hold as well for cov(E, ε2
3).

The Monte Carlo results predict indeed a strong suppression
of the covariance due to increasing β2 [35,137,138]. This is
captured by the linearized formula, showing that this change
involves indeed the connected three-point function of the
density field. Second, one observes the leading contribution
of γ to this observable, with the correlator essentially flipping
sign as one moves from prolate nuclei with γ = 0 to oblate
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Fig. 3 Results for nuclei with A = 192, R = 6 fm, a = 0.5 fm. Statistical error bars are smaller than the size of the symbols.
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Fig. 4 Same as Fig. 3, but for collisions of nuclei with A = 96, R = 5 fm, a = 0.5 fm.
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Fig. 5 Same as Fig. 3, but for collisions of nuclei with A = 48, R = 4 fm, a = 0.5 fm.
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Fig. 6 Same as Fig. 3, but for collisions of nuclei with A = 16, R = 3 fm, a = 0.5 fm.
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nuclei with γ = 60◦. This effect is again captured by the
connected three-point function, which does not however lead
to a quantitative description of the exact cov(E, ε2

2) result.
One notes in addition that the suppression of cov(E, ε2

3) is
observed only when both β2 and β3 are turned on. A residual
dependence on γ of cov(E, ε2

3) is also partially captured by
the perturbative formula.

Figures 4, 5 and 6 show results for collisions of nuclei
with lower mass numbers. They illustrate the breakdown
of the linearized expression as soon as the fluctuations of
the system are dominated by the small nucleon number. In
Fig. 6, var(E) and skew(E) for A = 16 have little residual
dependence on deformation parameters. The effect of γ is
in particular largely washed out. Concerning εn{2}, the per-
turbative formulas provide a good description of the Monte
Carlo data down to A = 48. At A = 16, the value of the
rms eccentricities is above 0.3 already for spherical nuclei,
which engenders a significant error. Here the effect of the
deformations is also largely washed out by the small nucleon
number. However, small effects are captured by the pertur-
bative calculations, in particular:

εn{2}βn=0.5

εn{2}βn=0

∣∣∣
∣
exact

≈ εn{2}βn=0.5

εn{2}βn=0

∣∣∣
∣
perturbative

, (70)

meaning that these ratios cancel much of the theoretical error
induced by the linearization. This may be relevant in the study
of the aforementioned 20Ne nucleus. The peculiar shape of
20Ne leads to a ≈ 10% enhancement of v2{2} in 20Ne+20Ne
collisions relative to 16O+16O collisions [139]. This comes
from the ratio of the initial ε2{2} taken between these two
systems, which could be thus captured by the perturbative
formula from the computation of the two-body densities,
P2⊥(ξi , ξ j ), which should be affordable to any ab initio
framework of nuclear structure.

Finally, the observables cov(E, ε2
n) are more strongly

impacted by the lowering of the nucleon number. For A = 16,
the mild dependence on the deformation parameters shown
by the exact result is entirely lost in the perturbative formulas.
These results may be improved in future by adding an extra
power of δε(x) in the perturbative expansion. Alternatively,
one could think about other expansion schemes which may
be more suited to address small systems [140,141].

7 Conclusion & outlook

I have presented a field-theoretical approach to energy-
density correlations in the QGP induced by many-body cor-
relations of nucleons in the wave functions of the colliding
nuclei. The energy deposition formula of Eq. (33) provides
a simple and yet realistic description of the energy density at
τ = 0+. If the density of gluons in a nucleus at high energy is

a superposition of nucleonic profiles, one obtains straightfor-
ward relations between N -point functions of the energy den-
sity field and N -nucleon density distributions in the scatter-
ing nuclei. Combined with the good quality of the linearized
approach to energy-density fluctuations, especially for colli-
sions of A > 48 nuclei, this demonstrates that multi-nucleon
correlations in the initial states and multi-hadron correlations
in the final states are closely connected.

This provides a formal justification for the impact of fea-
tures such as nuclear deformations on the outcome of nuclear
collisions at high energy. Hopefully, it will serve as a start-
ing point towards the systematic implementation of differ-
ent nuclear interactions on model calculations of such pro-
cesses. In the Monte Carlo study of Sect. 4, a simple model
of independent nucleons with a deformed intrinsic density is
employed. However, tabulated one-, two- and three-nucleon
densities, following Eqs. (49) and (50), if computed system-
atically in low-energy theory, could be directly employed in
the equations presented in this paper. High-energy observ-
ables may reveal different sensitivities to the parameters of
the nuclear interaction compared to the observables studied
in low-energy experiments. This would in turn demonstrate
low- and high-energy nuclear experiments as complementary
means to advance our knowledge of the strong nuclear force.

In addition, in the present formalism high-energy physics
and low-energy nuclear structure are essentially decou-
pled. In practice, though, the nuclear two-body density,
P2⊥(ξi , ξ j ), might be modified by the strong Lorentz boost
on length scales comparable to the nucleon size, w ≈ 0.5
fm. We have no knowledge at present regarding how such
modifications may look like. Precise measurements of the
incoherent cross section discussed in Sect. 5.2 performed at
t scales intermediate between 1 GeV2 and the pion mass
squared (m2

π ≈ 0.02 GeV2) represent a promising avenue to
shed light on these unexplored properties of nuclei at high
energy. They may be achieved from future high-statistics
208Pb+208Pb runs at the CERN LHC as well as at the EIC.

Finally, this article discusses symmetric collisions of even-
even nuclei at zero impact parameter. Generalization to
different situations should be straightforward, and will be
the subject of follow-up works. Furthermore, several multi-
particle correlations measured in heavy-ion collision probe
the non-Gaussianity of fluctuations through the connected
four-point function of the energy density field [142], whose
analysis is left for a future study.
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A Numerical results and figures

I show plots with the results of the numerical simulations
discussed in Sect. 4. The figures contain results for colli-
sions of nuclei presenting, respectively, A = 192 (Fig. 3), 96
(Fig. 4), 48 (Fig. 5), 16 (Fig. 6), and different nuclear geom-
etry parameters. Each figure has 6 panels, corresponding to
the total number of analyzed observables. The results dis-
played as symbols correspond to exact evaluations obtained
from the Monte Carlo simulations. For each observable, the
calculations have been performed for 6 different choices of
nuclear deformation parameters, which correspond to differ-
ent marker styles. The results displayed as horizontal lines are
instead obtained from the perturbative calculations involving
the correlations functions of the energy density field. I refer
to Sect. 4 in the main text for the discussion and the interpre-
tation of the numerical results.
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