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Abstract Quantum entanglement offers a unique perspec-
tive into the underlying structure of strongly-correlated sys-
tems such as atomic nuclei. In this paper, we use quan-
tum information tools to analyze the structure of light and
medium-mass berillyum, oxygen, neon and calcium iso-
topes within the nuclear shell model. We use different
entanglement metrics, including single-orbital entanglement,
mutual information, and von Neumann entropies for different
equipartitions of the shell-model valence space and identify
mode-entanglement patterns related to the energy, angular
momentum and isospin of the nuclear single-particle orbitals.
We observe that the single-orbital entanglement is directly
related to the number of valence nucleons and the energy
structure of the shell, while the mutual information highlights
signatures of proton–proton and neutron–neutron pairing, as
well as nuclear deformation. Proton and neutron orbitals are
weakly entangled by all measures, and in fact have the lowest
von Neumann entropies among all possible equipartitions of
the valence space. In contrast, orbitals with opposite angular
momentum projection have relatively large entropies, espe-
cially in spherical nuclei. This analysis provides a guide for
designing more efficient quantum algorithms for the noisy
intermediate-scale quantum era.
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1 Introduction

Entanglement is a fundamental concept in quantum mechan-
ics [1]. It characterizes correlations between particles or, in
general, partitions within a system that can not be described
independently of one another. Quantum many-body sys-
tems also show signatures of entanglement, with specific
features in many-fermion systems [2–4]. In addition, quan-
tum entanglement is important from a theoretical point of
view. Entanglement properties typically undergo significant
changes near phase transitions, such as in spin and Fermi-
Hubbard [5] systems at their critical point. In high-energy
physics, maximal entanglement has been used to constrain
the coupling structure of quantum electrodynamics [6]. In
contrast, entanglement suppression has been conjectured to
be a property of low-energy strong interactions [7].

Quantum or classical simulations of many-body systems
may be hampered if the entanglement structures couple dif-
ferent partitions. A sound understanding of the entanglement
features of quantum many-body systems may thus be key
to more efficient simulations. Consider, for instance, a sin-
gle partition of a given fermionic system. Low entanglement
between two parts of a system may allow for simpler simula-
tions for each of the subsystems. If these simulations can be
complemented with an effective way to integrate the resid-
ual entanglement between the partitions, such strategy may
lead to results with a minor loss in precision at a fraction of
the computational cost. Analogously, ground states in con-
densed matter systems typically follow an area law, meaning
that entanglement scales with the boundary of the partition,
rather than with its volume [8]. This allows one to use tech-
niques such as density matrix renormalization group [9] or
tensor networks [10,11] to efficiently simulate large systems.
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However, in nuclear physics, entanglement has been much
less studied. This is in part due to the complex nature of the
nuclear force, but also due to the difficulty to relate entangle-
ment to measurable observables. In very light nuclei, like 4He
and 6He, the entanglement structure was found to be highly
dependent on the many-body basis [12]. In nucleon–nucleon
scattering, proton–neutron pairs are found to be entangled
[13,14]. Yet, nuclear shell-model simulations of mid-mass
isotopes indicate that protons and neutrons show very lit-
tle entanglement [15]. Entanglement is also relevant for the
dynamics of nuclear reactions [16]. Interestingly, a proposal
has been recently put forward, indicating that nuclear matter
follows a volume law, instead of an area law [17].

Entanglement plays a pivotal role in quantum-resource
quantification for quantum computation, communication,
and sensing. In the context of quantum simulations, varia-
tional algorithms have been devised and tested to reproduce
ground states of quantum many-body systems. In particular,
Ref. [18] analyzed single- and double-orbital entanglement
for 8Be within the nuclear shell model. Entanglement mea-
sures were found to be almost maximal, as a consequence
of the strong correlations in the the p shell. In addition, Ref.
[19] explored entanglement-based partitions in this configu-
ration space using neural networks for optimal simulations.
In heavier systems, entanglement was first studied within
the nuclear shell model using density matrix renormaliza-
tion group (DMRG) tools [20], followed by recent studies
on two-nucleon configurations [21] and the seniority model
[22]. More broadly, single-orbital entanglement within the
nuclear shell model has been studied with an adaptive varia-
tional quantum eigensolver [23] for various nuclei across the
p, sd and pf shells [24]. Very recently, Tichai et al. [25] used
various entanglement measures to study in detail the structure
of sd−shell and nickel isotopes within the ab initio valence-
space in-medium similarity renormalization group. Further,
they combined this approach with the DMRG to optimize the
convergence of the many-body calculations.

In this work, we complement these previous studies
by systematically analyzing mode entanglement in nuclear
shell-model ground states. We provide an overall picture of
the entanglement structure for the isotopic chains of Be, O,
Ne and Ca, studied in the p, sd, and pf configuration spaces.
Figure 1 shows a diagram representing the corresponding
configuration spaces. We use three different entanglement
measures: single-orbital entanglement, mutual information,
and von Neumann entropies, for the most natural equipar-
titions of these configuration spaces, providing compelling
insights into the entanglement of the different divisions.

This article is organized as follows: in Sect. 2 we pro-
vide an introductory outline of the nuclear shell model, our
method of choice to find ground states of nuclei. In Sect. 3, we
introduce the different measures that we use to quantify the
entanglement in the nuclear configuration space. Finally, we
present our results in Sect. 4 and our conclusions in Sect. 5.

2 Overview of the nuclear shell model

The nuclear shell model is one of the most successful theories
of nuclear structure [26,27]. It considers nuclei as composite
systems of protons and neutrons, or nucleons, that interact
with each other in a restricted configuration space, customar-
ily called valence space. The nuclear interaction is rotation-
ally invariant, and it is usually considered to be symmetric
under proton–neutron exchange. One of the main features of
the nuclear interaction is a spin-orbit term responsible for the
so-called magic numbers: special combinations of protons
(Z ) and neutrons (N ) building up particularly stable, spheri-
cal nuclei [28,29]. This justifies the main assumption of the
shell model, that nuclear dynamics can be approximated by
the many-body configurations built in a valence space lim-
ited by two magic numbers. The valence spaces considered
in this work are presented in Fig. 1. Single-particle states
below the valence space are fully occupied and form an inert
core, whereas states above are truncated based on the large
energy gaps between magic number configurations.

Given the symmetries of the nuclear interaction between
particles in the valence space, the single-particle states (or
single-particle orbitals) can be labelled using a set of quan-
tum numbers {n, l, j,m, tz}. These correspond to the princi-
pal quantum number n, the orbital angular momentum l, the
total angular momentum j (resulting from the coupling of l
with the spin s = 1/2 of nucleons) and its third-component
projection m. The third-component projection of the isospin,
tz , specifies if a nucleon is a proton or a neutron. The corre-
sponding 2 j + 1 energy-degenerate single-particle states are
grouped into the nl j subshells, as shown in Fig. 1.

In a second quantization scheme, the effective Hamilto-
nian in the valence space reads

Heff =
∑

i

εi a
†
i ai + 1

4

∑

i jkl

v̄i jkla
†
i a

†
j alak, (1)

where εi is the energy of the single-particle state i , v̄i jkl =
vi jkl − vi jlk are antisymmetrized two-body matrix elements
and ai (a†

i ) are particle annihilation (creation) operators asso-
ciated to the state i . In this work, we use standard phenomeno-
logical Hamiltonians, with components adjusted to repro-
duce key properties of selected nuclei [30]. These Hamiltoni-
ans describe very well the low-energy properties of light and
medium-mass nuclei across the nuclear chart [31–33]. Effec-
tive Hamiltonians can also be derived based on an effective
theory of the fundamental theory of the nuclear force, quan-
tum chromodymamics, using so-called ab initio techniques
[34–37] like in Ref. [25].

Many-body states in the valence space are described
employing antisymmetrized products of single-particle states,
also referred to as Slater determinants. A standard choice to
build this many-body basis is to use the M-scheme, in which
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Fig. 1 Diagram illustrating the valence spaces employed to describe
all nuclei considered in this work. Single-particle states, shown in par-
allel if they correspond to the same nl j subshell, are labelled according
to a number shown on top of them, for convenience. Combinations of
protons and neutrons occupying these single-particle states form the

many-body basis of the nucleus. For nuclei described in the sd shell,
the p shell is assumed to be a fully occupied inert core, and the pf shell
is assumed to be completely empty. Excitations to states outside the
valence space, marked in grey, are not allowed

Slater determinants have a well-defined third component M
of the total angular momentum J . Because of the proper-
ties of the SU (2) algebra of angular momentum [38], M
is simply the sum of the total m components of the single-
particle states occupied by the nucleons. These many-body
states form a basis of the valence space, and the ground and
excited states of the nucleus can be expanded as

|JM T Tz〉 =
∑

α

cα|α, MTz〉, (2)

where the cα coefficients are obtained by solving the many-
body Schrödinger equation, for instance through the diag-
onalization of the Hamiltonian matrix in the many-body
basis [39–42]. These eigenstates have good angular momen-
tum J and isospin T quantum numbers, with correspond-
ing third-component projections M and Tz . State-of-the-art
shell-model codes use sophisticated Lanczos methods for the
Hamiltonian diagonalization, which often require classical
supercomputuing resources.

The nuclear shell model is a reference method for light-
and medium-mass nuclei, but calculations become unattain-
able for heavy nuclei. As the number of valence nucleons
increases, the number of many-body states in the valence
space grows exponentially, quickly reaching a bottleneck
where calculations are no further feasible with current clas-
sical supercomputers. Quantum information tools may help
identify crucial correlations in the shell-model valence space
and may facilitate systematic and well-controlled truncation
protocols, that include the most relevant degrees of freedom
[43]. While this challenge is important from a fundamental

nuclear structure point of view, it is also pertinent to opti-
mise the performance of quantum simulations in the noisy
intermediate-scale quantum era. Promising implementations
of the nuclear shell model in digital quantum computers
have been proposed using variational quantum eigensolvers
[44,45] and quantum Lanczos [46] algorithms.

3 Entropy and mutual information for entanglement
assessment

Entanglement quantifies the inseparability between quantum
systems. When two systems A and B, characterized by states
|ψA〉 and |ψB〉, are entangled, the complete state |ψ〉 can not
be written in the form

|ψ〉 = |ψA〉 ⊗ |ψB〉 , (3)

that is, as a tensor product of the individual states. If the states
are separable, as opposed to entangled, the statistics and
behavior of each system can be treated independently. This is
why, when there is low entanglement, classical resources can
simulate quantum systems efficiently (although this is not the
only case [47]). Therefore, finding partitions that exhibit low
entanglement is of utmost importance.

In fact, a natural split is already present in the nuclear
shell model. As discussed in Sect. 2, the a priori separation
between the inert core, the valence space and the excluded
space assumes that there is no entanglement between these
spaces. In this work, we focus on entanglement measures in
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the valence space, where additional insight of the entangle-
ment structure could improve nuclear shell-model calcula-
tions. We specifically consider bipartite entanglement, con-
sidering two generic partitions within the system. Although
multipartite entanglement is complex and still a subject of
intensive study [48], the case of bipartite entanglement is
well understood [1] and linked to quantitative metrics usu-
ally referred to as entropies.

In this context, a standard choice is the von Neumann
entropy S, defined as

S(ρ) = −Tr(ρ log2 ρ) = −
∑

i

ρi log2 ρi , (4)

where ρi are the eigenvalues of the density matrix ρ, and
where the logarithm basis is 2 for qubits. For a state |ψ〉, the
density matrix is pure, ρ = |ψ〉 〈ψ |. Pure density matrices
have a single non-zero eigenvalue, and consequently no von
Neumann entropy, S(ρ) = 0. When considering a partition
of the whole system into subsystems A and B, the reduced
density matrix of subsystem A is obtained by tracing out the
degrees of freedom of subsystem B from ρ, that is ρA =
TrB(ρ). If the state of the whole system is separable, as in
Eq. (3), the corresponding trace results in a pure state

ρ = |ψA〉 ⊗ |ψB〉 〈ψA| ⊗ 〈ψB | → ρA = |ψA〉 〈ψA| . (5)

As a consequence, the von Neumann entropies of the sub-
systems are also zero, S(ρA) ≡ S(A) = 0. In contrast, for a
Bell-type entangled state |ψ〉 = (|0〉A |0〉B+|1〉A |1〉B)/

√
2,

we find

ρA = 1

2
|0〉 〈0| + 1

2
|1〉 〈1| → S(A) = 1 . (6)

This highlights how the von Neumann entropy quantifies our
notions of entanglement for bipartitions.

An illustrative example is the partition of one single-
particle orbital and the rest of the system. In this case, the
entropy has already been linked to the occupation number
[2,4] and, more recently, to the choice of single-particle basis
in the shell model [12]. Using the Jordan–Wigner fermionic
mapping [49], where a qubit corresponds to a single-particle
orbital being empty or occupied, we can use Eq. (4) for
the single-particle bipartition of particle-number conserved
states to show that the entropy is

Si = −γi log2 γi − (1 − γi ) log2(1 − γi ), (7)

where γi = 〈ψ |a†
i ai |ψ〉 corresponds to the occupation num-

ber (or occupation probability) of the single-particle orbital
i in a system described by |ψ〉. Si can be simplified to the
expression above because, for a conserved number of par-
ticles in the statevector, the non-diagonal elements in the
one-qubit reduced density matrix used as input in Eq. (4),
|0〉〈1| and |1〉〈0|, vanish, while the diagonal ones give the
probabilities of finding that qubit in state 0 or 1. Fig. 2 shows

0.0 0.2 0.4 0.6 0.8 1.0
Occupation number γi

0.0

0.2

0.4

0.6

0.8

1.0

V
on

N
eu
m
an
n
en
tr
op
y

S
i

Fig. 2 Single-orbital entropy Si from Eq. (7) as a function of the occu-
pation probability γi of the single-particle state i . The state is maximally
entangled when the occupation probability is 50%

the single-orbital entropy Si as a function of the occupation
number γi . Single-orbital entropies are maximal when the
occupation numbers are as likely to be filled than to be empty,
γi = 1/2. In contrast, states that are almost fully occupied
or fully unoccupied have near zero single-orbital entropy.

In all our calculations of entanglement we use Eq. (4),
obtaining the reduced density matrix through the partial trace
of one of the partitions. Thus, we do not explicitly compute
orbital occupation numbers, which is not always possible.
For example, partitioning the system into two qubits and
tracing out the remaining degrees of freedom results in a
reduced density matrix that is in general not diagonal. In
this case, even for states conserving the number of parti-
cles, the reduced density matrix contains finite non-diagonal
terms |01〉〈10|, |10〉〈01| [50]. However, if the two qubits cor-
respond to a proton and a neutron orbital, or orbitals with
different angular momentum projection m, the non-diagonal
terms vanish due to isospin and angular momentum conser-
vation. The entropy can be directly evaluated using Eq. (4)
again, where now the diagonal entries of the reduced density
matrix correspond to the probabilities for qubits i and j being
empty or occupied, 〈ψ |(1−ni )(1−n j )|ψ〉, 〈ψ |(1−ni )n j |ψ〉,
〈ψ |ni (1−n j )|ψ〉, and 〈ψ |nin j |ψ〉, with ni = a†

i ai . For this
particular case, the general Eq. (4) can thus be simplified in
terms of orbital occupation numbers.

We also take into consideration other useful entanglement
metrics. The conditional entropy, S(A|B), illuminates the
dependence of subsystem A’s degrees of freedom on subsys-
tem B. It is calculated as

S(A|B) = S(AB) − S(B), (8)

where S(AB) is the entropy of the joint system. Using this
metric, we can describe the mutual information of two sys-
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tems A and B,

S(A; B) = S(A) − S(A|B)

= S(A) + S(B) − S(AB),
(9)

which we use in this work with the simplified notation SA,B .
In particular, we define the mutual information between two
orbitals i , j as Si j ≡ 1

2 S(i; j), where the factor 1
2 is included

such that it ranges between 0 and 1. The mutual information
is symmetric under the exchange of its arguments. It provides
an insight on how much subsystems A and B are correlated
when ignoring the degrees of freedom of the rest of the sys-
tem. Specifically, in the context of A and B being subsystems
of a larger system ABC , a low amount of mutual information
unveils that, even if the state of the total system is not sepa-
rable in states of subsystems A and B (and thus entangled),
such entanglement is linked to C and not contained in AB.

3.1 Fermionic systems

In the case of fermionic systems, quantifying entanglement is
especially challenging because we lack a well-defined under-
lying separable space, as used in the definition of Eq. (3).
Fermions are identical particles which fulfil Pauli’s exclu-
sion principle, and a many-body fermionic state must be anti-
symmetric. For example, two spin−1/2 fermions can couple
their spins to form a singlet state, with total spin = 0, in
first quantization. In second quantization, on the other hand,
this corresponds to creating two modes on the vacuum state,
a†
↑a

†
↓ |0〉 , using mode creation operators of spin projections

up and down. With the right encoding of fermions onto qubits,
this ends up as a separable state |11〉,

1√
2

( |↑↓〉 − |↓↑〉 )

︸ ︷︷ ︸
singlet state

= a†
↑a

†
↓ |0〉 encoding−−−−−→ |11〉 . (10)

This separable expression is in contrast with the first-
quantization expression. In other words, the singlet state
in the first-quantized particle basis is considered maximally
entangled, while the corresponding qubit state has zero entan-
glement.

We note that these anomalies are directly related to the
indistinguishability of particles. In other words, any parti-
tion that separates distinguishable particles, such as neutrons
and protons, does not exhibit this problem. Entanglement
quantification measures of bipartitions of identical particles,
however, need to address this issue. Different approaches to a
proper characterization have been proposed [51,52], favour-
ing those in second quantization for their consistency. This
motivates our choice of encoding.

In the implementation of fermionic systems on quan-
tum circuits, the encoding between qubits and single-particle
degrees of freedom is very important. The advantages of

different fermionic mappings have been studied extensively
[53–55], although usually under the scope of performance
and scalability. In other words, the focus has been on how
efficiently one can encode a specific system in terms of num-
ber of qubits and circuit depth. Because operators on dif-
ferent qubits commute freely, but operators on fermions do
not, each encoding must balance the locality of the origi-
nal system’s degrees of freedom against a method to modify
the system’s parity each time one acts on the state. One of
the most common fermionic mappings, the Jordan–Wigner
encoding [56], lies at one extreme. Qubits correspond exactly
to single-particle states in the fermionic system, at the cost of
local operators on the fermions becoming completely delo-
calized on the qubits.

In our analysis of entanglement in the nuclear shell model,
we use the Jordan–Wigner encoding because it becomes
advantageous on two fronts. Firstly, it allows us to simplify
the treatment of fermionic entanglement by using second
quantization. Having a fixed particle number avoids the need
for more complex figures of merit [4]. Secondly, it provides a
direct connection between specific qubits and single-particle
orbitals, as indicated by the labels in Fig. 1. In actual cir-
cuit simulations, the Jordan–Wigner encoding may increase
the circuit depth compared to other encodings, due to the
non-locality of the encoded fermionic operators. This disad-
vantage, however, may be offset if one finds low-entangled
partitions, which allow for more efficient simulations.

3.2 Maximal entropy states

Entanglement measures can only be used to identify relevant
quantum features if there is a notion of maximal entangle-
ment. By construction, the nuclear shell model constrains
the number of allowed many-body states to those included in
the valence space, and therefore the maximal entropy. This
means that it is not sufficient to focus on the dimension of
the Hilbert space obtained after the fermionic encoding.

For example, let us consider 8Be, with two valence neu-
trons and protons in the p shell (see Fig. 1). The 8Be ground
state has J = M = 0. Since there are 12 single-particle
states, we need 12 qubits in the Jordan-Wigner mapping to
encode all the possible fermionic excitations. The dimen-
sion of the Hilbert space in this computational basis is thus
212. After an arbitrary equipartition, the resulting spaces of
the subsystems would have a dimension of 26. However, to
reach the maximal entropy Smax between two partitions A
and B, one must actually be able to build a state of the form

|�〉shell =
2Smax∑

i

ci |ψi 〉A ⊗ |φi 〉B , (11)

according to the Schmidt decomposition [57]. This, however,
is not possible for Smax = 6 in 8Be, due to proton and neutron
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number conservation and the constraint M = 0. Therefore,
the dimension of this truncated space after a partition is only
an upper bound for the von Neumann entropy, and is in fact
unreachable. A better bound would be the dimension of the
many-body basis when considering the modes in the parti-
tion.

We can find all possible product states by running through
each possible MZ ∈ {−2,−1, 0, 1, 2} value for protons, and
pairing them with any of the neutron states with opposite
MN = −MZ . In the proton–neutron partition, there are 15
possible ways to arrange the 2 protons in 8Be, and we can
pair each of these with the neutron state that mirrors the
occupations over the sign of M to form a state of the form
in Eq. (11). Constructing a state with higher entropy is not
possible because there are no more elements of the basis, so
S = log2(15) = 3.9 < 6 is the maximum limit.

An additional caveat must be considered when looking at
general bipartitions. Let us consider the proton–neutron par-
tition again, in a nucleus with more neutrons than protons
below the half-filling of the valence space, as for example
10Be or 22Ne. Clearly, the neutron many-body basis has a
bigger dimension and conditions which of the two partitions
limits the entropy, S. For general bipartitions, however, there
is no guarantee that the smallest dimension of the two biparti-
tions limits the maximum entropy. Let us illustrate this with
the bipartition of orbitals with opposite m for 8Be, which
seems to maintain the symmetry across protons and neu-
trons. We can find some combinations where two states on
the m > 0 partition ([1, 7, 10] and [4, 7, 10] following the
numbering of the p shell in Fig. 1) that can only be paired with
one basis element in the other one ([3]), meaning that they
can not contribute to S as two separate elements of Eq. (11).

In principle, straightforward algorithmic efforts to check
all combinations for a given bipartition are unreachable by
classical computation due to their exponential scaling. A
more naive approach is doing the pairing only for a few
examples. Even if this is non-exhaustive, it already provides
a lower bound for the maximal entropy at a small computa-
tional cost. This is enough to decide whether the entropy of
that partition is small in relative terms—it can only become
smaller by saturating the bound—and we can do so for all
partitions. In addition, we systematically check that for the
most characteristic proton–neutron partition these bounds are
actually satisfied.

In the following section, we highlight two characteristic
partitions based on physical intuition. First, we look into a
proton–neutron partition. Moreover, we also discuss bipar-
titions formed by states with opposite values of m. In both
cases, we can compute the corresponding entropy bounds
and compare whether shell-model simulations are close to
saturating them.

4 Results

We study the entanglement properties of selected beryllium,
oxygen, neon and calcium nuclei, all of which have an even
number of nucleons. The ground states of all these nuclei
have J = M = 0, as defined in Eq. (2). We use this sym-
metry to build the many-body basis, including only Slater
determinants with M = 0. We employ the Cohen-Kurath
interaction in the p shell [58], USDB in the sd shell [59] and
KB3G in the p f shell [60].

4.1 Single-orbital entanglement

We start our discussion quantifying the single-particle entan-
glement in different isotopes. The single-orbital entangle-
ment entropy Si , defined in Eq. (7), is a direct reflection of
the single-orbital occupation number. In turn, this is inter-
twined with the subshell energy structure and the number
of valence nucleons. The entanglement between two sets of
modes depends in the first place on the single-orbital entan-
glement, which becomes the dominant factor whenever there
is a large energy difference between subshells, the so-called
subshell closures. For instance, in the p f shell, N = 28 is a
magic number. As discussed above, completely occupied or
empty states are directly linked to near-zero single-particles
entropies.

Consequently, isotopes with a number of neutrons equal
to the number of orbitals in the lowest-energy subshells may
have less entanglement entropy, while those with half-filled
subshells have much more potential to be entangled. Let us
provide an illustrative example using Ca isotopes. In 44Ca,
with 4 valence neutrons in the p f shell, the lowest and
degenerate orbitals of the 0 f7/2 subshell have an occupa-
tion number γ0 f7/2 = 0.477 and, in consequence, almost
maximal single-orbital entanglement S0 f7/2 = 0.998. In con-
trast, the modes in the remaining subshells, 1p3/2, 1p1/2 and
0 f5/2, are mostly empty, with occupations γ1p3/2 = 0.023,
γ1p1/2 = 0.013, γ0 f5/2 = 0.022. All these modes have
low single-particle entropies, Si < 0.2. These entanglement
properties are in stark contrast to those of 50Ca, which has
6 more neutrons. Here, the orbital occupations for each sub-
shell are γ0 f7/2 = 0.972, γ1p3/2 = 0.465, γ1p1/2 = 0.091,
and γ0 f7/2 = 0.031. The 0 f7/2 single-particle entropy is
now substantially lower than in 44Ca, with S0 f7/2 = 0.184,
whereas the 0p3/2 states are almost maximally entangled,
with S0p3/2 = 0.996. That is, the 1p3/2 subshell shows the
largest entanglement, as expected from a naive filling of the
p f shell. Actually, N = 32 is also a magic number in Ca
[61–63]. A similar discussion for the single-orbital entangle-
ment in oxygen and nickel isotopes calculated with an ab
initio valence-space framework has been given in Ref. [25].

We observe similar patterns for all the nuclei studied in
this work. Table 1 lists the corresponding single-particle
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Table 1 Single-orbital entropies Si for Be isotopes in the p shell, O and
Ne nuclei in the sd shell and Ca isotopes in the p f shell. The entropies
are equal for the 2 j + 1 single-particle orbitals in the nl j subshells and
they are shown in energy order from left to right: 0p3/2 and 0p1/2 in
the p shell; 0d5/2, 1s1/2 and 0d3/2 in the sd shell and 0 f7/2, 1p3/2,
1p1/2 and 0 f5/2 in the p f shell. Empty cells correspond to isotopes
with either an empty-proton shell (as for O and Ca) or a full neutron
shell (12Be), which trivially have Si = 0

Nucleus Si (proton shells) Si (neutron shells)

8Be 0.95, 0.85 0.95, 0.85
10Be 0.98, 0.61 0.66, 0.92
12Be 0.99, 0.54 –
18O – 0.82, 0.67, 0.17
20O – 0.98, 0.66, 0.30
22O – 0.45, 0.68, 0.29
24O – 0.18, 0.21, 0.31
26O – 0.11, 0.14, 1.00
20Ne 0.73, 0.80, 0.36 0.73, 0.80, 0.36
22Ne 0.80, 0.71, 0.24 1.00, 0.71, 0.50
24Ne 0.86, 0.38, 0.21 0.64, 0.84, 0.50
26Ne 0.85, 0.50, 0.20 0.30, 0.63, 0.63
28Ne 0.88, 0.31, 0.15 0.14, 0.23, 0.99
42Ca – 0.78, 0.12, 0.07, 0.10
44Ca – 1.00, 0.16, 0.10, 0.15
46Ca – 0.86, 0.16, 0.11, 0.17
48Ca – 0.18, 0.13, 0.10, 0.14
50Ca – 0.18, 1.00, 0.44, 0.20

entropies of different states for all isotopes. All the results
point to maximal single-particle entropies appearing in mid-
subshell isotopes.

Interestingly, Table 1 also presents some variation in the
proton single-orbital entropies of different isotopes of the
same element. For instance, the 0p1/2 orbital in 8Be and the
1s1/2 orbital in 20−22Ne show relatively high entropy, reflect-
ing a larger proton occupation number than other isotopes.
In fact, in 20Ne the relative occupation of the 1s1/2 mode is
higher than the one of the 0d5/2 orbital, which sits at lower
energy. This is an indication of nuclear correlations being
important for these nuclei [20]: the quadrupole-quadrupole
interaction makes these systems deformed [64,65], and the
large quadrupole correlation energy competes with the naive
filling of the different modes according to their single-particle
energy [66].

Single-orbital entropy sets a bound for how much orbitals
in a particular subshell can contribute to multi-orbital entan-
glement. Let us stress that while Si provides a measure of
how much an orbital is entangled with the rest of the modes,
it does not specify with which part of the nucleus it is entan-
gled, nor distinguishes between single-particle states in each
subshell with different angular-momentum projections, m.

4.2 Mutual information

A more general picture of the entanglement structure of
the nucleus is given by the mutual information matrix, Si j .
Figure 3 shows the mutual information between all pairs
of single-particle orbitals, (i, j), for 8,10,12Be. The left-
most panel illustrates the structure of the mutual information
matrix by explicitly labelling each orbital with the conven-
tion shown in Fig. 1. We organise the orbitals in neutron
and proton blocks, with black solid lines separating proton–
proton (bottom-left), proton–neutron (top-left), neutron–
proton (bottom-right), and neutron–neutron (top-right) corre-
lations. Proton–proton and neutron–neutron mutual informa-
tion is colored in red and blue, respectively, while the proton–
neutron and neutron–proton sectors are shown in a purple
colour scale. The scale is the same for all isotopes and blocks
within each isotope, with darker shades implying larger Si j
values. The subshell structure of each proton–proton and
neutron–neutron block is illustrated by black dashed lines
which separate subshells. In the p shell, these correspond to
the 0p3/2 and 0p1/2 subsells. Finally, within each subshell,
the orbitals are sorted by the third component of angular
momentum, m, following the notation of Fig. 1.

The leftmost panel of Fig. 3 corresponds to 8Be, with
2 protons and 2 neutrons in each of the 6-orbital valence
spaces. 8Be shows a relatively low mutual information in
all orbitals, although the like-particle mutual information
is more prominent than the corresponding neutron–proton
values. The central panel focuses on 10Be, which has the
largest neutron–neutron entanglement among the three iso-
topes. In the rightmost panel, for 12Be, neutrons completely
fill the valence space and proton–neutron, neutron–proton,
and neutron–neutron entanglement is trivially zero. Proton–
proton entanglement grows with the neutron excess, though,
and the proton–proton sector of 12Be shows the largest
mutual information values of all three isotopes. In contrast,
proton–neutron entanglement is relatively low or zero for all
three isotopes in comparison with the like-particle entangle-
ment.

The mutual information results for both 10Be and 12Be
show a prominent feature that is shared by many of the other
nuclei we study. Specifically, in agreement with previous
works [20,25] we find that the mutual information is largest
for orbitals with opposite angular-momentum projection m.
These orbitals correspond to the diagonals in each subshell
within the proton–proton and neutron–neutron sectors. We
find that these diagonals are notably darker than the rest of
the matrix, indicating larger entanglement among these spe-
cific partitions.

The patterns that we have identified so far, namely the
relation of Si j with occupation numbers; the relatively large
mutual information among orbitals with opposite m; and the
increasing proton–proton entanglement with neutron excess,
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Fig. 3 Mutual information Si j for 8,10,12Be in the p shell. Solid black
lines divide the proton–proton (bottom-left), proton–neutron (top-left),
neutron–proton (bottom-right), and neutron–neutron (top-right) sectors.
The dashed lines correspond to the two different subshells. Single-
particle orbitals are sorted according Fig. 1, as explicitly shown for

8Be and reflected on the corresponding numbering of the axes. All
mutual information matrices are symmetric, as requested by Eq. (9).
Elements in the diagonal, corresponding to single-particle entropies Si ,
are arbitrarily set to 0 (white) to showcase the inter-orbital behaviour

0. 0.1 0.2

Fig. 4 Mutual information Si j for 20−28Ne. Numbering of orbitals and their organization follows the same scheme as in Fig. 3, except now the
dashed lines correspond, from left to right (and bottom to top), to the 0d5/2, 1s1/2 and 0d3/2 subshells of the sd shell

are even more evident in neon isotopes. Figure 4 shows the
mutual information for 20−28Ne, using the same structure
explained in the first panel of Fig. 3. The values of Si j for
each isotope can again be roughly understood in terms of a
naive filling of the three subshells in the sd shell, 0d5/2, 1s1/2,
and 0d3/2, with 6, 2 and 4 single-particle orbitals, respec-
tively. For 20Ne (leftmost panel), the largest neutron–neutron
correlations appear in the lowest subshell, while for 28Ne
(rightmost panel), with the two lowest subshells mostly full,
the largest neutron–neutron mutual information is among the
0d3/2 states. Just as in beryllium, proton–proton entangle-
ment in neon also increases notably with neutron number.
Indeed, Fig. 4 shows that the bottom-left blocks, correspond-

ing to proton 0d5/2 states, become darker as the number of
valence neutrons increases. Similarly to what was observed
in beryllium isotopes, proton–neutron correlations in neon
are almost negligible in comparison with like-particle cor-
relations. Within each subshell, neon isotopes present the
largest correlation among orbitals with opposite m, for both
the proton–proton and neutron–neutron sectors. The only
exception is the 0d3/2 neutron subshell in 28Ne (top right
panel), where all orbitals present relatively similar and large
entanglement. Our mutual information for 26Ne is in very
good agreement with the ab initio valence space results pre-
sented by Tichai et al [25]. Likewise, our mutual information

123



Eur. Phys. J. A (2023) 59 :240 Page 9 of 15 240

for 24O —discussed below— is also similar to the results
shown in Ref. [25].

Nonetheless, Fig. 4 indicates that the mutual information
between proton modes in 20Ne and 22Ne is qualitatively dif-
ferent: here opposite m modes do not dominate as much
as for heavier isotopes. This suggest that pairing correla-
tions are not that dominant for these deformed nuclei, as
they are governed by quadrupole correlations [64,65]. This
dominance is highlighted by the similar mutual information
in the d5/2 − s1/2 subshells, orbitals with 	l = 2 which
accommodate most of the correlations [66]. Figure 3 shows
a similar picture with quite comparable and relatively small
mutual information for several modes for 8Be, which is also
a deformed nucleus. Hence, the entanglement structure given
by the mutual information measure can help us discern col-
lective deformation effects even in relatively small configu-
ration spaces.

We continue our analysis by focusing on two additional
isotopic chains. Figure 5 shows the mutual information for
18−26O (top row) and 42−50Ca (bottom row). These nuclei
contain only valence neutrons in the sd and p f shells, respec-
tively. In these cases, the entanglement of the opposite-m
partitions is even more clear than for beryllium and neon,
as shown by the strong diagonals appearing in each subshell
block. These diagonals clearly stand out above the rest of the
correlations.

As discussed earlier, the entanglement in each subshell
depends strongly on the number of valence neutrons. For the
lightest oxygen isotopes, 18O and 20O, with 2 and 4 valence
neutrons, the 6 orbitals in the 0d5/2 shell are roughly half
filled and present large orbital-orbital entanglement. Like-
wise, the 0 f7/2 orbitals in 42Ca, 44Ca, and 46Ca, show sub-
stantial mutual information.

In contrast, 24O has the 0d5/2 and 1s1/2 subshells mostly
filled, and the remaining valence orbitals are mostly empty.
Consequently, the mutual information across all orbitals is
small. Equivalently, 48Ca, with 8 valence neutrons, has a
mostly full 0 f7/2 subshell. 24O and 48Ca thus present low
mutual information in all subshells, as expected from the
single-orbital entanglement values Si in Table 1. In addi-
tion, we observe that 48Ca shows the lowest mutual informa-
tion computed in this work, in agreement with the nuclear-
structure viewpoint as this nucleus is double magic.

The heaviest isotope studied in these two isotopic chains,
26O and 50Ca, correspond again to half-full subshells in a
naive shell model ordering. For 26O, this is the 0d3/2 subshell
(top-right block), whereas for 50Ca it is the 1p3/2 subshell
(second antidiagonal block). Similarly to 28Ne, these two
isotopes present large mutual information across the whole
half-filled j = 3/2 subshell (see the darker blocks in the two
rightmost panels of Fig. 5).

Overall, the mutual information shows several important
features. First, entanglement is largest between orbitals with

opposite m [20,25]. This is to be expected from nucleon–
nucleon pairing correlations, as the interaction enhances the
formation of isovector nucleon pairs which are coupled to
total J12 = 0, or equivalently, m1 + m2 = 0 [67,68]. Previ-
ous studies including pairing correlations in quantum simu-
lations have been performed on the Agassi model [69–71]. In
contrast, in deformed nuclei the mutual information is qual-
itatively different, being relatively similar between different
modes and typically small.

Further, the entanglement between proton and neutron
orbitals is notably low in comparison with like-particle
orbitals, as previously observed in Ref. [15]. Furthermore,
as the number of excess neutrons increases, proton–neutron
entanglement diminishes while protons become more entan-
gled among themselves. We only observe subtle hints of
proton–neutron entanglement in cases with nearly the same
number of protons and neutrons [72–74], such as 8Be or 20Ne.

4.3 Equipartition entanglement

The mutual information studied in Sect. 4.2 provides a global
picture of the entanglement structure of different nuclei. This
analysis, however, is restricted to local, orbital-orbital corre-
lations. To understand whether these features translate into
low or high entanglement among all proton and neutron
orbitals (Spn), or among all m < 0 with all m > 0 modes
(Sm), we additionally compute the von Neumann entropies
for these two specific equipartitions.

Table 2 collects the values of Spn and Sm for all nuclei
studied in this work. We compare these entanglement mea-
sures to their potential maximum values determined by the
Fock subspace, as discussed in Sect. 3.2, and show the
relative entropies Spn/S

(max)
pn and Sm/S(max)

m in parenthe-
sis. We find Spn < 2 for all beryllium and neon isotopes,
which corresponds to less than half of the maximum bound
for Spn . The entanglement between all proton and neutron
orbitals is indeed low, both in absolute and relative value,
compared to the corresponding maximum. Importantly, this
proton–neutron entanglement measure decreases with neu-
tron excess.

In contrast, the values of Sm are relatively large for all
nuclei. In particular, for light nuclei, Sm is not far from sat-
urating the bound. This is to be expected from the mutual
information values of Figs. 3, 4, and 5. The isotopic depen-
dence of Sm is richer than that of Spn . In particular, it reflects
the corresponding subshell closures of isotopes like 22O, 24O
and 48Ca. This indicates that the energy and spin structure
of the valence shell has a larger influence on the amount of
entanglement Sm than what would be expected from Smax , the
maximum potential entanglement given a number of orbitals
and nucleons. The latter is always maximal, when computed
as explained in Sect. 3.2, when the shell is half full, while Sm
is largest when particular subshells are half full.
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Fig. 5 Mutual information Si j for 18−26O (top) and 42−50Ca (bottom).
The orbital numbering follows the scheme of Fig. 3 for single-neutron
orbitals. Dashed lines correspond to the subshells of the sd shell for

oxygen, as indicated in Fig. 4, and to the 0 f7/2, 1p3/2, 1p1/2 and 0 f5/2
subshells of the p f shell, from left to right (and bottom to top), for
calcium

It is also interesting to quantify how the entanglement of
the proton–neutron and Sm partitions compares to the entan-
glement of all the other partitions. To this end, we compute
the entropies for all possible equipartitions for 8Be and 10Be,
consisting of 12 single-particle orbitals in the p shell. This
implies a total of 1

2

(12
6

) = 462 equipartitions for these iso-
topes.

Figure 6 shows a histogram representing the distribution
of all the von Neumann entropies associated to all these par-
titions. There are several remarkable properties in this plot
that happen to be relatively robust across all the other isotopic
chains. The equipartition histogram is asymmetric, akin to a
skewed normal distribution, with a sharp decay past the max-
imum. We show the bin corresponding to Spn in a different
colour (blue), to highlight the fact that this is the lowest of
all possible equipartition entropies in both nuclei.

We also emphasize the partition of m < 0 and m > 0
orbitals, using a red histogram bar in the two panels of Fig. 6.
For 8Be, as discussed in Sect. 3.2, the maximum possible
entropy is S ≈ 3.9. The von Neumann entropy for the oppo-
site m partition falls, for the two isotopes, in the bar at the
very right of the histogram. This indicates that the opposite
m partition presents almost maximal entanglement.

Finally, we find a significant isotopic dependence on the
von Neumann entropy distribution of equipartitions. We find
a general shift when going from 8Be (top panel) to 10Be
(bottom panel). We note that this difference is unique to
equipartition entanglement. It is not, for instance, observed
in the mutual information plots of Fig. 3, where Si j is larger

for 10Be than for 8Be. In fact, if we compute the average
values of Si j , with i �= j , we obtain 〈S〉i j = 0.031 for
8Be and 〈S〉i j = 0.047 for 10Be. These are in contrast to
the mean entropies obtained from the average of the data in
Fig. 6. These are reported in the fourth column of Table 2. We
indeed find that the average entropy decreases from a value
of S = 3.84 in 8Be to S = 3.04 in 10Be. We conclude that
a nucleus can have more entanglement localized in specific
orbitals than another one, and yet have an overall smaller
multi-orbital entanglement.

Figure 7 shows the corresponding equipartition entropy
distributions for the oxygen isotopic chain, from 18O to
26O. In this case the valence spaces consist of only neu-
tron orbitals, so there is no proton–neutron partition. There
is a total of 1

2

(12
6

) = 462 available equipartitions. The oxy-
gen entropy distributions present more structure than those
of beryllium. For 18O (top panel), the distribution has some
gaps, and the largest entropy bin is also the most populated.
20O has the largest equipartition entanglement, as measured
by the mean value reported in Table 2. It also has the broadest
distribution, as quantified by means of the standard deviation,
shown in the fifth column of Table 2. The largest standard
deviation across the oxygen isotopic chain is indeed the one
associated with 20O.

As the neutron number increases past 20O, the distribution
changes in shape and structure. The mean entropy decreases
for 22O and is at its lowest in 24O. This is consistent with the
top panels of Fig. 5, and expected from the 0d5/2 and 1s1/2

subshell closures. Moreover, the distributions for these iso-
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topes have a significantly lower standard deviation. Beyond
the subshell closure, 26O shows a broader distribution, with
a two-peak structure and an overall larger mean. In oxygen,
the particular equipartitions corresponding to m < 0 and
m > 0 orbitals show, again, an almost maximal von Neu-
mann entropy. This can be clearly identified in the plots,
where the red bars tend to appear at the right of the his-
tograms.

To study whether the proton–neutron partition provides
the lowest entanglement among all equipartitions in the sd
shell, we show in Fig. 8 the von Neumann entropy distribu-
tions for 20−28Ne. Neon isotopes have a total of 24 orbitals,
resulting in a total of 1

2

(24
12

) 
 1.4 · 106 equipartitions. In
general, the number of equipartitions scales combinatorially
as 1

2

( Nq
Nq/2

)
, where Nq is the number of qubits, correspond-

ing to orbitals in the configuration space under the Jordan-
Wigner mapping. The scaling prevents the computation of
the entropy for all possible equipartitions already for neon
isotopes in the sd shell. Once all equipartitions have been
defined, which is relatively fast, we take a random sample
of 1% of all these equipartitions to generate the results in
the figure, using an uniform probability distribution. As in
Fig. 6, the proton–neutron entropy, marked in blue, appears

Table 2 Von Neumann entanglement entropies for the proton–neutron,
Spn , and opposite m, Sm , partitions (second and third columns). The
numbers in parenthesis are the entropies normalized to the maximum
possible value constrained by the Fock subspace. The fourth and fifth
columns show the average entropy and standard deviation of all the
calculated equipartitions. In the case of neon isotopes, we have taken a
sample of 1% of all possible equipartitions

Nucleus Spn Sm S σS

8Be 1.99 (0.51) 3.67 (0.86) 3.84 0.22
10Be 1.05 (0.27) 3.04 (0.78) 3.04 0.27
12Be – 1.42 (0.90) 1.32 0.24
18O – 2.22 (0.86) 1.99 0.31
20O – 2.85 (0.67) 2.66 0.34
22O – 1.67 (0.35) 1.66 0.15
24O – 0.80 (0.19) 0.80 0.08
26O – 1.41 (0.55) 1.30 0.24
20Ne 0.77 (0.13) 5.08 (0.81) 5.15 0.18
22Ne 1.25 (0.21) 5.80 (0.76) 5.88 0.28
24Ne 1.27 (0.21) 4.86 (0.61) 4.86 0.29
26Ne 0.51 (0.08) 4.20 (0.57) 3.99 0.31
28Ne 0.27 (0.04) 3.70 (0.63) 3.51 0.35
42Ca – 2.43 (0.73) 2.04 0.35
44Ca – 3.38 (0.58) 2.87 0.47
46Ca – 3.00 (0.40) 2.62 0.37
48Ca – 0.96 (0.11) 0.91 0.06
50Ca – 2.39 (0.27) 2.15 0.29

Fig. 6 Distribution of von Neumann entanglement entropies for all
possible equipartitions of 8Be (top) and 10Be (bottom) in the p shell. The
separated single-count blue bars in each panel correspond to proton–
neutron partitions. In both histograms, the opposite m partition falls
within the red (darker) bars

Fig. 7 Same as in Fig. 6, for 18−26O

well separated from the rest of the distribution in all neon
isotopes. This highlights again the uniqueness of this parti-
tion.

The overall shape of the distribution for neon isotopes is
more reminiscent of a Gaussian, although with a sharp cutoff
at high entropies. The mean and the standard deviation of the
distribution increases when going from 20Ne to 22Ne, just as
it did with the oxygen isotopes (see Table 2). Beyond this
point, the mean of the distribution steadily decreases with
neutron number, even past the 0d5/2 subshell closure. In fact,
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Fig. 8 Same as in Fig. 6, for 20−28Ne. Here 1% samples of all equipar-
titions have been calculated

the distributions for 20Ne (top panel) and 28Ne (bottom panel)
barely overlap.

In each of these isotopes, the equipartition between oppo-
site m orbitals belongs to a histogram (marked in red) that
falls roughly at the peak of the distribution and follows the
corresponding means, sitting just below only for deformed
20−22Ne, see also Table 2. This is in stark contrast to the
entropy of this very same partition for beryllium and oxygen,
where the same equipartition sat close to or at the bin with
highest entropy. This difference can be understood assuming
that most of the equipartition entanglement is local. Mutual
information figures indicate that, if all entanglement were
local, all the equipartitions which split the same set of pairs
with same energy and opposite m, independently of which
part of the pair falls in which equipartition, would have the
same equipartition entanglement. Entanglement of equipar-
titions which split different number of m-pairs would vary
due to the the differences in entanglement of the included or
excluded pairs. The Sm partition in particular is one out of
many ways to split all the possible m-pairs into two equipar-
titions. Moreover, this number grows with the number of
orbitals in the valence shell. In this simplified picture, it is
expected that a broader distribution surrounds Sm for neon
isotopes, with 24 orbitals, than for beryllium and oxygen
isotopes, with 12 orbitals.

For brevity purposes, we do not report on the distributions
of calcium isotopes. These follow a similar shape than those
of oxygen isotopes. They also present gaps in the spectrum,

and a shift in their mean entropy in correspondence with the
bottom panels of Fig. 5. In this case, the maximum mean
entropy peaks at 44Ca, with S = 2.87. This isotope also
presents the broadest distribution, with σs = 0.47. On the
ohter hand, 48Ca has the lowest mean entropy and standard
deviation, with S = 0.91 and σs = 0.06.

Let us finally discuss the overall behaviour of the means
and standard deviations of these von Neumman entropy dis-
tributions. These are presented in the fourth and fifth columns
of Table 2, including also values for the calcium isotopic
chain. These statistical metrics provide a quantitative mea-
sure of non-local entanglement for each nucleus. In gen-
eral, we find that these numbers correlate with the results
we discuss in previous subsections, and with general nuclear
structure wisdom. Beryllium isotopes, in the p shell, show a
decrease of von Neumann mean entropy and standard devia-
tion with neutron excess. For semimagic oxygen and calcium,
with closed-shell protons, the mean von Neumann equiparti-
tion entropy is largest in mid-subshell isotopes like 20O and
44Ca. As the neutron number increases past this point, the von
Neumann entropy decreases as it reaches the corresponding
subshell closure isotopes, 22O, 24O and 48Ca, being mini-
mum in the last two nuclei. This is not only true for the cen-
tral values, but also for the standard deviations, which peak
around the midshell maximum and are the smallest in the cor-
responding subshell closures. These subshell structures are
more difficult to ascertain in the neon isotopic chain. This
is naively expected from a nuclear structure point of view,
since correlations smear the corresponding neutron and pro-
ton single-particle structures.

5 Conclusions

In this work, we analyze entanglement features in the nuclear
shell model, with focus on Be, O, Ne and Ca isotopes. We
use different metrics to quantify the importance of entan-
glement, including single-orbital entropies, orbital-orbital
mutual information, and the von Neumann entropies between
two equipartitions of the valence space. In all cases, we find
that the entanglement properties are sensitive to the nuclear
structure and depend, in some cases strongly, on the (valence)
neutron and proton numbers. Nonetheless, different entan-
glement metrics reflect different correlation features within
the system.

Single-orbital entanglement depends strongly on the
energy, angular momentum, and isospin of the correspond-
ing orbitals. It is mainly a reflection of the evolution of the
single-particle occupation numbers, which is relatively well
understood based on nuclear structure insights. When, on the
other hand, a nucleus shows single-orbital entanglements in
contrast with the naive filling of single-particle orbitals, this
can be an indication of deformation.
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Orbitals with either very small or very large occupation
numbers, however, can only have a limited contribution to
many-orbital entanglement, as computed with the mutual
information or equipartition entropies. This is consistent with
the discussion in Sect. 3.2 on how the allowed many-body
states limit the construction of states following Eq. (11). In
general, we find that mutual information gives a good over-
all picture of the entanglement structure. Mutual information
displays various key explicit features across the p, sd and p f
shells. First, there is an extremely low proton–neutron entan-
glement, compared to like-particle entanglement. Second, in
spherical nuclei the proton–proton and neutron–neutron pairs
with the largest mutual information are those with the same
single-particle energy, but opposite third-component of the
total angular momentum, m. Finally, deformed nuclei are
characterized by rather constant mutual information between
modes, with relatively low values.

These features are not unique to the mutual information
metric, but turn out to be relatively generic. We see these
reflected, for instance, in the distribution of von Neumann
entropies corresponding to all the possible equipartitions in
the system. In all cases studied so far, we find that the proton–
neutron partition presents the lowest entanglement. More-
over, we find that, for all available measures, the proton–
neutron entanglement decreases with neutron excess. This
indicates that, in order to simulate separately two halves of
the valence space, the optimal choice is to split this space in
terms of the isospin projection, tz . This is in agreement with
and extends previous findings [15]. Opposite m partitions, in
contrast, are close to the maximum allowed entropies. For
most of the isotopes studied here, we find that the opposite m
partition is more than 50% of the maximum bound imposed
by the dimension of the Fock space.

These results showcase future possible avenues of work.
First, on the nuclear structure side, these very same tech-
niques could be employed for odd nuclei, whose nuclear
structure is not so much driven by nuclear pairing compared
to even-even systems. We also plan to perform a closer anal-
ysis of the entanglement signatures of nuclear deformation.
It would also be interesting to analyze the nuclear structure
of the same nuclei studied in this work within the no-core
shell model, testing if, and how, entanglement measures can
identify the appearance of a core and a valence space.

Second, on the entanglement quantification front, one may
use other entanglement measures, like n−tangles, to give a
further insight into the topic. This is particularly relevant in
relation to multipartite entanglement in fermionic systems
[43].

Finally, it would be interesting to exploit our findings in
practical circuit simulations, a task we aim to undertake in
the near future. In particular, we plan to exploit low entan-
glement partitions to build independent quantum circuits that
allow for accurate, yet less resource-intensive, results. Such

concrete circuit proposals may also lead to new performance
comparisons between different fermionic encodings, as some
partitions may only be unambiguously possible in specific
encodings. More interestingly, they may pave the way for
more efficient circuit designs to study atomic nuclei across
the nuclear chart with quantum simulations. Similarly, they
can also be exploited in classical simulations that rely on
entanglement as a resource [20,25]. For example, tensor net-
works simulations are only efficient when they contain ten-
sors with small rank. Finding partitions with low entangle-
ment is equivalent to identifying a structure that connects
through such a low-rank tensor, meaning one can use these
criteria to decide if a tensor network structure is appropriate
for the simulated system.
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