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Abstract The applicability of nuclear ab initio calculations
has rapidly extended over the past decades. However, start-
ing research projects is still challenging due to the required
numerical expertise in the generation of underlying nuclear
interaction matrix elements and many-body calculations. To
ease the first issue, in this paper we introduce the numerical
code NuHamil to generate the nucleon-nucleon (NN) and
three-nucleon (3N) matrix elements expressed in a spherical
harmonic-oscillator basis, inputs of many-body calculations.
The ground-state energies for the selected doubly closed shell
nuclei are calculated with the no-core shell-model (NCSM)
and in-medium similarity renormalization group (IMSRG).
The code is written in modern Fortran, and OpenMP+MPI
hybrid parallelization is available for the 3N matrix-element
calculations.

Program summary

Program title: NuHamil
Licensing provisions: GPLv3
Programming language: Modern Fortran
Repository and DOI: https://github.com/Takayuki-Miyagi/
NuHamil-public DOI:https://doi.org/10.5281/zenodo.7529
481

Description of problem: Nucleon-nucleon (NN) and three-
nucleon (3N) matrix elements are essential inputs in nuclear
ab initio calculations. However, developing a numerical code
to generate the matrix elements is a demanding task. Prepar-

a e-mail: miyagi@theorie.ikp.physik.tu-darmstadt.de (corresponding
author)

ing the input matrix elements is one of the main barriers to
begin studies.

Method of solution: The NuHamil code has the capa- bility
to generate both NN and 3N matrix elements expressed in a
single-particle harmonic-oscillator (HO) basis, which can be
used as inputs for most of the ab initio calculation methods.
The jobs can be managed by a simple Python script.

Additional comments: For other open-source software, one
can use the computational environment for nuclear structure
(CENS) [1] and recently published NuclearToolkit code [2].

1 Introduction

The dynamics of the atomic nucleus are governed by the
strong interaction, whose fundamental theory is described
by quantum chromodynamics (QCD). Since the quarks
are tightly confined in a nucleon, it is well established
that nuclear Hamiltonians associated with the interactions
between nucleons are a good starting point to understand
nuclear structure and reactions. The study of nuclear interac-
tion models has a long story starting from the pion-exchange
theory [3]. The quantitative understanding of nuclear inter-
actions is an open problem. In the past decade, interac-
tions based on chiral effective-field theory (EFT) [4,5]
have become the standard starting point of ab initio many-
body calculations. Chiral EFT-based interactions have sev-
eral advantages over other interactions such as AV18 [6] and
CD-Bonn potentials [7]. For example, a systematic expan-
sion is possible by ordering the diagrams according to the
power counting, suggesting the possibility of an uncertainty
quantification due to the truncation in the expansion [8–
11]. Further, many-nucleon interactions naturally appear at
higher order, explaining the hierarchy of many-body terms. In
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nuclear physics, it is well known that 3N interactions play an
important role (see for example Ref. [12] as a recent review).
With the progress in nuclear interactions and methodolog-
ical developments in many-body problems, nuclear ab ini-
tio studies are well motivated. Nowadays, the applicability
extends over the nuclear chart [13] and recently reached to the
heaviest known doubly-magic system 208Pb [14], and further
applications are expected.

To perform ab initio calculations, the matrix elements of
nuclear Hamiltonians (and relevant operators) are essential.
However, developing a numerically efficient code for the
matrix-element generation requires expert knowledge and
can be a barrier for those entering the field. The goal of the
NuHamil code is to provide a simple way to generate NN
and 3N matrix elements expressed in a spherical HO basis,
applicable for basis-expansion methods, such as the no-core
shell model (NCSM) [15], coupled-cluster method [16], self-
consistent Green’s function method [17], in-medium similar-
ity renormalization group [18] approach, and man-body per-
turbation theory [19]. The code currently supports the input
formats of the open-source BIGSTICK [20] and imsrg++ [21]
codes for the NCSM and IMSRG calculations, respectively.

This paper is organized as follows. In Sect. 2, we clarify
the input NN and 3N matrix elements for the many-body
calculations and briefly show how to compute them with the
single-particle product state in the HO basis. Also, we dis-
cuss the free-space similarity renormalization group (SRG)
prescription to soften the nuclear interactions in Sect. 3. We
show some benchmark many-body calculation results with
NCSM and IMSRG calculations in Sect. 4. The usage of the
code and the conclusion are given in Sect. 5 and Sect. 6,
respectively.

2 Matrix elements of Hamiltonian

Here, we review how the NN and 3N matrix elements enter
in the many-body problem. Our numerical goal is to solve the
non-relativistic many-body Schrödinger equation H |�n〉 =
En|�n〉, with the intrinsic Hamiltonian with up to 3N terms

H = A − 1

A

∑

i

p2
i

2m
+

∑

i< j

(VNN
i j − TNN

i j ) +
∑

i< j<k

V 3N
i jk .

(1)

Here, pi is the momentum vector of i th nucleon, and m is the
nucleon mass. The factor (A−1)/A in the first term and TNN

i j
is from the subtraction of the center-of-mass (cm) kinetic
term. A is the nucleon number of the system. The terms VNN

i j

and V 3N
i jk are the NN and 3N interactions, respectively.

2.1 Second-quantized representation

To proceed with many-body calculations with basis-
expansion methods, we begin with the expression by the sec-
ond quantization. To this end, we first define creation and
annihilation operators for a nucleon in an HO orbit p̃: c†

p̃ and
cp̃. The subscript p̃ is a collective index specifying the HO
orbit and defined as p̃ = {n p, l p, jp,mp, tz,p}. Here, n p,
l p, jp, mp, and tz,p are the nodal quantum number, orbital
angular momentum, total angular momentum, z-component
of jp, and the z-component of the isospin distinguishing pro-
tons and neutrons, respectively. Note that proton (neutron)
states are labeled as tz = −1/2 (1/2). In nuclear physics, the
use of an HO basis is particularly useful since the coordinate
transformation coefficient is well known [22–24], as will be
shown in later. The creation and annihilation operators satisfy
the anticommutation relations

{cp̃, cq̃} = 0, {c†
p̃, c

†
q̃} = 0, {cp̃, c†

q̃} = δ p̃q̃ . (2)

The object δ p̃q̃ is defined by products of Kronecker’s delta
and is written as

δ p̃q̃ = δn pnq δl plq δ jp jq δmpmq δtz,ptz,q . (3)

Applying the creation operators to the nucleon vacuum state
|0〉, one can define antisymmetrized states. For example,
one-, two-, and three-nucleon states can be written as

| p̃〉 = c†
p̃|0〉, (4)

| p̃q̃〉 = c†
p̃c

†
q̃ |0〉, (5)

| p̃q̃r̃〉 = c†
p̃c

†
q̃ c

†
r̃ |0〉. (6)

Using the creation and annihilation operators, an arbitrary
n-body operator O [n] can be expressed as

O [n] =
(

1

n!
)2 ∑

p̃′
1··· p̃′

n

∑

p̃1··· p̃n
Op̃′

1··· p̃′
n p̃1··· p̃n c

†
p̃′

1
· · · c†

p̃′
n
c p̃n · · · cp̃1 .

(7)

The object Op̃′
1··· p̃′

n p̃1··· p̃n is a shorthand notation for the oper-

ator matrix element 〈 p̃′
1 · · · p̃′

n|O [n]| p̃1 · · · p̃n〉. In the same
way, the Hamiltonian in Eq. (1) can be quantized as

H =
∑

p̃′ p̃
Tp̃′ p̃c

†
p̃′cp̃

+
(

1

2!
)2 ∑

p̃′q̃ ′ p̃q̃
(VNN

p̃′q̃ ′ p̃q̃ − TNN
p̃′q̃ ′ p̃q̃)c

†
p̃′c

†
q̃ ′cq̃c p̃

+
(

1

3!
)2 ∑

p̃′q̃ ′r̃ ′ p̃q̃r̃
V 3N
p̃′q̃ ′r̃ ′ p̃q̃r̃ c

†
p̃′c

†
q̃ ′c

†
r̃ ′cr̃ cq̃c p̃, (8)
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using the matrix elements of one-body kinetic term Tp̃′ p̃,
two-body kinetic term TNN

p̃′q̃ ′ p̃q̃ , NN interaction VNN
p̃′q̃ ′ p̃q̃ , and

3N interaction V 3N
p̃′q̃ ′r̃ ′ p̃q̃r̃ .

2.2 J -coupled scheme

The number of matrix elements defined in Eq. (8) is greatly
reduced by exploiting the rotational symmetry of the Hamil-
tonian. To introduce a smaller set of matrix elements, we
define the J -coupled two- and three-body states using the
Clebsch–Gordan coefficient C j1 j2 J

m1m2m1+m2
:

|pq : JM〉 =
√

1

1 + δpq

∑

mpmq

C jp jq J
m pmqM

| p̃q̃〉, (9)

|pqr : Jpq JM〉 =
∑

mpmqmr

C jp jq Jpq
m pmqmp+mq

C Jpq jr J
m p+mqmr M

| p̃q̃r̃〉.

(10)

Here, p, q, and r are the quantum number set without m, i.e.
p = {n p, l p, jp, tz,p}, and an additional Kronecker’s delta
product is introduced as

δpq = δn pnq δl plq δ jp jq δtz,ptz,q . (11)

Note that the factor
√

1/(1 + δpq) in the two-body state is for
the normalization so that we have 〈pq : J ′M ′|pq : JM〉 =
δJ ′ J δM ′M . On the other hand, such normalization factor is
not usually included in the three-body state. For the three-
body state, one can define another state by a different angu-
lar momentum coupling order, which should be related with
the Wigner’s 6 j-symbol. In this paper, the first and second
indices are always coupled first, and then the third index is
coupled. In practical applications, we need permutations of
the indices of the states to further reduce the storage require-
ment. For the two-body state, it is given by

|qp : JM〉 = −(−1) jp+ jq−J |pq : JM〉. (12)

Likewise, permutations of the indices in the three-body state
are given by

|qrp : Jqr J M〉 = −
∑

Jpq

(−1) jq+ jr+Jqr
√[Jpq ][Jqr ]

×
{
jp jq Jpq
jr J Jqr

}
|pqr : Jpq JM〉, (13)

|rpq : Jpr J M〉 = −
∑

Jpq

(−1) jp+ jq+Jpq
√[Jpq ][Jpr ]

×
{
jp jq Jpq
J jr Jpr

}
|pqr : Jpq JM〉, (14)

|qpr : Jpq JM〉 = −(−1) jp+ jq−Jpq |pqr : Jpq JM〉, (15)

|rqp : Jqr J M〉 =
∑

Jpq

√[Jpq ][Jqr ]

×
{
jp jq Jpq
jr J Jqr

}
|pqr : Jpq JM〉, (16)

|prq : Jpr J M〉 = −
∑

Jpq

(−1) jq+ jr+Jpr+Jpq
√[Jpq ][Jpr ]

×
{
jp jq Jpq
J jr Jpr

}
|pqr : Jpq JM〉. (17)

Here, Wigner’s 6 j-symbol with the standard notation [25]
and [x] = 2x + 1 are introduced. With the J -coupled
states, the two- and three-body matrix elements can be
introduced as 〈p′q ′ : J ′M ′|O [2]|pq : JM〉 and 〈p′q ′r ′ :
Jp′q ′ J ′M ′|O [3]|pqr : Jpq JM〉, respectively. Because of the
rotational invariance of the Hamiltonian, the Hamiltonian
matrix is M-independent and diagonal with respect to J
and M . Therefore, we introduce a shorthand notation for the
matrix elements.

Tp′ p = 〈p|T |q〉, (18)

TNN,J
p′q ′ pq = 〈p′q ′ : JM |TNN|pq : JM〉, (19)

VNN,J
p′q ′ pq = 〈p′q ′ : J ′M ′|VNN|pq : JM〉, (20)

V
3N,Jp′q′ Jpq J
p′q ′r ′ pqr = 〈p′q ′r ′ : Jp′q ′ J ′M ′|V 3N|pqr : Jpq JM〉.

(21)

Since the uncoupled matrix elements with tilde indices can be
computed from the J -coupled matrix elements, only calcu-
lating the J -coupled matrix elements is sufficient for many-
body calculations. The relation between the uncoupled and
J -coupled matrix elements are the following.

Tp̃′ p̃ = Tp′ pδmp′mp , (22)

TNN
p̃′q̃ ′ p̃q̃ =

∑

J

C jp′ jq′ J
m p′mq′ MC jp jq J

m pmqM
TNN,J
p′q ′ pq , (23)

VNN
p̃′q̃ ′ p̃q̃ =

∑

J

C jp′ jq′ J
m p′mq′ MC jp jq J

m pmqM
VNN,J
p′q ′ pq , (24)

V 3N
p̃′q̃ ′r̃ ′ p̃q̃r̃ =

∑

J Jp′q′ Jpq
C jp′ jq′ Jp′q′
mp′mq′ Mp′q′C

jp jq Jpq
m pmqMpq

× C Jp′q′ jr ′ J
Mp′q′mr ′ MC Jpq jr J

Mpqmr M
V

3N,Jp′q′ Jpq J
p′q ′r ′ pqr . (25)

2.3 Matrix elements of kinetic terms

The one-body kinetic matrix element Tp′ p is given by

Tp′ p = A − 1

A
δl p′ l pδ jp′ jpδtz,p′ tz,p

h̄ω

2

×
[(

2n p + l p + 3

2

)
δn p′n p

+
√

n p

(
n p + l p + 1

2

)
δn p′n p−1
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+
√

(
n p + 1

) (
n p + l p + 3

2

)
δn p′n p+1

]
. (26)

Note that the one-body kinetic operator takes the tridiag-
onal form. Also, the two-body kinetic matrix element can
be computed through the non-antisymmetrized J -coupled
matrix element T̄NN,J

p′q ′ pq

T̄NN,J
p′q ′ pq = (−1)

jq′+ jp+J h̄2

Am

×
{
jp′ jq ′ J
jq jp 1

}
〈p′‖∇‖p〉〈q ′‖∇‖q〉, (27)

with the reduced matrix element of the gradient operator,
which is given by

〈p′‖∇‖p〉 = (−1)l
′
p+ jp+1/2 1

b

√
[ jp′ ][ jp]

{
jp′ jp 1
l p l p′ 1/2

}

×
[√

(l p + 1)(n p + l p + 3/2)δn p′n pδl p′ l p+1

+
√

(l p + 1)n pδn p′n p−1δl p′ l p+1

+
√
l p(n p + l p + 1/2)δn p′n pδl p′ l p−1

+
√
l p(n p + 1)δn p′n p+1δl p′ l p−1

]
. (28)

Here, the HO length parameter b2 ≡ h̄/mω is introduced
with the HO frequency ω. The antisymmetrized matrix ele-
ment is obtained as

TNN,J
p′q ′ pq =

√
1

(1 + δp′q ′ )(1 + δpq )

[
T̄NN,J
p′q ′ pq − (−1) jp+ jq−J T̄NN,J

p′q ′qp

]
,

(29)

with

δpq = δn pnq δl plq δ jp jq δtz,ptz,q . (30)

The main tasks remaining are to compute the matrix elements

VNN,J
p′q ′ pq and V

3N,Jp′q′ Jpq J
p′q ′r ′ pqr .

2.4 Nucleon–nucleon matrix elements

We begin with the NN matrix element. One might think that
the matrix element can be calculated directly from the inte-
gral using the single-particle HO wave function. It is actually
done in quantum chemistry. However, this would be a com-
putationally expensive task since functional forms of NN
interactions are complicated. Instead, the Talmi–Moshinsky
transformation is widely used in nuclear physics:

VNN,J
p′q ′ pq =

∑

NNN
cm LNN

cm JNN
rel S

∑

n′l ′nl
T p′q ′ J
NNN

cm LNN
cm n′l ′SJNN

rel

×V
SJNN

rel
n′l ′nl T pq J

NNN
cm LNN

cm nlS JNN
rel

. (31)

The quantum numbers introduced for the transformation
NNN

cm , LNN
cm , n, l, S, and JNN

rel are the NN cm radial quantum
number, NN cm orbital angular momentum, relative radial
quantum number, relative orbital angular momentum, total
spin, and total angular momentum of the relative motion,
respectively. The transformation coefficient T pq J

NNN
cm LNN

cm nlS JNN
rel

is

T pq J
NNN

cm LNN
cm nlS JNN

rel
= (−1)L

NN
cm +l+S+J

√
[ jp][ jq ][S][JNN

rel ]

×
∑

�

[�]
⎧
⎨

⎩

l p 1/2 jp
lq 1/2 jq
� S J

⎫
⎬

⎭

{
LNN

cm l �

S J JNN
rel

}

×〈NNN
cm LNN

cm nl : �|n plpnqlq : �〉1.

(32)

In the above equation, 9 j-symbol is used with the standard
notation [25]. The symbol 〈NLnl : �|n1l1n2l2 : �〉d is the
HO bracket defined with the notation in Ref. [24]. The inner
summations in Eq. (31) can be performed with an efficient
matrix multiplication. Note that the antisymmetrization is not
taken into account here. However, it is trivial and can be done
by multiplying the factor f pq to Eq. (32):

f pq =
{

1, tz,p �= tz,q√
1

2(1+δpq )
[1 + (−1)l+S], tz,p = tz,q

. (33)

The NN matrix element in the relative HO basis V
SJNN

rel
n′l ′nl can

be obtained through the integral:

V
SJNN

rel
n′l ′nl =

∫
dπ ′

1dπ1 π ′2
1 π2

1 Rn′l ′(π
′
1)Rnl(π1)

×V
SJNN

rel
l ′l (π ′

1, π1), (34)

with the radial HO wave function:

Rnl(π1) = (−1)nb

√
2b�(n + 1)

�(n + l + 3/2)

×(π1b)
l e−π2

1 b
2/2L(l+1/2)

n (π2
1 b

2). (35)

The gamma function �(x) and associated Laguerre polyno-
mial L(α)

n (x) are introduced. The momentum π1 is π1 =
|( p1 − p2)|/

√
2, consistent with the definition of the HO

bracket. Note that π1 is different from the usual relative
momentum definition p = | p1 − p2|/2.

TheNuHamil code requires the input file forV
SJNN

rel
l ′l (p′, p)

stored as a function of p′ and p. Some selected interactions
are given in the input_nn_files directory. The available
NN interactions are LO – N4LO with 500 MeV regulator cut-
off by Entem–Machleidt–Nosyk [26], N3LO with 500 MeV
regulator cutoff by Entem–Machleidt [27], N2LOopt [28],
N2LOsat [29], and 	-full EFT series by the Gothenburg–Oak
Ridge collaboration [30].
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2.5 Three-nucleon matrix elements

For computational reasons, the 3N matrix elements are cal-
culated within the isospin formalism. The matrix elements
with the proton-neutron basis can be obtained through the

JT -coupled matrix element V
3N,Jp′q′ Jpq J,Tp′q′Tpq T
p′q ′r ′ pqr :

V
3N,Jp′q′ Jpq J
p′q ′r ′ pqr =

∑

Tp′q′ Tpq T
Ctp′ tq′ Tp′q′
tz,p′ tz,q′ Tz,p′q′ C

tp tq Tpq
tz,ptz,q Tz,pq

× CTp′q′ tr ′ T
Tz,p′q′ tz,r ′ TzC

Tpq tr T
Tz,pq tz,r Tz

V
3N,Jp′q′ Jpq J,Tp′q′ Tpq T
p′q ′r ′ pqr .

(36)

The recoupling should be done in many-body calculations,
and the goal here is to obtain the JT -coupled matrix element.
Note that recoupling coefficients from isospin structure have
to be considered for the permutation of indices, similar to
Eqs. (13)–(17).

Since the antisymmetrization of the 3N basis is more com-
plicated than that of the NN basis, the 3N matrix element is
cumbersome. The antisymmetrized basis is expressed as the
linear combination of the non-antisymmetrized basis:

|Ei J 3N
rel T 〉 =

∑

β

ciβ |Eβ J 3N
rel T 〉, (37)

where E , i , and J 3N
rel are the HO principle quantum num-

ber, label distinguishing the states, and total Jacobi angular
momentum, respectively. The collective index β,

β = {n12, l12, s12, j12, t12, n3, l3, j3}, (38)

specifies the non-antisymmetrized basis. The quantum num-
bers with the subscript ‘12’, n12, l12, s12, j12, and t12 are for
the relative motion of nucleons 1 and 2, i.e., the nodal, orbital
angular momentum, spin, total angular momentum, and total
isospin quantum numbers, respectively. Likewise, n3, l3, and
j3 are the quantum numbers for the nucleon 3 with respect
to the cm of the nucleons 1 and 2. Note that the principle
quantum number is defined as E = 2n12 + l12 + 2n3 + l3.
The coefficient in the linear combination ciβ can be obtained
by the diagonalization of the antisymmetrizer [31,32]:

A|Ei J 3N
rel T 〉 = Ai |Ei J 3N

rel T 〉, (39)

with A = (1+T13T12 +T12T23 −T12 −T13 −T23)/6 defined
with the exchange operator Ti j and the eigenvalue Ai . The
matrix element of the antisymmetrizer is [31,32]

〈E ′β ′ J 3N′
rel T ′|A|Eβ J 3N

rel T 〉
=

[
δβ ′β

3
− 2

3
(−1)s

′
12+t ′12+s12+t12

∑

�S

[�][S]

×
√

[s′
12][ j ′12][ j ′3][t ′12]

√[s12][ j12][ j3][t12]

×
⎧
⎨

⎩

l ′12 s′
12 j ′12

l ′3 1/2 j ′3
� S J

⎫
⎬

⎭

⎧
⎨

⎩

l12 s12 j12

l3 1/2 j3
� S J

⎫
⎬

⎭

×
{

1/2 1/2 s′
12

1/2 S s12

} {
1/2 1/2 t ′12
1/2 T t12

}

×〈n′
12l

′
12n

′
3l

′
3 : �|n12l12n3l3�〉1/3

]

×δE ′EδJ 3N′
rel J 3N

rel
δT ′T . (40)

The eigenvalue problem can be separated into {E, J 3N
rel , T }

blocks. Due to the overcompleteness of the non-
antisymmetrized basis, the eigenvalue Ai is either 0 or 1, and
Ai for the physical state has to be 1. Therefore, we always see
NA ≤ NNA where NA and NNA are the basis numbers in the
antisymmetrized and non-antisymmetrized bases within the
{E, J 3N

rel , T } block, respectively. In the code, all the 3N oper-
ators are stored with the antisymmetrized basis rather than
the non-antisymmetrized basis, as it is computationally easier
to handle. As another option for the 3N antisymmetrization,
one may apply the permutator operator to the 3N momentum
state as introduced in Ref. [33].

Similarly to the NN case, the 3N matrix elements can be
obtained through the three-body Talmi–Moshinsky transfor-
mation:

V
3N,Jp′q′ Jpq J,Tp′q′TpqT
p′q ′r ′ pqr = 6

∑

N3N
cm L3N

cm J 3N
rel

∑

E ′i ′Ei

×T
p′q ′r ′ Jp′q′ JTp′q′T
N3N

cm L3N
cmE ′i ′ J 3N

rel
V

J 3N
rel T

E ′i ′Ei T
pqr Jpq JTpq T

N3N
cm L3N

cmEi J 3N
rel

, (41)

where N 3N
cm and L3N

cm denote the 3N cm radial quantum
number and 3N cm orbital angular momentum, respec-

tively. The matrix element V
J 3N

rel
E ′i ′Ei is a shorthand notation

of 〈E ′i ′ J 3N
rel T |V |Ei J 3N

rel T 〉. The transformation coefficient
is given by

T
pqr Jpq JTpq T

N3N
cm L3N

cmEi J 3N
rel

=
∑

β

ciβT
pqr Jpq JTpq T

N3N
cm L3N

cmEβ J 3N
rel

, (42)

with

T
pqr Jpq JTpq T

N3N
cm L3N

cmEβ J 3N
rel

= δTpq t12(−1)L
3N
cm+ j3+3/2

√
[Jpq ][ jr ][J 3N

rel ][ j3]
×

∑

NNN
cm LNN

cm

T
pq Jpq
NNN

cm LNN
cm n12l12s12 j12

∑

�

(−1)�[�]

×〈N 3N
cm L3N

cmn3l3 : �|NNN
cm LNN

cm nr lr : �〉2

×
⎧
⎨

⎩

j12 LNN
cm � L3N

cm
Jpq lr l3 J 3N

rel
J jr 1/2 j3

⎫
⎬

⎭ . (43)

The 12 j-symbol of the first kind [25] is used. Note that

T
pq Jpq
NNN

cm LNN
cm n12l12s12 j12

is defined in Eq. (32), and one can find

a recursive relation for the N -body Talmi–Moshinsky trans-
formation with the 12 j-symbol and HO bracket.
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A typical limit of the three-body Talmi–Moshinsky trans-
formation is E3max = 16, where E3max is defined as
max(2n p + l p + 2nq + lq + 2nr + lr ). This limit does
not allow us to obtain converged results for heavier sys-
tems with A � 100. Recently, the limit was extended to
E3max = 28 [34], by only computing the matrix elements
relevant to the normal-ordered two-body (NO2B) approxi-
mation, which is widely used in basis expansion methods.
For further details about the NO2B matrix elements, see
Ref. [34]. The code supports this format as well.

The 3N matrix element in the Jacobi HO basis V
J 3N

rel T
E ′i ′Ei

can be obtained from the matrix element expressed with the
non-antisymmetrized basis:

V
J 3N

rel T
E ′i ′Ei =

∑

β ′β
ci ′β ′ciβV

J 3N
rel T

β ′β , (44)

with

V
J 3N

rel T
β ′β =

∫
dπ ′

1dπ ′
2dπ1dπ2 π ′2

1 π ′2
2 π2

1 π2
2

×Rn′
12l

′
12

(π ′
1)Rn12l12(π1)Rn′

3l
′
3
(π ′

2)Rn3l3(π2)

×V
J 3N

rel T
α′α (π ′

1, π
′
2, π1, π2). (45)

Here, the collective index α is introduced as

α = {l12, s12, j12, t12, l3, j3}. (46)

The momentum π2 is defined as π2 = √
2/3|( p1 + p2)/2 −

p3|. The momentum-space matrix element includes a regu-
lator function:

V
J 3N

rel T
α′α (π ′

1, π
′
2, π1, π2) = f�V

J 3N
rel T

χEFT,α′α(π ′
1, π

′
2, π1, π2).

(47)

The regulator function takes either a non-local form

f�nonlocal = exp

[
−

(
π ′2

1 + π ′2
2

2�2
nonlocal

)n]
exp

[
−

(
π2

1 + π2
2

2�2
nonlocal

)n]
,

(48)

a local form

f�local = exp

[
−

(
| p′

1 − p1|2
�2

local

)n]
exp

[
−

(
| p′

2 − p2|2
�2

local

)n]
,

(49)

or a semilocal form [35] that is not supported in the code.
The code fully supports the locally regulated matrix ele-
ments at N2LO in chiral EFT based on Ref. [36]. Also, a
newly introduced local-non-local regularized form, f� =
f�local f�nonlocal [37], is supported.

For non-local matrix elements, we have tried to imple-
ment along Ref. [38]. However, we found a numerical insta-
bility in the higher angular momentum partial waves, which

would be related to the discussion made in Ref. [39]. For
this reason, non-local matrix elements are not fully sup-
ported, and external input files are required. The code has
the capability to read the momentum-space matrix element

V
J 3N

rel T
χEFT,α′α(p′, q ′, p, q)1 from the HDF files by Hebeler et

al. [12,40]. In the integral (45), the cubic b-spline interpola-
tion is used to capture the oscillating nature of the HO wave
functions.

3 Similarity renormalization group

The momentum scales of chiral EFT interactions are sig-
nificantly lower than those of the other potential models
such as AV18 [6] and CD-Bonn [7]. However, the momen-
tum scale is not sufficiently low to obtain converged results
in the many-body calculations. To accelerate convergence,
one sometimes softens nuclear interactions. Softening pro-
cedures are well summarized for example in Ref. [43]. Here,
we briefly review the widely used similarity renormalization
group (SRG) approach.

In the SRG, we consider a unitary transformation depend-
ing on a continuous parameter α:

H(α) = U †(α)HU (α). (50)

The SRG flow equation can be obtained by differentiating
both sides:

dH(α)

dα
= [η(α), H(α)], η(α) = dU †(α)

dα
U (α). (51)

The antihermitian operator η(α) is known as the generator
of the flow equation and can be chosen flexibly [44]. The
most widely used choice is η(α) = [Tkin, H(α)] with the
kinetic operator Tkin, which guarantees the suppression of
the coupling between low and high momenta. The flow equa-
tion (51) is integrated until the coupling is sufficiently sup-
pressed. Since the unitary transformation does not change the
eigenvalues, the SRG can be regarded as a reshuffling of the
NN, 3N, and many-body sectors. In other words, the many-
body interactions are induced by the SRG evolution even if
the original interaction includes only NN interactions.

In practical applications, we extract the SRG-evolved
interactions with the subtraction method (see Ref. [41] for

1 In the HDF files, the matrix elements are given in terms of the Jacobi
variables p and q [12], defined as

p = 1

2
| p1 − p2| =

√
1

2
π1,

and

q = 1

3
| − p1 − p2 + 2 p3| =

√
2

3
| − π2|.

123



Eur. Phys. J. A           (2023) 59:150 Page 7 of 12   150 

Table 1 The ground-state energies of selected doubly magic nuclei
computed with the NCSM and IMSRG(2). The resolution scale λ

is related with the end point of the SRG evolution: λ = α−1/4

in units of fm−1. The Nmax and emax truncations are employed in
the NCSM and IMSRG(2), respectively. The truncation defined by
E3max = max(e1 +e2 +e3) is applied for the input 3N matrix elements.
The E3max values with asterisk indicates that the 3N matrix elements
are computed within the half-precision floating-point numbers. Also,
E3max = “none” indicates that there are no input 3N matrix elements.

The entry h̄ω is the basis frequency used in the many-body calculations,
and the numbers in the parentheses are the parent frequency adopted in
the frequency conversion for the 3N matrix elements [41]. For 4He, 16O,
and 40Ca, the 3N SRG evolution was done in the ramp A space defined
in Ref. [41]. For 132Sn, the evolution was done in the Nmax = 48 space
only for J 3N

rel ≤ 13/2 channels. The star symbol in the E3max column
indicates that the 3N matrix elements are in half-precision floating point
numbers

Nucleus Interaction λ (fm−1) Method Nmax/emax E3max h̄ω (MeV) Eg.s. (MeV)

4He EM500 [27] 1.8 NCSM 16 None 16 −28.45
4He EM500 [27] 2.0 NCSM 16 None 16 −28.23
4He EM500 [27] 2.2 NCSM 16 None 16 −27.88
4He EM500 [27] 1.8 IMSRG(2) 14 None 16 −28.43
4He EM500 [27] 2.0 IMSRG(2) 14 None 16 −28.28
4He EM500 [27] 2.2 IMSRG(2) 14 None 16 −28.08
4He EM500 [27] 1.8 IMSRG(2) 14 16 16(30) −25.61
4He EM500 [27] 2.0 IMSRG(2) 14 16 16(30) −25.76
4He EM500 [27] 2.2 IMSRG(2) 14 16 16(30) −25.96
4He N3LOlnl [37] 1.8 IMSRG(2) 14 16 16(30) −28.63
4He N3LOlnl [37] 2.0 IMSRG(2) 14 16 16(30) −28.69
4He N3LOlnl [37] 2.2 IMSRG(2) 14 16 16(30) −28.76
4He 1.8/2.0 (EM) [42] None IMSRG(2) 14 16 16 −29.23
4He 	N2LOGO(394) [30] None IMSRG(2) 14 16 16 −28.67
16O EM500 [27] 1.8 IMSRG(2) 14 None 16 −173.3
16O EM500 [27] 2.0 IMSRG(2) 14 None 16 −165.7
16O EM500 [27] 2.2 IMSRG(2) 14 None 16 −158.5
16O EM500 [27] 1.8 IMSRG(2) 14 16 16(30) −121.6
16O EM500 [27] 2.0 IMSRG(2) 14 16 16(30) −122.9
16O EM500 [27] 2.2 IMSRG(2) 14 16 16(30) −124.2
16O N3LOlnl [37] 1.8 IMSRG(2) 14 16 16(30) −128.6
16O N3LOlnl [37] 2.0 IMSRG(2) 14 16 16(30) −127.2
16O N3LOlnl [37] 2.2 IMSRG(2) 14 16 16(30) −126.0
16O 1.8/2.0 (EM) [42] None IMSRG(2) 14 16 16 −127.2
16O 	N2LOGO(394) [30] None IMSRG(2) 14 16 16 −126.1
40Ca EM500 [27] 1.8 IMSRG(2) 14 None 16 −639.4
40Ca EM500 [27] 2.0 IMSRG(2) 14 None 16 −595.8
40Ca EM500 [27] 2.2 IMSRG(2) 14 None 16 −554.1
40Ca EM500 [27] 1.8 IMSRG(2) 14 16 16(30) −352.3
40Ca EM500 [27] 2.0 IMSRG(2) 14 16 16(30) −360.0
40Ca EM500 [27] 2.2 IMSRG(2) 14 16 16(30) −366.7
40Ca N3LOlnl [37] 1.8 IMSRG(2) 14 16 16(30) −347.1
40Ca N3LOlnl [37] 2.0 IMSRG(2) 14 16 16(30) −341.9
40Ca N3LOlnl [37] 2.2 IMSRG(2) 14 16 16(30) −336.7
40Ca 1.8/2.0 (EM) [42] None IMSRG(2) 14 16 16 −344.4
40Ca 	N2LOGO(394) [30] None IMSRG(2) 14 16 16 −339.1
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Table 1 continued

Nucleus Interaction λ (fm−1) Method Nmax/emax E3max h̄ω (MeV) Eg.s. (MeV)

132Sn N3LOlnl [37] 2.0 IMSRG(2) 14 24 12 (30) −1064
132Sn 1.8/2.0 (EM) [42] None IMSRG(2) 14 24 12 −1109
132Sn 	N2LOGO(394) [30] None IMSRG(2) 14 24 12 −1098
208Pb 1.8/2.0 (EM) [42] None IMSRG(2) 14 28* 12 −1660
208Pb 	N2LOGO(394) [30] None IMSRG(2) 14 28* 12 −1628

example). For NN, the Hamiltonian HNN = TNN + VNN

is evolved, and the evolved NN interaction is given as
VNN(α) = HNN(α) − Tkin. Note that Tkin and VNN are the
NN kinetic and interaction operators, respectively. From the
definition of the flow equation, VNN(α) reproduces the two-
body observables obtained through the original interaction
VNN. However, this is not true for three- and many-body
observables due to missing induced many-body forces, and
the many-body observables have an artificial α dependence,
showing how much the unitarity of the transformation is bro-
ken in the many-body space. To obtain more α-independent
result, one has to include induced 3N interaction extracted
from the 3N evolution.

For 3N, the starting Hamiltonian is H3N = T3N + V [3]
NN,

where T3N is the 3N kinetic operator, and V [3]
NN is the NN

interaction embedded into the 3N space. Note that one can
add an initial 3N term if required. The induced 3N term
can be obtained as V3N,ind(α) = H3N(α) − T3N − V [3]

NN(α).

Here, V [3]
NN(α) is VNN(α) obtained from the NN evolution

and embedded into 3N space. As seen in the NN evolu-
tion, the 3N evolution preserves three-body observables. The
same procedure can be applied for many-body terms, and the
many-body evolution is needed until the α-dependence of the
many-body observables becomes weak enough. However, in
practice, even the four-body SRG evolution is too expensive
to do due to the resulting basis dimension and the cost of
antisymmetrizing the basis. In the NuHamil code, the SRG
evolution can be performed in the NN and 3N sectors, the
current state-of-the-art.

The unitary transformation can be obtained from the flow
equation for the transformation operator:

dU (α)

dα
= −U (α)η(α). (52)

However, a computationally more moderate way is used in
practice, and the unitary transformation is obtained as

U (α) =
∑

k

|ψk〉〈ψk(α)|, (53)

with the eigenstates of the original and evolved Hamiltonians:

H |ψk〉 = Ek |ψk〉, H(α)|ψk(α)〉 = Ek |ψk(α)〉. (54)

Note that the relative phase of |ψk〉 and |ψk(α)〉 cannot be
determined in general, which affect the sign of the matrix
element of the transformation operator. Since the SRG trans-
formation does not change the wave function drastically, the
relative phase is fixed such that 〈ψk |ψk(α)〉 ≥ 0. In the same
way as for the Hamiltonian, the induced three-body term of
an operator can be computed in the NuHamil code as done
in Ref. [45]. The end point of the flow equation is usually
parametrized by the momentum scale λ = α−1/4 instead of
α, and we follow this convention.

In the code, the SRG evolution is done in a relative-
coordinate HO space because the consistent evolution of
the other operators is straightforward. This means that the
evolution is done in the truncated HO space, and the Nmax

truncation is employed in the code. The Nmax is defined as

Nmax =
{

max(2n + l), NN system
max(2n12 + l12 + 2n3 + l3), 3N system

.

(55)

The UV momentum scale in the employed Nmax space is
roughly estimated as pUV ∼ √

2Nmaxmω [46], and we
expect that the Nmax should be increased until pUV is suffi-
ciently larger than the cutoff scale of the interaction, typically
500 MeV. Although we can take sufficiently large Nmax for
the NN evolution,2 the 3N Nmax can be an issue especially
in heavy nuclei calculations [34] even if the frequency con-
version technique [41] is used.

4 Many-body results

Here, we show the ground-state energies for the selected dou-
bly magic nuclei computed with the NCSM and two-body
approximated IMSRG [IMSRG(2)] as a benchmark. We do
not introduce the theoretical details of the many-body calcu-
lation methods. The details can be found in Refs. [15,18,47]
and references therein. The numerical codes used here are
open source; the NCSM and IMSRG are done with the
BIGSTICK [20] and imsrg++ [21] codes, respectively.

2 We observed that HO- and momentum-space evolutions provide
almost the same results. The code supports the momentum-space evo-
lution only for NN interactions, and users can verify it.
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In Table 1, the ground-state energies are shown, using
the SRG-softened N3LO NN interaction [27], labeled by
“EM500”, with and without induced 3N interaction, N3LOlnl

[37], 1.8/2.0 (EM) [42], and 	N2LOGO(394) [30].

5 Program summary and specifications

The NuHamil code is written in modern Fortran. It requires a
set of libraries, BLAS, LAPACK, GNU scientific library (gsl),
zlib, and hdf5.

5.1 Installation

The source code can downloaded from GitHub:

$ cd
$ git clone https :// github.com/Takayuki -Miy

agi/NuHamil -public.git

Note that downloading the code in the home directory is not
mandatory, but it is recommended. One needs to download
the submodules, linear algebra wrapper and b-spline inter-
polation:

$ cd NuHamil
$ git submodule init
$ git submodule update

The compilation can be done with the make command. The
default compiler is GCC Fortran. If a user needs to use
another compiler, the Makefile has to be edited appro-
priately. The symbolic link will be created by the make
install command.3 Once the directory is added to PATH,
the code is ready to run.

$ make
$ make install
$ echo 'export�PATH=$PATH:$HOME/bin' >>

$HOME /. bashrc
$ source $HOME /. bashrc

5.2 How to run

A job submission can be controlled by a Python script, and
some sample scripts are prepared in the exe directory. For
example, the NN and 3N matrix elements can be generated
with NuHamil_2BME.py and NuHamil_3BME.py, respec-
tively. A Python script generates the corresponding input file
for NuHamil.exe and submits the job. If an user needs to
run a job manually, it can be done with

$ NuHamil.exe input.txt

The “input.txt” is the input file based on the Fortran namelist
functionality, and the file format is given the following.

3 By default the link will be created in HOME/bin.

&input
variable1=value
variable2=value
...

&end

5.3 Major parameters

In the NuHamil code, there are a number of input parameters.
Here, we list some of the basic input parameters that the users
might need to change depending on their requirements.4

– rank: integer, particle number of the system.
– hw: frequency of the HO basis in the unit of MeV. The

typical range is 10 � hw � 40.
– hw_target: target frequency for the frequency conver-

sion technique [41]. The parameter is valid if rank > 2.
To turn off the frequency conversion, set hw_target =
−1.

– emax: emax = max(2n + l) truncation for the output lab-
frame HO matrix element file.

– e2max: e2max = max(2n p + l p + 2nq + lq) truncation
for the output lab-frame HO matrix element file. It is
recommended to use e2max = 2 × emax.

– e3max: E3max = max(2n p + l p + 2nq + lq + 2nr +
lr ) truncation for the output 3N lab-frame HO matrix
element file. A typical limit is e3max = 16, and it will
not work for the larger e3max because of the memory
requirements. If only the matrix elements relevant for
the NO2B approximation are needed [34], e3max = 24
would be a typical choice without MPI parallelization.

– file_name_nn: file name of the output lab-frame NN
HO matrix elements.

– file_name_3n: file name of the output lab-frame 3N
HO matrix elements.

– renorm: renormalization method; “bare”, “srg”, and
“Vlowk” are available. Note that the code does not sup-
port the 3N evolution for “Vlowk” option.

– renorm_space2: NN interaction renormalization
space; “ho” and “mom” are available. The NN renormal-
ization procedure is done in HO-(“ho”) or momentum-
(“mom”)space. The default is “ho”.

– input_nn_file: file name of the NN interaction repre-
sented in the relative momentum space. The files are in
the input_nn_files directory.

– NNInt: name of the NN interaction.
– N2max: Nmax truncation for the NN system.
– only_no2b_element: If it is set True, only the matrix

elements relevant for the NO2B approximation will be
computed [34].

4 Users can contact the author for the parameters not listed here.
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– jmax3: maximum value of the 3N Jacobi angular momen-
tum taken into account. This has to be an integer and twice
the actual angular momentum.

– genuine_3bf: set True if the bare 3N interaction needs
to be included. If it is set False and renorm=“srg”, the
SRG induced 3N interaction will be computed.

– Regulator: 3N regulator functional form. One can
choose “Local” (49), “NonLocal” (48), or “LNL” [37].

– RegulatorPower: power of the regulator function, i.e.,
n in Eqs. (48) and (49).

– LECs: 5 dimensional array providing the low-energy con-
stants appear in N2LO 3N interaction in the chiral EFT,
{c1, c3, c4, cD, cE }. Note that c1, c3, and c4 are in units
of GeV−1, while cD and cE are dimensionless. For more
details, see Ref. [48].

– lambda_3nf_nonlocal: cutoff of the 3N non-local reg-
ulator, �nonlocal in Eq. (48), in the unit of MeV.

– lambda_3nf_local: cutoff of the 3N local regulator,
�local in Eq. (49), in units of MeV.

5.4 File format of input NN interactions in relative
momentum space

As mentioned in Sect. 2.4, some selected NN interaction
files are prepared in the input_nn_files directory. Fur-
thermore, one can use their own momentum-space NN inter-
action. The file needs to be written with the binary.5 The file
should begin with listing the following variables:

Number_of_mesh_points
J_max
Number_of_relative_coordinate_channels

where the 32-bit integersNumber_of_mesh_points,J_max,
and Number_of_relative_coordinate_channels are
the size of momentum mesh points, maximum total angular
momentum in the relative coordinate, i.e., max(JNN

rel ), and the
number of [JNN

rel , (−1)l , S, tz,p + tz,q ] combinations written
in the file, respectively. Then, one needs to write the momen-
tum mesh points and corresponding weights for a quadrature
method, which are number_of_mesh_points-dimensional
arrays with the 64-bit float:

momentum_mesh_points
weights

Finally, the momentum-space matrix for each [JNN
rel , (−1)l ,

S, tz,p + tz,q ] block should be written in the following way:

Angular_momentum
Parity
Spin
Isospin_z_component
Matrix_dimension
Momentum_space_matrix

5 For Fortran users, the file should not include any delimiters.

... (The same structure is repeated
Number_of_relative_coordinate_channels
times)

Here, the 32-bit integers Angular_momentum, Parity,
Spin, Isospin_z_component, and Matrix_dimension
correspond to JNN

rel , (−1)l , S, tz,p + tz,q , and the size
of momentum-space matrix, respectively. Note that tz,p +
tz,q can take either of −1 (proton-proton), 0 (proton-
neutron), or 1 (neutron-neutron). The Momentum_space
_matrix is the flattened (“Matrix_dimension”)2-
dimensional array with the 64-bit float, corresponding to

V
SJNN

rel
l ′l (p′, p).6 Notice that Number_of_mesh_points and

Matrix_
dimension are not always the same because Matrix_
dimension is twice of Number_of_mesh_points for spin-
triplet coupled channels.

5.5 File format of non-local 3N matrix elements in Jacobi
momentum space

As mentioned in Sect. 2.5, external input HDF5 files are
needed for the non-local 3N matrix elements. The HDF5
files need to be prepared for each [J 3N

rel , (−1)l12+l3 , T ]
partial waves and placed in the directory (directory
path)/T3_2T /J3_2J 3N

rel /PAR_(−1)l12+l3 , e.g., HOME/3NF
_matrix_elements_nonlocal_V/T3_1/J3_1
/PAR_1 for the 3H and 3He ground-state channel. Each HDF5
file must include the entries Nalpha, Np, Nq, p mesh, q
mesh, pw channels, and matrix elements, written as the
dataset type supported in the HDF5 format. The Nalpha is
the 32-bit integer corresponding to the number of α chan-
nels. The objects Np and Nq are also 32-bit integers and the
number of momentum mesh points for p and q, respectively.
Note that α is defined in Eq. (46). The dataset p mesh should
at least have mesh point and mesh weight entries, corre-
sponding to the p-momentum mesh points and associated
weights for a quadrature method, respectively. The objects
mesh point and mesh weight should be Np-dimensional
array with the 64-bit float. The dataset q mesh is the same
as p mesh except that it is for q. Regarding the dataset pw
channels, it should at least includeL_12,S_12,J_12,T_12,
l_3, and 2*j_3 entries, which are l12, s12, j12, t12, l3, and
2 j3, respectively. Each entry has to be “Nalpha”-dimensional
array with the 32-bit integer. Finally, the “matrix elements”
corresponds to the 3N matrix stored as [Nalpha, Nq, Np,
Nalpha, Nq, Np]-dimensional array with the 32-bit float.7

6 For further details, one can see the subroutine read_nn_mom in
NNForce.F90.
7 Further details can be found in NNNFFromFile.F90.
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6 Summary and future perspective

We introduce the NuHamil code to generate NN and 3N
matrix elements. The jobs can be managed with a sim-
ple Python script. The available NN interactions are LO –
N4LO with 500 MeV regulator cutoff by Entem–Machleidt–
Nosyk [26], N3LO with 500 MeV regulator cutoff by Entem–
Machleidt [27], N2LOopt [28], N 2LOsat [29], and 	-full EFT
series by Gothenburg–Oak Ridge collaboration [30]. The
code can generate locally regulated 3N interactions [36].
Additional input files are needed for non-locally regulated
3N interactions. The code also supports the free-space NN
and 3N SRG evolution, and the consistent evolution of the
other operators is implemented. The output files can be used
for the NCSM calculations with the BIGSTICK code [20] and
IMSRG calculations with the imsrg++ code [21].

For a comprehensive understanding of nuclear structure,
interactions between a nucleus and external field should be
addressed. For example the electromagnetic observables are
results of the nucleus-photon interaction and are related with
the multipole components of the electromagnetic current
operators. Although we know that higher-order contributions
are essential, see Refs. [49,50] for example, the LO current is
used in most calculations due to the complexity of the matrix
element calculations. As a future development, we plan to
implement the higher-order current operators, including the
two-body contributions.
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