Skip to main content
Log in

Deuteron production mechanism via azimuthal correlation for \(p-p\) and p-Pb collisions at LHC energy with the AMPT model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The study on light nuclei provides information not only for the production mechanism but also for the interactions between nucleons and other particles in the medium. Recently the ALICE Collaboration presented the deuteron transverse momentum spectra in p-p collisions at \(\sqrt{s}\) \(=\) 13 TeV as well as in p-Pb collisions at \(\sqrt{s_{NN}}\) \(=\) 5.02 TeV. Using a multiphase transport model with a string melting mechanism and a coalescence afterburner, we successfully reproduce the transverse momentum spectra of deuterons and obtain the conditional yields of deuterons and protons. According to the coalescence model, we predict that there is a nucleon number scaling between the conditional yield ratios of deuterons to protons and the inclusive yield ratios, which is similar to the constituent nucleon number scaling for elliptic flow. It is also foreseen that the near-side suppression in the correlation function may occur as that in two-baryon azimuthal correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no additional data to be attached in the draft. The source data for the manuscript can request from corresponding authors.]

References

  1. F. Karsch, Nucl. Phys. A 698, 199 (2002)

    Article  ADS  Google Scholar 

  2. J. Letessier, J. Rafelski, Title Hadrons and Quark-Gluon Plasma (Nuclear Physics and Cosmology, Cambridge Monographs on Particle Physics) (Cambridge University Press, Cambridge, 2002), pp.1–71

    Google Scholar 

  3. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  4. S.T. Butler, C.A. Pearson, Phys. Rev. 129, 836 (1963)

    Article  ADS  Google Scholar 

  5. R. Pasechnik, M. Šumbera, Universe 3 (2017). https://doi.org/10.3390/universe3010007

  6. M. Waqas, F.H. Liu, L.L. Li, H.M. Alfanda, Nucl. Sci. Tech. 31, 109 (2020)

    Article  Google Scholar 

  7. Y. Su, Y.J. Sun, Y.F. Zhang et al., Nucl. Sci. Tech. 32, 108 (2021)

    Article  Google Scholar 

  8. J. Cleymans, S. Kabana, I. Kraus, H. Oeschler, K. Redlich, N. Sharma, Phys. Rev. C 84, 054916 (2011)

    Article  ADS  Google Scholar 

  9. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  10. S. Acharya et al., Nucl. Phys. A 971, 1 (2018)

    Article  ADS  Google Scholar 

  11. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, J. Phys. G 38, 124081 (2011)

    Article  ADS  Google Scholar 

  12. J.I. Kapusta, Phys. Rev. C 21, 1301 (1980)

    Article  ADS  Google Scholar 

  13. S.S. Adler, et al., PHENIX Collaboration. Phys. Rev. Lett. 94, 122302 (2005)

  14. K.J. Sun, R. Wang, C.M. Ko, Y.G. Ma, C. Shen (2021a). arXiv:2106.12742

  15. J. Staudenmaier, D. Oliinychenko, J.M. Torres-Rincon, H. Elfner, Phys. Rev. C 104, 034908 (2021)

    Article  ADS  Google Scholar 

  16. Y.J. He, C.C. Guo, J. Su, L. Zhu, Z.D. An, Nucl. Sci. Tech. 31, 84 (2020)

    Article  Google Scholar 

  17. F. Bellini, A.P. Kalweit, Phys. Rev. C 99, 054905 (2019)

    Article  ADS  Google Scholar 

  18. J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher, H. Stöcker, Phys. Lett. B 714, 85 (2012)

    Article  ADS  Google Scholar 

  19. Y.L. Cheng, S. Zhang, Y.G. Ma, Eur. Phys. J. A 57, 330 (2021)

    Article  ADS  Google Scholar 

  20. K.J. Sun, C.M. Ko, B. Dönigus. Phys. Lett. B 792, 132 (2019)

  21. S. Acharya, et al., ALICE Collaboration. Phys. Lett. B 794, 50 (2019)

  22. S. Acharya, et al., ALICE Collaboration. Eur. Phys. J. C 80, 889 (2020)

  23. S. Acharya, et al., ALICE Collaboration. Phys. Lett. B 800, 135043 (2020)

  24. J. Adam, et al., ALICE Collaboration. Phys. Rev. C 93, 024917 (2016)

  25. C. Adler, Z. Ahammed, C. Allgower (STAR Collaboration), et al., Phys. Rev. Lett. 87, 182301 (2001)

  26. K. Aamodt, B. Abelev, A.A. Quintana (ALICE Collaboration), et al., Phys. Rev. Lett. 105, 252302 (2010)

  27. T.Z. Yan, Y.G. Ma, X.Z. Cai et al., Phys. Lett. B 638, 50 (2006)

    Article  ADS  Google Scholar 

  28. Y.G. Ma, T.Z. Yan, X.Z. Cai et al., Nucl. Phys. A 787, 611c (2007)

    Article  ADS  Google Scholar 

  29. M. Wang, J.Q. Tao, H. Zheng, W.C. Zhang, L.L. Zhu, A. Bonasera, Nucl. Sci. Tech. 33, 37 (2022)

    Article  Google Scholar 

  30. S.W. Lan, S.S. Shi, Nucl. Sci. Tech. 33, 21 (2022)

    Article  Google Scholar 

  31. X. Yin, C.M. Ko, Y. Sun, L. Zhu, Phys. Rev. C 95, 054913 (2017)

    Article  ADS  Google Scholar 

  32. S. Acharya, et al., ALICE Collaboration. Eur. Phys. J. C 77, 658 (2017)

  33. J. Adam, et al., ALICE Collaboration. Eur. Phys. J. C 77, 569 (2017)

  34. L.Y. Zhang, J.H. Chen, W. Li, Z.W. Lin, Phys. Lett. B 829, 137063 (2022)

    Article  Google Scholar 

  35. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  36. Z.W. Lin, L. Zheng, Nucl. Sci. Tech. 32, 113 (2021)

    Article  Google Scholar 

  37. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  38. B. Zhang, Comput. Phys. Commun. 111, 276 (1998)

    Article  ADS  Google Scholar 

  39. B. Andersson, G. Gustafson, B. Söderberg, Z. Phys. C 20, 317 (1983)

  40. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  41. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

    Article  ADS  Google Scholar 

  42. T. Niida, Y. Miake, AAPPS Bull. 31, 12 (2021)

    Article  ADS  Google Scholar 

  43. N. Sharma, T. Perez, A. Castro, L. Kumar, C. Nattrass, Phys. Rev. C 98, 014914 (2018)

    Article  ADS  Google Scholar 

  44. L. Xue, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Rev. C 85, 064912 (2012)

    Article  ADS  Google Scholar 

  45. N. Shah, Y. Ma, J. Chen, S. Zhang, Phys. Lett. B 754, 6 (2016)

    Article  ADS  Google Scholar 

  46. S. Zhang, Y.-G. Ma, Phys. Lett. B 811, 135867 (2020)

    Article  Google Scholar 

  47. K.-J. Sun, C.M. Ko, Z.-W. Lin, Phys. Rev. C 103, 064909 (2021)

    Article  ADS  Google Scholar 

  48. K.J. Sun, L.W. Chen, Phys. Rev. C 95, 044905 (2017)

    Article  ADS  Google Scholar 

  49. N.N. Ajitanand, J.M. Alexander, P. Chung, W.G. Holzmann, M. Issah, R.A. Lacey, A. Shevel, A. Taranenko, P. Danielewicz, Phys. Rev. C 72, 011902 (2005)

    Article  ADS  Google Scholar 

  50. J. Adams, et al., STAR Collaboration. Phys. Rev. Lett. 95, 152301 (2005)

  51. G.L. Ma, X.N. Wang, Phys. Rev. Lett. 106, 162301 (2011)

    Article  ADS  Google Scholar 

  52. J. Adam, et al., STAR Collaboration. Chin. Phys. C 44, 104001 (2020)

  53. Y. Zhu, Y.G. Ma, J.H. Chen, G.L. Ma, S. Zhang, C. Zhong, Phys. Rev. C 87, 024904 (2013)

    Article  ADS  Google Scholar 

  54. S. Wang, Y.Z. Jiang, Y.M. Liu, D. Keane, D. Beavis, S.Y. Chu, S.Y. Fung, M. Vient, C. Hartnack, H. Stöcker, Phys. Rev. C 44, 1091 (1991)

    Article  ADS  Google Scholar 

  55. Y.G. Ma, W.Q. Shen, Phys. Rev. C 51, 3256 (1995)

    Article  ADS  Google Scholar 

  56. L.Y. Zhang, J.H. Chen, Z.W. Lin, Y.G. Ma, S. Zhang, Phys. Rev. C 99, 054904 (2019)

    Article  ADS  Google Scholar 

  57. B. Abelev, J. Adam, D. Adamova, et al., ALICE Collaboration. Phys. Lett. B 719, 29 (2013)

  58. S.S. Adler, et al., PHENIX Collaboration. Phys. Rev. Lett. 96, 222301 (2006)

  59. M. Aaboud, et al., ATLAS Collaboration. Phys. Rev. C 96, 024908 (2017)

  60. S.S. Adler, et al., PHENIX Collaboration. Phys. Rev. Lett. 97, 052301 (2006)

  61. G. Aad, et al., ATLAS Collaboration. Phys. Rev. Lett. 110, 182302 (2013)

  62. Y.Z. Wang, S. Zhang, Y.G. Ma, Phys. Lett. B 83, 137198 (2022)

    Article  Google Scholar 

  63. S. Acharya, et al., ALICE Collaboration. Eur. Phys. J. C 80, 693 (2020)

  64. B. Abelev, et al., ALICE Collaboration. Phys. Lett. B 728, 25 (2014)

  65. L. He, T. Edmonds, Z.-W. Lin, F. Liu, D. Molnar, F. Wang, Phys. Lett. B 753, 506 (2016)

    Article  ADS  Google Scholar 

  66. H. Li, Z.-W. Lin, F. Wang, Phys. Rev. C 99, 044911 (2019)

    Article  ADS  Google Scholar 

  67. D. Sarkar, S. Choudhury, S. Chattopadhyay, Phys. Lett. B 760, 763 (2016)

    Article  ADS  Google Scholar 

  68. A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011)

    Article  ADS  Google Scholar 

  69. K. Aamodt, B. Abelev, A. Abrahantes Quintana, et al, ALICE Collaboration. Phys. Lett. B 708, 249 (2012)

Download references

Acknowledgements

This work was supported in part by National Key R &D Program of China under Grant no. 2018YFE0104600 and 2016YFE0100900, the National Natural Science Foundation of China under Contract nos. 11875066, 11890710, 11890714, 11925502, 11961141003, and 12147101, the Strategic Priority Research Program of CAS under Grant no. XDB34000000, and the Guangdong Major Project of Basic and Applied Basic Research no. 2020B0301030008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

Communicated by Che-Ming Ko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Zhang, S. & Ma, YG. Deuteron production mechanism via azimuthal correlation for \(p-p\) and p-Pb collisions at LHC energy with the AMPT model. Eur. Phys. J. A 59, 72 (2023). https://doi.org/10.1140/epja/s10050-023-00980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00980-2

Navigation