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Abstract Calculations of the elastic scattering of polarized
and unpolarized electrons from spin-zero nuclei within the
recoil-modified phase-shift analysis are supplemented with
the dispersion correction estimated within the second-order
Born approximation. For the 12C nucleus, three strong tran-
sient nuclear excitations are taken into account, for which
not only Coulombic, but also magnetic transitions are con-
sidered. Dispersion effects of up to 10% in the differen-
tial cross section near the first diffraction minimum, result-
ing largely from Coulombic transitions at the higher colli-
sion energies, are in qualitative agreement with experimen-
tal findings. Below 300 MeV, dispersion is greatly influenced
by magnetic scattering. Investigations of the spin asymme-
try for perpendicularly polarized electrons indicate that it is
strongly affected by dispersion, predominantly at small scat-
tering angles.

1 Introduction

The deviation of the measured elastic scattering cross section,
corrected for multiple scattering and QED effects, from cal-
culations based on the phase-shift analysis, occurring in the
vicinity of the diffraction minima, is commonly attributed to
the transient excitation of the target nucleus during the scat-
tering process [1–5]. This dispersion effect was originally
investigated by Schiff [6] and Lewis [7], and later by Friar
and Rosen [8], specifying to a carbon nucleus. However, their
use of a closure approximation, based on a fixed excitation
energy for all nuclear states, strongly underpredicts disper-
sion at the higher collision energies [4,5].

The results presented in this contribution improve on the
Friar-Rosen theory in two respects. First, instead of apply-
ing closure, a few dominant nuclear excitations are explic-
itly considered, using experimental excitation energies and
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nuclear transition densities calculated from the quasiparticle-
RPA theory [9]. Second, not only transitions induced by the
charge-charge coupling between projectile and nucleus are
accounted for, but also those from the magnetic current-
current coupling, which can be quite important in nuclear
excitation processes. Such magnetic transitions have com-
monly been neglected in the context of dispersion, since an
early investigation [10] indicated that they should be of no
importance.

A related topic of current interest is the influence of disper-
sion on the beam-normal spin asymmetry in the case of per-
pendicularly polarized beam electrons. The precise knowl-
edge of this spin asymmetry, termed Sherman function, is
required for monitoring the degree of beam polarization dur-
ing a measurement with the help of Mott polarimeters [11].
Moreover, it contributes to the background in parity vio-
lation experiments if the beam is contaminated by a small
fraction of perpendicularly polarized electrons [12]. From a
theoretical point of view, the Sherman function is very sen-
sitive to the employed models since it probes exclusively the
higher-order effects such as Coulomb distortion or disper-
sion. If calculated with the phase-shift analysis the measured
spin asymmetry is severely underpredicted for electrons at
moderate collision energies and large scattering angles [13]
or at ultrahigh (GeV) energies and small angles [14]. For
such small angles, most of the experimental data [15,16] can
be reconciled by handling the transient nuclear excitations
by means of the experimentally known Compton scattering
cross section, to which the forward dispersion amplitude can
be related [14,17].

At impact energies in the MeV region, the experiments can
well be explained by the phase-shift theory for the Sherman
function [18,19]. Advancing to collision energies between
50−100 MeV and to a higher measurement precision, as con-
sidered for the forthcoming experiments at the MAMI facility
[19], the influence of dispersion is studied in this work. Arbi-
trarily large scattering angles are taken into account where
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Fig. 1 Feynman box diagram. The single line represents the electron
with initial, intermediate and final momenta ki , p and k f , respectively,
and the double line represents the nucleus which is in an intermediate
excited state N∗. The virtual photon momenta are denoted by q1 and q2

it is not possible to extract any information from measured
Compton scattering data.

2 Dispersion theory

The dispersion effect is represented by the Feynman box
diagram shown in Fig. 1.

The corresponding transition amplitude is given (in atomic
units, h̄ = m = e = 1) by [8]

Abox
f i =

√
Ei E f

π2c3

∑

LM,ωL

∫
d p

×
3∑

μ,ν=0

1

(q2
2 + iε)(q2

1 + iε)
tμν(p) T

μν(LM, ωL ),

(2.1)

where Ei and E f are the initial and final electron energies,
respectively, tμν is the electronic transition matrix element
with p = (Ep/c, p) the electron four-momentum in its inter-
mediate state, and Tμν is the nuclear transition matrix ele-
ment (involving an excited state with angular momentum L ,
magnetic quantum number M and energy ωL ).

Making use of gauge invariance, each of the two photon
propagators (q2

i + iε)−1, i = 1, 2, can be decomposed
according to [10]

gμν

q2
i + iε

= − 1

q2
i

δμ0δν0 − δmn − q̂i
mq̂i

n

q2
i + iε

δμmδνn, (2.2)

where gμν is the metric tensor and q̂i
m = qmi /|qi |. The inser-

tion into (2.1) leads to four contributions, a purely Coulom-
bic one (with μ = ν = 0, i.e. proportional to 1/(q2

1q
2
2)),

and three magnetic ones (arising from μ = m, ν = n with
m, n = 1, 2, 3).

To lowest order in the dispersion correction, the differen-
tial cross section for elastic electron scattering is given by

[8,20]

dσbox

d�
= |k f |

|ki |
1

frec

1

2

∑

σiσ f
[
| fcoul|2 + 2 Re { f ∗

coulA
box
f i }

]
, (2.3)

where fcoul is the transition amplitude from the phase-shift
analysis. Recoil is accounted for by a reduced collision

energy Ē =
√

(Ei − c2)(E f − c2) [21] in fcoul, as well as

by the recoil factor frec [20]. ki and k f are the initial and
final electron momenta, respectively, and the sum runs over
the spin projections σi and σ f of the electron.

From the cross section dσbox/d�, the dispersion correc-
tion 	σbox is obtained by means of

	σbox = dσbox/d�

dσcoul/d�
− 1, (2.4)

where dσcoul/d� is the phase-shift result (the first term in
(2.3)).

For perpendicularly polarized electrons, the Sherman
function S is defined as the relative cross section change
when the initial spin of the electron is flipped. Including dis-
persion, one has

Sbox = dσbox/d�(↑) − dσbox/d�(↓)

2 dσbox/d�
(2.5)

where the denominator is twice the unpolarized (spin-
averaged) cross section from (2.3).

The relative change of the phase-shift result Scoul by dis-
persion is conventionally defined by

dSbox = Sbox − Scoul

Scoul
. (2.6)

Alternatively, one may use the difference

	Sbox = Sbox − Scoul = dSbox · Scoul (2.7)

for representing the dispersion effects. This quantity has the
advantage that it is well-defined even when Scoul approaches
zero due to diffraction. Moreover, 	Sbox turns into the dis-
persive Sherman function in the limit of the Born approxi-
mation,

SBorn
box =

∑
σ f

2 Re {( f ∗B1Abox
f i )(↑) − ( f ∗B1Abox

f i )(↓)}
2

∑
σ f

| f B1|2 ,

(2.8)

where f B1 is the scattering amplitude from the first-order
Born approximation. This formula results from (2.5) by
replacing in (2.3) fcoul with f B1 and noting that | f B1|2
does not depend on the electron spin because of time-reversal
invariance.

If the dispersive changes of the cross section are very small
(well below 1%, which is the case for low impact energies),
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the respective contributions from each of the nuclear excited
states can simply be added,

Sbox ≈
∑

L ,ωL

Sbox(L , ωL) − (NL − 1) Scoul,

dSbox ≈
∑

L ,ωL

dSbox(L , ωL), (2.9)

where NL = 3 is the number of considered excited states.

3 Cross section results

For obtaining the phase-shift results the Coulombic potential
is derived from the 12C ground-state charge density distribu-
tion [22], and the Dirac equation is solved with the help of the
Fortran code RADIAL [23]. For dispersion, two strong exci-
tations in the giant dipole resonance region (at ωL = 23.5
MeV and 17.7 MeV) and the lowest quadrupole excitation
(at ωL = 4.439 MeV) are considered. The form factors
which enter into the nuclear transition matrix element Tμν

are calculated from the nuclear transition densities provided
by Ponomarev [24] according to the prescription in [25]. The
three-dimensional integral in (2.1) is performed numerically
as described in [20]. Concerning the sum over σ f in (2.3) or
(2.8), it turns out that the consideration of the magnetic con-
tributions to Abox

f i destroys the invariance of the dispersive
cross-section modification when the final electron changes
its helicity state.

Figure 2 displays the angular dependence of the differen-
tial cross section for electron scattering from 12C at 238.1
MeV collision energy. It is seen that the consideration of
recoil in the phase-shift theory is mandatory for obtaining
agreement with the experimental data [4]. The inclusion of
dispersion reproduces the data quite well near and beyond
the first diffraction minimum. This feature is even more pro-
nounced at a higher collision energy [20].

A systematic display of dispersion is given in Fig. 3 by
comparing the cross-section change 	σbox with experiment
as a function of collision energy. This is done by setting
for each energy the scattering angle θ to its value θmin

at the first diffraction minimum of dσcoul/d�. The fig-
ure shows that 	σbox(θmin) increases much stronger with
energy than the Friar-Rosen result and is in satisfactory
accord with the experimental findings, which are obtained
by spline-interpolating the measured points in the vicin-
ity of θmin and relating them to dσcoul/d� in correspon-
dence to (2.4). Attaching average experimental error bars
to these data points, the resulting reduced χ2, defined by
χ2 = 1

n

∑n
i=1(	σ

(i)
box,exp − 	σ

(i)
box,theor)

2/ l2i where n = 4 is
the number of points and li is the half-length of the error bar
of datum point i , is χ2 = 0.3 (compared to χ2 = 6.8 for the

Fig. 2 Elastic scattering cross section for 238.1 MeV electrons collid-
ing with 12C as a function of scattering angle θ . Shown is dσcoul/d�

with (−−−−) and without (· · · · · · ) the consideration of recoil in com-
parison with the measurements from Offermann et al. (�, [4]). Included
is dσbox/d� from (2.3) (———-)

Fig. 3 Dispersion correction 	σbox for e+12C collisions in the vicinity
of the first diffraction minimum as a function of collision energy Ei −c2.
Shown is the result from (2.4) at θmin (———-) in comparison with the
spline-interpolated experimental data at θmin (�). Included is 	σbox
from (2.4) at θmin +1◦ (−·− ·−) and at θmin −1◦ (−−−−) together
with experimental data lying in the interval [θmin −1◦, θmin +1◦] (open
circles with error bars, [2–4]). Also shown is the Friar-Rosen result at
θmin (· · · · · · ), calculated according to [26]

Friar-Rosen results) which emphasizes the superiority of the
present theory.

Included in the figure are the measured data points which
are closest to θmin, being located in an interval [θmin −
1◦, θmin+1◦]. In order to show the corresponding variation of
the theory, the dispersion results at the angles θ = θmin ± 1◦
are also provided. Except for the data near 300 MeV the
experiments are mostly located within the region spanned by
the three theoretical curves.
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Fig. 4 Dispersion correction 	σbox for 56 MeV e+12C collisions as a
function of scattering angle θ (———). Also shown are its constituents
from the individual transient excited states at 23.5 MeV (−·−·−), 17.7
MeV (· · · · · · ) and 4.439 MeV (− − −−). Included is the Coulombic
contribution to 	σbox (− · · ·−)

Magnetic scattering, although important for exciting each
of the transient nuclear states, largely cancels when they are
summed over, leaving a net effect below 10% at energies
beyond 400 MeV [20]. However, the magnetic contribution
to the cross-section change gains importance at the lower col-
lision energies. This is quantified in Fig. 4, where the angular
distribution for 56 MeV electron impact is shown. Indeed,
	σbox (comprising Coulombic and magnetic contributions
and marked by ’tot’ in the figure) is not only much larger
than its Coulombic part, but it differs even in shape. Also,
while at the higher energies all transient nuclear states con-
tribute in a similar way, it is the highest dipole state which
largely dominates the dispersive cross-section change at the
lower energies.

4 Spin asymmetry results

The Sherman function for a collision energy of 56 MeV
is displayed in Fig. 5 in the forward hemisphere, with and
without the consideration of dispersion. Since this energy
is well below the onset of any diffraction effects in 12C, S
is monotonously decreasing up to scattering angles close
to 180◦. In order to quantify the influence of dispersion,
Fig. 6a shows its change dSbox, including the separate con-
tributions of the three transient nuclear states. It is seen that
dSbox strongly increases in modulus with decreasing scatter-
ing angle in the forward hemisphere, and, like for 	σbox, the
main contribution to dSbox originates from the highest dipole
state. It should be mentioned that for low momentum transfer
(|q| = |ki−k f | ≈ 2ωL/c) there appears a logarithmic singu-

Fig. 5 Spin asymmetry S for perpendicularly polarized electrons col-
liding with 12C at 56 MeV as a function of scattering angle θ . Shown
are the results from the phase-shift analysis (− − −−), and including
dispersion according to (2.5) (———)

larity in the differential cross section which leads to wiggles
in dSbox near the corresponding angles. This singularity is
due to a coincidence of the poles from the electron propagator
and from one of the photon propagators. The same behaviour
is known from the second-order Born approximation to elas-
tic scattering (when the nucleus remains in its ground state
[8]), where the singularity can be removed by means of intro-
ducing a finite photon mass and proceeding to the third-order
Born approximation which cancels the pathological contri-
bution. With this in mind, the wiggles are smoothed in the
sum over the three contributing states.

An enlarged account of the angular dependence between
55◦ and 150◦ is provided in Fig. 6b. In addition to dSbox, the
Coulombic contribution to dSbox is displayed, which is at
most 0.5% and deviates considerably from dSbox. It follows
that the magnetic scattering provides the dominant contribu-
tion to the dispersion correction of the spin asymmetry at this
low energy. The Friar-Rosen result, which is based on mere
Coulombic scattering [8], differs strongly in shape from both
dSbox and the Coulombic contribution to dSbox. However, it
converges to the contribution from the quadrupole state to
dSbox at the backmost angles. We recall that for that state,
magnetic scattering is small [20].

Figure 7 shows dSbox at a higher energy of 100 MeV in
the angular region beyond 30◦, which is above the location
of the logarithmic singularities. For angles larger than 120◦,
diffraction comes into play and dSbox is no longer a suit-
able parameter. In fact, the vanishing of Scoul at 140◦ is
already perceptible by means of the strong increase of |dSbox|
towards 120◦. For angles beyond 90◦, the two dipole tran-
sient nuclear excitations contribute similarly to the change
in the spin asymmetry, in contrast to the lower energy where
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Fig. 6 a Relative change dSbox of the spin asymmetry from 56 MeV
e+12C collisions as a function of scattering angle θ . Shown are the con-
tributions dSbox(L , ωL ) from the nuclear states at 23.5 MeV (−·−·−),
17.7 MeV (· · · · · · ) and 4.439 MeV (−−−−) as well as their sum (——
—-). b is an enlarged vesion of a, including the Coulombic contribution
to dSbox (− · · ·−) as well as the Friar-Rosen result according to [26]
(· · · · · · )

the 23.5 MeV state dominates at all angles. In the forward
hemisphere dSbox is above the one at 56 MeV, and the disper-
sion effects increase with energy beyond 100 MeV at fixed
(forward) angle.

The dispersion correction for 56 MeV, now represented
in terms of the difference Sbox − Scoul, is depicted in Fig. 8
at small angles. Below 12◦ the sum over the phase shifts
converges poorly due to the convergence acceleration [27]
which is necessary for such energetic collisions. Therefore,
	Sbox is supplemented by the Born approximation for the
lower angles. From the comparison of 	Sbox with SBorn

box it is
seen that the Born theory provides the correct angular depen-
dence at near-forward angles. The difference relates to the
Coulomb distortion which amounts to 4–8% below 45◦. Even
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Fig. 7 Relative change dSbox of the spin asymmetry from 100 MeV
e+12C collisions as a function of scattering angle θ (———-). Also
shown are the contributions dSbox(L , ωL ) from the nuclear states at
23.5 MeV (− · − · −), 17.7 MeV (· · · · · · ) and 4.439 MeV (− − −−)
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Fig. 8 Influence of dispersion on the spin asymmetry from 56 MeV
e+12C collisions as a function of scattering angle θ . Shown is 	Sbox
from (2.7) (———–) and SBorn

box from (2.8) (−·− ·−). Included are the
separate contribution from the 4.439 MeV state to 	Sbox (− − −−)

and the Friar-Rosen result (· · · · · · )

for backward angles, the distortion effects are at most 5% at
this energy for the 12C nucleus.

Included in the figure is the Friar-Rosen result for 	Sbox

in comparison with the contribution from the 4.439 MeV
state. At very small angles this contribution and also the
Friar-Rosen result behave approximately like sin3(θ/2) as
does Scoul, whereas 	Sbox increases much stronger, accord-
ing to sin(θ/2). This linear instead of cubic increase is due
to the influence of magnetic scattering and agrees with the
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predictions from the relation to the experimental Compton
scattering cross section [28].

5 Concluding remarks

By calculating the dispersion effect to lowest order in the
Born approximation and allowing for three strong tran-
sient nuclear excitations, we have shown that the cross sec-
tion modifications are small at energies below 100 MeV
(< 0.1%), but increase up to nearly 10% beyond 400 MeV.
However, the influence of dispersion on the beam-normal
spin asymmetry is considerably stronger in the investigated
energy region 50–150 MeV. At forward angles where the
Sherman function is very small, dispersion may lead to an
increase of 100% or more, reducing to a few percent at inter-
mediate angles. In contrast to the cross-section modifications
where magnetic scattering is mostly of minor importance, it
is dominant in case of the spin-asymmetry change, particu-
larly at very small and very large angles. Due to the lack of
experimental spin asymmetry data and due to the fact that the
highest dipole excitation is largely dominant at most angles, it
remains an open question whether high-lying transient states
of multipolarity larger than one have to be considered as well.

As an outlook, one might further investigate the effect
of dispersion on the scattering of positrons. In fact, spin-
polarized positrons can now efficiently be generated from
spin-polarized electrons with the help of circularly polarized
bremsstrahlung produced when passing through thick high-
Z targets [29].
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