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Abstract We study the dependence of primordial nuclear
abundances on fundamental nuclear observables such as
binding energies, scattering lengths, neutron lifetime, etc. by
varying these quantities. The numerical computations were
performed with four publicly available codes, thus facili-
tating an investigation of the model-dependent (systematic)
uncertainties on these dependences. Indeed deviations of the
order of a few percent are found. Moreover, accounting for
the temperature dependence of the sensitivity of the rates to
some relevant parameters leads to a reduction of the sensitiv-
ity of the final primordial abundances, which in some cases
is appreciable. These effects are considered to be relevant
for studies of the dependence of the nuclear abundances on
fundamental parameters such as quark masses or couplings
underlying the nuclear parameters studied here.

1 Introduction

Primordial or Big Bang nucleosynthesis (BBN) is a fine
laboratory to test our understanding of nuclear and particle
physics, for some reviews see Refs. [1–4]. The light elements
generated in BBN can nowadays be calculated from first
principles, which offers the possibility to study in a model-
independent way the dependence of the element abundances
as a function of the fundamental parameters of the Standard
Model of particle physics, in particular the light quark masses
mu,md and the QCD θ -parameter as well as the electromag-
netic fine-structure constant α. This is based on the obser-
vation that the strong and the electromagnetic interactions
both contribute to the nuclear binding, while the weak inter-
actions makes their presence feel via certain decays, most

a e-mail: meissner@hiskp.uni-bonn.de (corresponding author)

prominently in the neutron decay into a proton and a lepton
pair. In the Standard Model, the quark masses are given in
terms of a priori unknown Yukawa couplings to the Higgs
boson and the strength (coupling constants) of the various
interactions must also be pinned down from experiment. It
is therefore obvious that the Standard Model should be an
effective field theory, which can eventually be derived from
a more fundamental theory, such as string theory or alike.
Another possibility is the Multiverse, in which our Universe
is simply one particular manifestation with the Yukawa cou-
plings and interaction strengths given as they are measured.
Further, anthropic considerations come into play by asking
how much these parameters can be modified to still allow for
life on Earth (as given by the relative abundances of certain
elements like 4He, 12C and 16O without going into details of
galaxy and planet formation and alike). For reviews on these
issues, see e.g. Refs. [5–10].

Here, we wish to revisit recent works that have derived
bounds on the fundamental parameters from element gener-
ation in BBN, see e.g. Refs. [11–15]. To really draw conclu-
sions like that the Higgs vacuum expectation value can only
be varied by about 1% [13,14] when keeping the Yukawa
couplings constant, requires a full control of the system-
atic uncertainties in the calculation of BBN nucleosynthesis
within our Universe. This is exactly what will be done in the
present manuscript which will serve as the basis for future
studies of the allowed quark mass and fine-structure constant
variations within these uncertainties. In particular, we study
the dependence of the element abundances on the nuclear
reaction rates and also the temperature dependence of the
direct and radiative capture reactions in the BBN network,
that is most often neglected. Furthermore, variations in the
neutron lifetime, the singlet neutron-proton scattering length
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as well as the deuteron binding energy are considered, where
the latter two enter the leading reaction n + p → d + γ ,
which is particular transparent using the effective field the-
ory calculation of Refs. [16,17]. Most importantly, we utilize
four different publicly available codes for BBN [4,18–23]
to address the systematic uncertainties related to the mod-
eling of the BBN network. In particular these codes differ
in the number of nuclei and reactions taken into account as
well as in the specific parametrization of the nuclear rates
entering the coupled rate equations for the BBN network.
Moreover, in determining the sensitivity of primordial abun-
dances on nuclear parameters, we account for a temperature
dependence of the variation of some rates on specific nuclear
parameters and found that this leads in general to a reduction
of these sensitivities in comparison to previous studies, where
this temperature dependence was ignored. To our knowledge,
such a comparative study has been not been published, but of
course, new cosmological results are always used to update
BBN, see e.g. Ref. [24].

The manuscript is organized as follows: In Sect. 2 we col-
lect the basic formalism underlying BBN, which is required
in what follows. In this section we also elaborate on the
(pionless) Effective Field Theory description of the lead-
ing n + p → d + γ reaction. The BBN response matrix
is introduced in Sect. 3. The numerical results of this study
are presented in Sect. 4 and discussed in Sect. 5.

2 Basic formalism

The basic quantities to be determined in BBN are the nuclear
abundances Yni , where ni denotes some nucleus. As pointed
out e.g. in Refs. [4,20,23], the evolution of nuclear abun-
dances Yni is given generically by

Ẏn1 =
∑

n2, . . . , n p
m1, . . . ,mq

Ni1

⎛

⎝�m1,...,mq→n1,...n p

Y
Nm1
m1 · · · Y Nmq

mq

Nm1 ! · · · Nmq !

−�n1,...,n p→m1,...mq

Y
Nn1
n1 · · · Y Nnp

mq

Nn1 ! · · · Nnp !

⎞

⎠ , (1)

where the dot denotes the time derivative in a comoving
frame, Na is the stochiometric coefficient of species a in the
reaction and where e.g. for a two-particle reaction a + b →
c + d, �ab→cd = nBγab→cd is the reaction rate with nB the
baryon volume density. This can readily be generalised to
reactions involving more (or less) particles, see [4]. These
equations are coupled via corresponding energy densities to
the standard Friedmann equation describing the cosmolog-
ical expansion in the early universe, for details and basic
assumptions, see also [4,20,23].

2.1 Nuclear reaction rates

The average reaction rate γab→cd = NA 〈σab→cd v〉 for a
two-particle reaction a + b → c + d is obtained by folding
the cross section σab→cd(E) with the Maxwell–Boltzmann
velocity distribution in thermal equilibrium

γab→cd(T )

= NA

√
8

πμab(kT )3

∫ ∞

0
dE E σab→cd(E) e− E

kT , (2)

conventionally multiplied by Avogadro’s number NA, where
μi j is the reduced mass of the nuclide pair i j , E is the kinetic
energy in the center-of-mass (CMS) system, T is the temper-
ature and k the Boltzmann constant. Defining y := E/(kT )

this can be written in the form

γab→cd(T ) = NA

√
8 kT

π μab

∫ ∞

0
dy σab→cd (kT y) y e−y,

(3)

which is suited for numerical computation e.g. with a Gauss-
Laguerre integrator.

With the detailed balance relation

σcd→ab
(
E ′) = ga gb

gc gd

p2

p′2 σab→cd(E), (4)

where

E = p2

2 μab
, E ′ = p′2

2 μcd
, (5)

are the kinetic energies in the entrance and exit channels,
respectively, and gi is the spin multiplicity of particle i .
Energy conservation leads to,

ma + mb + E = mc + md + E ′ or

E ′ = E + Q, with Q = ma + mb − mc − md , (6)

in terms of the Q-value for the forward reaction. The inverse
reaction rate is related to the forward rate as

γcd→ab(T ) =
(

μab

μcd

) 3
2 ga gb
gc gd

e− Q
kT γab→cd(T ). (7)

2.2 Q-value dependence of the reaction rates

The rates for nuclear reactions of the kind

a + b → c + d (8)

depend on the Q-value of the reaction, which in turn depends
on the nuclear binding energies.

123



Eur. Phys. J. A (2022) 58 :212 Page 3 of 14 212

2.2.1 Varying nuclear binding energies

Now, e.g. for a relative change in the binding energy of
nucleus a : Ba �→ Ba (1 + δa) the nuclear mass change
is given by

	ma = ma − δa Ba

and thus the reduced mass occurring in the expressions above
changes as

μab �→ (ma − δa Ba) mb

ma − δa Ba + mb
= ma mb − δa Ba mb

(ma + mb)
(

1 − δa Ba
ma+mb

)

≈
(

μab − δa Ba mb

ma + mb

)(
1 + δa Ba

ma + mb

)

≈ μab

(
1 + δa Ba

ma + mb
− δa Ba

ma

)

= μab

(
1 − δa Ba mb

(ma + mb)ma

)

= μab

(
1 − μab

δa Ba

m2
a

)
. (9)

Since we shall consider fractional changes in the binding
energy δa ≈ O(10−3) and Ba/ma ≈ O(10−2 − 10−3),
the change in the reduced masses is very small, O(10−5–
10−6) and this change in the reduced masses will therefore
be neglected.

Noting that, since the total number of protons and neu-
trons is conserved in this kind of reaction: Za + Zb =
Zc + Zd , Na + Nb = Nc + Nd ,

Q = ma + mb − mc − md

= Za m p + Na mn − Ba + Zb m p + Nb mn − Bb

−Zc m p − Nc mn + Bc − Zd m p − Nd mn + Bd

= Bc + Bd − Ba − Bb, (10)

a change in the binding energy will only affect the Q value:

	Q = −δa Ba − δb Bb + δc Bc + δd Bd , (11)

where δi is the fractional change in the binding energy Bi
of nuclide i and this will be the major effect to be studied
below. We also note that in case of three-particle final states
we shall use the same formula, e.g. by taking 4He + 4He as
8Be and p + n as d etc.

Note that, apart from the reaction n + p → d + γ , to
be discussed in some detail in Sect. 2.2.5, we do not make
any assumptions concerning the binding energy dependence
of the cross section itself, although, as has been argued in
[11], e.g. a B−1

d dependence for reactions involving deuterons
might be considered.

2.2.2 Direct reactions a + b → c + d:

Since the cross section is proportional to the final channel
momentum p′ and the probability of two charged nuclear
particles overcoming their electrostatic barriers is given by
the so called Gamow-Sommerfeld-factor [25]

e
−
√

E ′
G
E ′ , where E ′

G = 2π2 Z2
c Z

2
d α2 μcd c

2 (12)

is the so called Gamow-energy for the exit channel, Zi is the
charge number of nuclide i and α 	 1/137 is the electro-
magnetic fine-structure constant, the Q-value dependence is
given by

σ(Q; E)ab→cd ∝ √
Q + E e

−
√

E ′
G

Q+E . (13)

One thus finds for a change in the Q-value

Q̃ = Q0 + 	Q (14)

with
(

∂σ

∂Q

)
(Q0; E) = 1

2
σ(Q0; E)

⎛

⎝1 +
√

E ′
G

Q + E

⎞

⎠ 1

Q + E

(15)

that

σab→cd (Q̃; E) ≈ σab→cd (Q0; E) +
(

∂σ

∂Q
(Q0; E)

)
	Q

= σab→cd (Qo; E)

⎛

⎝1 + 	Q

2 (Q0 + E)

⎛

⎝1 +
√

E ′
G

Q0 + E

⎞

⎠

⎞

⎠ .

(16)

Thus, in linear approximation we have

γab→cd(Q̃; T ) ≈ γab→cd(Q0; T )

+
√

8

π μab (kT )3

∫ ∞

0
dE E σ(Q0; E)

⎛

⎝ 	Q

2 (Q0 + E)
+

	Q
√
E ′
G

2 (Q0 + E)
3
2

⎞

⎠ e− E
kT

=: γab→cd(Q0; T ) + 	γ (T )ab→cd (17)

and the determination of the temperature dependent Q-value
change requires a separate computation of an integral over the
cross section or, equivalently, over the astrophysical S-factor
defined as

S(E) := σ(E) E e

√
EG
E . (18)

We shall use a numerical integration of Eq. (17) to determine
the Q-dependence of the rates for a dozen leading reactions
in the BBN network.
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If, however, we assume that for the relevant energies in
the integrand E � Q0, which might be the case for low
temperatures, then this simplifies to

γab→cd(Q̃; T ) ≈ γab→cd(Q0; T )⎛

⎝1 + 	Q

2 Q0

⎛

⎝1 +
√

E ′
G

Q0

⎞

⎠

⎞

⎠

= γab→cd(Q0; T )

⎛

⎝1 + 1

2
δQ

⎛

⎝1 +
√

E ′
G

Q0

⎞

⎠

⎞

⎠

=: γab→cd(Q0; T ) + 	γ0;ab→cd , (19)

where δQ = 	Q/Q0 is the fractional change in the Q-value.
Indeed, Eq. (19) is the approximation that has been used
in previous studies, such as e.g. Refs. [11–14]. Note that
with this approximation the Q-value change is temperature
independent.

2.2.3 Radiative capture reactions: a + b → c + γ :

Assuming that the radiation is dominated by electromagnetic
dipole transitions,1 we have

σ(Q; E)ab→cγ ∝ E3
γ ≈ (Q + E)3. (20)

Accordingly, for a change in the Q-value

Q̃ = Q0 + 	Q (21)

with
(

∂σ

∂Q

)
(Q0; E) = 3

σ(Q0; E)

Q0 + E
(22)

one finds that

σab→cγ (Q̃; E) ≈ σab→cγ (Q0; E) +
(

∂σ

∂Q
(Q0; E)

)
	Q

= σab→cγ (Qo; E)

(
1 + 3

	Q

Q0 + E

)
(23)

and thus the change in the rate

γab→cγ (Q̃; T ) ≈ γab→cγ (Q0; T )

+ 3 	Q

√
2

π μab c2 (kT )3

×
∫ ∞

0
dE σ(Q0; E)

E

Q0 + E
e− E

kT

=: γab→cγ (Q0; T ) + 	γ (T )ab→cγ , (24)

as for the direct reactions before is temperature dependent.

1 Note, however, that this not always the case, exceptions with appre-
ciable E2 (electric quadrupole) contributions are e.g. the reactions:
2H+2H → 4He+γ , 2H+4He → 6Li+γ and 4He+12O → 16O+γ .
We nevertheless always assume dipole dominance.

If again, as in Refs. [11–14], we assume that for the rele-
vant energies in the integrand E � Q0 then this simplifies
to

γab→cγ (Q̃; T ) = γab→cγ (Q0; T )

(
1 + 3 	Q

Q0

)

= γab→cd(Q0; T )
(
1 + 3 δQ

)

=: γab→cγ (Q0; T ) + 	γ0;ab→cγ , (25)

where δQ := 	Q/Q0. In this case:

Q = ma + mb − mc = Bc − Ba − Bb (26)

and a fractional change in the binding energy: Bi �→ (1 +
δi Bi ) will be assumed, as above, to affect the Q value only:

	Q = −δa Ba − δb Bb + δc Bc. (27)

2.2.4 Weak decay rates a → b + e±+ (−)
ν

Neglecting the nuclear recoil of the daughter nucleus, we
have from energy conservation

Ma = Mb + Ee + Eν (28)

and the maximum e± energy is given by

Emax
e = Ma − Mb =: Q (29)

where Ma, Mb are the nuclear parent and daughter masses.
Accordingly, the maximal e± momentum is given by

pmax
e =

√
Q2 − m2

e = me

√
q2 − 1, q := Q

me
. (30)

The weak decay rate then reads [26]:

λ = G2

2π3

mp c2

h̄
|Mi f |2 f (Z , q), (31)

where G is the weak (Fermi) coupling constant, Mi f the
nuclear matrix element and (ignoring Coulomb corrections):

f (q) := f (Z , q)|Z=0

= 1

60

[√
q2 − 1 (2 q4 − 9 q2 − 8)

+15 q log(q +
√
q2 − 1)

]
. (32)

From this an expression for the fractional change in the rate
due to a change in the Q-value,

∂ log( f (q))

∂q

=
√
q2 − 1

(
10 q3 − 25 q

)
+ 15 log

(
q +

√
q2 − 1

)

√
q2 − 1

(
2 q4 − 9 q2 − 8

)+ 15 q log
(
q +

√
q2 − 1

)

(33)
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follows, i.e.

∂ log(λ)

∂q
= 1

λ

∂λ

∂q
= ∂ log ( f (q))

∂q
. (34)

With Q̃ = Q0 + 	Q = Q0 (1 + δQ), λ0 := λ(Q0) and
q0 := Q0/me, we find

λ̃ = λ(Q0) + 	λ ≈ λ(Q0) + ∂λ

∂Q
(Q0)	Q

= λ(Q0) + ∂λ

∂q
q0 δQ = λ(Q0) + λ0

∂ log(λ)

∂q
q0 δQ

= λ(Q0)

(
1 + q0

∂ log( f (q))

∂q
δQ

)
. (35)

2.2.5 The leading reaction n + p → d + γ

The formulas given above are the basis for the calculation
of the primordial abundance variations mainly due to the
dependence on the Q-values of most reactions in the BBN-
network.

For the leading reaction n + p → d + γ in this network
it is possible to study more details, since for this reaction an
accurate description for the relevant energies in the frame-
work of the so-called pionless effective field theory [16,17]
is available. According to that work, the cross section for the
capture reaction n + p → d + γ is given by

σnp→dγ (E) = 4π α
(
γ 2 + p2

)3

γ 3 M4
N p

[
|χ̃M1|2 + |χ̃E1|2

]
(36)

with α = e2/h̄c the electromagnetic fine-structure constant
and E = p2/MN is the total kinetic energy in the CMS, with
p the magnitude of the momentum of either the proton or
the neutron, and γ := √

B MN is the “binding momentum”
of the deuteron ground state.2 The (dimensionless) electric
dipole contribution is given up to N3LO by

|χ̃E1|2 = γ 4 M2
N p2

(γ 2 + p2)4

⎡

⎢⎢⎣1 + γ ρd + (γ ρd)
2 + (γ ρd)

3
︸ ︷︷ ︸

≈ 1
1−γ ρd

+γ MN

6π

(
γ 2

3
+ p2

)

×
(

/πC (3P0)
2 + 2 /πC (3P1)

2 + 20

3
/πC (3P2)

2

)
⎤

⎥⎥⎦ , (37)

where ρd is the effective range. We use the numerical val-
ues from Ref. [16] , γ −1 = 4.318 946 fm, ρd = 1.764 ±
2 Here it is understood that all energies are expressed through equiv-
alent wave numbers, i.e. p �→ p c/(h̄c), M �→ M c2/(h̄c), γ �→√
B M c2/(h̄c), etc., all in units of fm−1. The cross section is then

given in units of fm2 = 10 mb.

Fig. 1 Radiative capture n + p → d + γ cross section (in mb)
(magenta, color online) as a function of the CMS kinetic energy in
MeV, from [17] ; the calculated M1 (red) and E1 (blue) contributions
to the cross section are also shown separately. Experimental data later
than 1960 are from NNDC online [27]

0.002 fm, /πC (3P0)
2 = 6.53 fm4, /πC (3P1)

2 = −5.91 fm4,
/πC (3P0)

2 = 0.57 fm4. Furthermore, the magnetic dipole con-
tribution at NLO reads

|χ̃M1|2 = γ 4 κ2
1 (1 − as γ )2

(
1 + a2

s γ 2
) (

γ 2 + p2
)2

×
[

1 + γ ρd − r0

as

(
γ as + a2

s p2
)
a2
s p2

(
1 + a2

s p2
)
(1 − as γ )

−
/π Lnp

κ1

as MN

2π

γ 2 + p2

1 − as γ

]
, (38)

where κ1 = (μp − μn)/2 is the nucleon isovector magnetic
moment (in units of μN = e h̄/(MN c)), as is the scattering
length and r0 is the effective range in the 1S0-channel. Again
we use the numerical values from Ref. [16] , as = −23.714±
0.013 fm, r0 = 2.73 ± 0.03 fm, /π Lnp = −4.513 fm2. The
resulting cross section is compared to experimental data in
Fig. 1.

Considering only the leading contributions one finds

σM1;np→dγ (p) = π α
(
μn − μp

)2
γ
(
γ 2 + p2

)
(1 − as γ )2

M4
N p

(
1 + a2

s p2
) . (39)

With p = √
MN E, γ = √

MN Bd (Bd the binding energy
of the deuteron) and introducing W via as =: −1/

√
MN W

this reads

σM1;np→dγ (E) = π
α

M2
N

(
μn − μp

)2

×
√
Bd (Bd + E)

(√
Bd + √

W
)2

MN
√
E (E + W )

. (40)
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Fig. 2 Photodisintegration γ + d → n + p cross section (in mb)
(magenta, color online) as a function of the (laboratory) photon energy
in MeV, from [17]. The calculated M1 (red) and E1 (blue) contributions
to the cross section are also shown separately. Experimental data from
Ref. [28]

Likewise

σE1;np→dγ (p) = 4π α p γ

M2
N

(
γ 2 + p2

)
(1 − γ ρd)

(41)

or, with ρd =: 1/
(√

MN R
)
,

σE1;np→dγ (E) = 4π
α

M2
N

√
E Bd

(E + Bd)

(
1 −

√
Bd
R

) . (42)

The cross section for the inverse reaction can be obtained
via

σγ d→np
(
Eγ

) = 2

3

p2

k2 σnp→dγ

(
Eγ − Bd

)

= 2

3

MNc
2 (Eγ − B

)
d

E2
γ

σnp→dγ

(
Eγ − Bd

)

(43)

with Eγ = K the photon energy in the rest frame of the
deuteron, where we used k ≈ K and

p2 ≈ MN (k − Bd) ≈ MN (K − Bd) = MN k − γ 2

⇔ p2 + γ 2 ≈ MN k ≈ MN K (44)

as well as the ratio of the statistical weights

gp gn
gγ gd

= 2 · 2

2 · 3
= 2

3
. (45)

and

E = p2

MN
≈ k − Bd ≈ K − Bd = Eγ − Bd . (46)

We thus find for the photodisintegration reaction

σM1;γ d→np(p)

= 2π

3
α

(
μn − μp

)2 p2 γ
(
γ 2 + p2

)2
(1 − as γ )2

k2 M4
N p

(
γ 2 + p2

) (
1 + a2

s p2
)

= 2π

3

α

M2
N

(
μn − μp

)2 p γ (1 − as γ )2

(
γ 2 + p2

) (
1 + a2

s p2
)

= 2π

3

α

M2
N

(
μn − μp

)2
√
Bd
√
Eγ − Bd

(√
Bd + √

W
)2

Eγ

(
Eγ − Bd + W

)

= σM1;γ d→np(Eγ ), (47)

where we used W = (MN a2
s ). This indeed corresponds to

the Bethe-Longmire zero range expression, see Eq. (56) of
Ref. [29]. For the electric dipole contribution to the photodis-
integration cross section one finds the zero-range expression

σE1;γ d→np(p)

= 8π

3
α

p3 γ
(
γ 2 + p2

)2

k2 M2
N

(
γ 2 + p2

)3

= 8π

3
α

γ p3

(
γ 2 + p2

)3 = 8π

3

α

γ 2

(p γ )3

(
γ 2 + p2

)3

= 8π

3

α

γ 2

M3
N B3

d (1 − η)
3
2

M3
N E3

γ

= 8π

3

α

γ 2

(1 − η)
3
2

η3

= 8π

3

α

MN

√
Bd
(
Eγ − Bd

) 3
2

E3
γ

= σE1;γ d→np(Eγ ) (48)

where γ 2 + p2 ≈ MN k ≈ MN K =: MN Eγ and η :=
Eγ /Bd , corresponding to the expression of Eq. (16) in [30],
first derived by Bethe and Peierls. The effective range cor-
rection (see Eq. (6) in [29]) to this is given by the factor
(1 − γ ρd)

−1. The result from the N3LO-calculation of [17]
is compared to experimental data in Fig. 2.

Therefore, for this leading reaction in the BBN-network
a sufficiently accurate description of the experimental data
is available. Moreover, this EFT-description allows to study
the variation of the cross section due to changes in nuclear
parameters, such as the deuteron binding energy Bd , the 1S0

np scattering length as , the corresponding effective range r0

as well as the effective range ρd in the deuteron channel of
np-scattering. Below we shall concentrate on the dependence
on Bd and as , since these give the leading effects.

In Fig. 3 the numerically calculated rate according to
Eq. (2) for the n + p → d + γ reaction is shown and com-
pared to the parameterizations used in the original version of
the codes. Apart from the original NUC123 parametrisation,
see [31], these curves are very consistent. In the rest of this
paper, the parameterization according to a rational function
fit of the form

f (t) = c0,
1 +∑5

i=1 ci t
i

1 +∑4
i=1 d j t j

(49)
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Fig. 3 The temperature dependent rate (in units of cm3 s−1) calculated
from the cross section of the n+ p → d+γ reaction in N3LO and com-
pared to the parameterizations used in the programmes NUC123 [18]
(in black, color online), PArthENoPE [23] (in magenta), AlterBBN
[20] (in green) and PRIMAT [4] for which the two blue curves cor-
respond to the lower and upper limit of the rate. The red solid curve
represents a rational function fit to the red data points. T9 := T/[109 K]

to the calculated rate based on the N3LO-cross section is used
throughout in all programmes.

From the formulas above in leading order, i.e. at very low
energies, where the M1-contribution dominates, the depen-
dence of the cross section and hence of the rate of the
n + p → d + γ reaction is found to be

γM1;np→dγ ∝ B
5
2
d a2

s , (50)

leading to

∂ log γ

∂ log as
= 2,

∂ log γ

∂ log Bd
= 5

2
, (51)

which are energy or temperature independent. However,
taking into account the full N3LO-expressions above, this
is found to vary appreciably in the BBN-relevant range
10−3 ≤ T9 ≤ 10, with T9 := T/[109 K], leading to a rather
strong suppression of the dependence at high temperatures,
see Fig. 4.

2.2.6 Temperature dependence of the rates for the leading
reactions

Such a suppression, in particular for the dependence on the
binding energies, is to be expected for the other nuclear reac-
tions also. However, for most reactions the data for the rates
are given in the form of parameterizations as a function of T9

or in the form of tables. Only if the cross-sections σ(E), or,
equivalently, the astrophysical S(E)-function is available, it
is possible to study the temperature dependence of a change
in the rate γ due to a change in the binding energy or Q-
value according to Eqs. (17, 24). To this end we numerically
compute the integrals in these equations and then fit the ratio

Fig. 4 Temperature dependence of the fractional change in the rate γ

of the n + p → d + γ reaction, due to a fractional change in x = as
(in red, color online) or x = Bd (in blue) : ∂ log γ

∂ log x . Data points are
from a numerical evaluation of Eq. (2), the thin solid lines represent
a rational function fit to these data and the thick solid lines represent
the powers found in the extreme low energy (or low temperature) limit.
T9 := T/[109 K]

of the change in the rate 	γ (T9)/	γ0 according to Eqs. (17,
19) for direct reactions or Eqs. (24,25) for radiative capture
reactions by a rational function of the form

g(T9) = 1 + r1 T9 + r2 T 2
9 + r3 T 3

9

1 + q T9
. (52)

This is then used in the rate equations. We do this for the lead-
ing reactions in the BBN-network, viz. the radiative capture
reactions

p + 2H → 3He + γ, p + 3H → 4He + γ,

3H + 4He → 7Li + γ, 3He + 4He → 7Be + γ,

2H + 4He → 6Li + γ, p + 7Li → 4He + 4He + γ,

(53)

the charge exchange reactions

n + 3He → 3H + p, n + 7Be → 7Li + p, (54)

and the other direct reactions

2H + 2H → 3H + p, 2H + 2H → 3He + n,

2H + 3H → 4He + n, 2H + 3He → 4He + p,

p + 7Li → 4He + 4He, p + 6Li → 3He + 4He,
2H + 7Be → 4He + 4He + p, (55)

for which parameterizations of the energy dependence of the
cross section can e.g. be found in Appendix D of [32]. For
some selected reactions the calculated ratios 	γ (T9)/	γ0

together with the rational function fit are shown in Fig. 5,
showing that for temperatures T9 > 0.1 this change is indeed
generally suppressed with respect to the change calculated
with Eqs. (19, 25)
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Fig. 5 Temperature dependence of the change in the rate 	γ (T9)/	γ0
for a fractional change in the Q-value of some selected leading reac-
tions, due to a fractional change in x = as or x = Bd : ∂ log γ

∂ log x . Data
points are from a numerical evaluation of Eqs. (17, 24); solid lines
(color online) represent the rational function fits used in subsequent
calculations. T9 := T/[109 K]

3 The BBN response matrix

We estimate the linear dependence of primordial abun-
dances Yn on small changes in the neutron life time τn , the
nuclear binding energies Ba and the 1S0 np scattering length
as , ∂ log Yn/∂ log Xk , by calculating the abundance of the
nuclide

n ∈
{

2H, 3H + 3He, 4He, 6Li, 7Li + 7Be,
}

(56)

i.e.

Yn (Xk (1 + δk)) , Xk ∈ {τn, Ba, as} (57)

for fractional changes δk ≈ O(10−3) in the nuclear parame-
ters Xk with the publicly available codes for BBN: A version
of the Kawano code called NUC123 [18] (in FORTRAN), two
more modern implementations based on this: PArthENoPE
[21–23] (in FORTRAN) and AlterBBN [19,20] (in C) as
well as an implementation as a mathematica-notebook:
PRIMAT [4]. To this end we perform a least-squares fit of a
quadratic polynomial to the abundances:

Pk(δk) := c0

(
1 + c1 δk + c2 δ2

k

)
, (58)

such that

∂

∂c j
|Yn (Xk (1 + δk)) − Pk(δk)|2 = 0, j = 0, 1, 2. (59)

Then

∂ log Yn
∂log Xk

≈ c1 (60)

will be called an element of the (linear) nuclear BBN response
matrix. It represents the (dimensionless) fractional change in
the primordial abundance Yn due to a fractional change in the

nuclear parameter Xk in linear approximation. This method
was preferred over a direct approximation of the (logarith-
mic) derivatives via finite differences, since some of the cal-
culated abundances turned out to be rather noisy in particular
when close to zero.

4 Numerical results

In what follows, we use η = 6.14 × 10−10 from [37] as the
baryon-to-photon density ratio, but we will also allow for
variations of this parameter. In all programmes, the following
modifications were made:

• All natural constants were updated to recent values listed
by CODATA [33] and PDG [36,37];

• Atomic mass excesses were taken from the NUBASE2020
[34] compilation; nuclear binding energies were then cal-
culated by accounting for the atomic binding energies
from [35], although this is a minor effect;

• Reverse reaction rate constants were recalculated on the
basis of the nuclear data above;

• In NUC123 hard coded constants were substituted by
their analytical expressions in terms of natural constants
updated from CODATA [33] and PDG [36,37].

In addition, and also in the primat-implementation [4],
the rate of the n+ p → d +γ radiative capture reaction was
calculated on the basis of the analytical expression for the
cross section from the EFT calculation in [17], see also Sect. 2
and rational function fits of the temperature dependence and
the dependencies on the deuteron binding energy and the 1S0

np scattering length, as explained in Sect. 3 were used.
For the fractional change in the rate due to changes in

the Q-values of direct reactions we used the expression of
Eqs. (19, 25) with the exception of the reactions listed in
Eqs. (53, 54 and 55), where we used Eqs. (17, 24). For the Q-
value dependence of the weak decay rates we used Eqs. (33,
35).

The values obtained with each of the programmes for the
abundances at the end of the BBN-epoch in terms of the
number ratios Y2H/YH, Y3H+3He/YH, Y6Li/YH, Y7Li+7Be/YH,
and the mass ratio for 4He are listed in Table 1. The dis-
crepancy of about a factor of three in the abundance ratio
of 7Li + 7Be to H is known as the “Li-problem”, see [37]
and references therein. Here various possible explanations
of this discrepancy are discussed: e.g. systematic errors in
the observed lithium-abundance and in the determination
of the primordial abundance from these observations, pos-
sible issues in stellar astrophysics leading to the destruction
of lithium and/or obscuring lithium from detection, uncer-
tainties in nuclear reaction input data, fluctuations in the
baryon-to-photon ratio, effects from decays of beyond-the-
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Table 1 Final abundances as number ratios Yn/YH (for 4He the mass
ratio Yp) calculated with the modified versions of the codes

code 2H 3H +3He Yp
6Li 7Li +7Be

×105 ×105 ×1014 ×1010

NUC123 2.550 1.040 0.247 1.101 4.577

parthenope 2.511 1.032 0.247 1.091 4.672

alterbbn 2.445 1.031 0.247 1.078 5.425

primat 2.471 1.044 0.247 1.198 5.413

PDG [37] 2.547 0.245 1.6

± 0.025 0.003 0.3

The nominal reaction Q0-values used were calculated from the nuclear
binding energies taken from [34], furthermore η = 6.14 × 10−10 and
τn = 879.4 s

standard-model particles leading to non-equilibrium nucle-
ons dissociating light elements or changes in fundamental
natural constants. In spite of this unresolved issue in BBN
the consistency of the cosmic microwave background obser-
vations with the determined abundances of deuterium and
helium is considered in [37] to be a “non-trivial success”.
Accordingly, we think that this issue is no obstacle for the
study presented here.

In order to determine the sensitivity of the abundances,
each of the programmes was run for fractional changes of the
parameters τn , as , B2H, B3H, B3He, B4He, B6Li, B7Li and B7Be
for about a dozen equidistant values in a range [−δ, δ], δ ≈
O(10−4–10−3).

The elements of the response matrix were then determined
by a polynomial fit, as explained above in Sect. 3 for the
abundances ofY2H/YH,Y3H+3He/YH,Y6Li/YH,Y7Li+7Be/YH,
and the mass ratio for 4He.

The values for the resulting response matrix elements are
given and compared to some results from the literature in
Table 2.

In order to illustrate the dependence on the baryon-to-
photon density parameter η we displayed in Fig. 6 the varia-
tion of the response matrix elements for a change of η in the
range 5.94 × 10−10–6.34 × 10−10 which corresponds to the
error range quoted in [37]: η10 := η×1010 = 6.143±0.190.

The following observations can be made:

• Concerning the baryon-to-photon density ratio
η-dependence : Although the final abundances at the end
of the primordial nucleosynthesis do depend on η strong
enough and, in particular the 4He and deuteron abun-
dances allow for estimating a rather strict bound on η, see
e.g. Fig. 24.1 in section 24 of [37] compatible with the
CMB determination of the cosmic baryon density [37],
the η-dependence of the linear response to the nuclear
parameters studied here was found to be in general almost
linear and of rather moderate size, see Fig. 6. Note that
a conspicuous correlation between the values for the

response matrix elements exists (many values being even
almost identical, see Fig. 6) for the 2H and 6Li abun-
dances for all dependences studied here.

• The values found for the current best value η = 6.14 ×
10−10 [37] were found to be by and large consistent with
those cited in [14], if the same assumptions concerning
the as-dependence (values indicated by (∗) in Table 2)
and the temperature independent modification of the rates
according to Eqs. (19, 25) are made (extracted from the
entries indicated by † in Table 2), see Table 3 . Note that
in [14] a slightly different value η = 6.19 × 10−10 was
used.

• More importantly, it was found that accounting for the
actual as dependence in the calculation of the cross sec-
tion for the n+ p → d+γ reaction and, accordingly for a
temperature dependence in the corresponding rate, in fact
the linear dependence of the abundances on this scattering
length is reduced with respect to the temperature inde-
pendent a2

s dependence assumed in [14] approximately
by a factor of three.

• Also, accounting for the temperature dependence in the
rate when varying the bindings energies of at least the
leading reactions in the nuclear BBN network, reduces
the values of the response matrix elements in some cases
appreciably: In particular this applies to the abundance-
dependence of 6Li in the binding energy of 6Li (≈
80 �→≈ 75) and the abundance-dependences of 7Li+7Be
on the binding energy of 3H (≈ 4 �→≈ 3.5), on the bind-
ing energy of 3He (≈ 8.25 �→≈ 6.75) and on the binding
energy of 7Be (≈ 100 �→ 87).

• Furthermore, although the numbers found are roughly
consistent, see e.g. the ranges listed in Tables 3 and 4,
the four publicly available codes, which do differ in the
number of coupled reactions treated in the BBN-network,
the treatment of radiative corrections to processes as well
as the specific parameterization of the nuclear reaction
rates, do lead to slightly different values for the response
matrix elements studied here.
We shall therefore consider these differences, see Table 4,
as an estimate of the systematic (in fact model-dependent)
deviations for the numbers obtained. This is one of
the main results of the present investigation. As can
also be seen from Fig. 6 the largest relative deviations
are found for the dependence of the 7Li + 7Be abun-
dance on the binding energy of 2H with the programme
PArtHEnoPE: 20 %. No obvious explanation for this
could be found. Also the dependence of the 2H abun-
dance on the binding energy of 4He with the programme
alterBBN deviates from those found with the other
codes. Note, however, that here an exceptional non-linear
dependence on B4He was found; determining the loga-
rithmic derivative only from left-sided finite differences
yields an almost vanishing value, in accordance with the

123



212 Page 10 of 14 Eur. Phys. J. A (2022) 58 :212

Table 2 BBN response matrix
∂ log Yn/∂ log Xk at
η = 6.14 × 10−10 and
τn = 879.4 s

X code 2H 3H+3He 4He 6Li 7Li+7Be

as NUC123 −0.12 0.09 0.00 −0.12 0.97

PArthENoPE −0.18 0.06 0.04 −0.17 1.07

alterBBN −0.13 0.08 0.00 −0.13 0.99

PRIMAT −0.13 0.08 0.00 −0.13 0.99

NUC123(∗) −0.37 0.18 0.01 −0.36 2.52

PArthENoPE(∗) −0.41 0.15 0.01 −0.41 2.60

alterBBN(∗) −0.40 0.15 0.01 −0.39 2.57

PRIMAT(∗) −0.41 0.16 0.01 −0.40 2.58

Ref. [14] −0.39 0.17 0.01 −0.38 2.64

B2H NUC123 −2.78 −2.08 0.67 −6.26 8.41

PArthENoPE −2.49 −2.27 0.68 −5.93 6.16

alterBBN −2.93 −2.09 0.69 −6.38 8.76

PRIMAT −2.89 −2.11 0.69 −6.33 8.63

NUC123(†) −2.74 −2.08 0.67 −6.41 8.36

PArthENoPE(†) −2.45 −2.28 0.68 −6.10 6.11

alterBBN(†) −2.89 −2.10 0.68 −6.54 8.71

PRIMAT(†) −2.85 −2.12 0.68 −6.49 8.59

Ref. [14] −2.91 −2.08 0.67 −6.57 9.44

Ref. [11] −2.8 −2.1 0.68 −6.8 8.8

Ref. [12] −2.91 −2.1 0.67 −6.58 9.41

B3H NUC123 −0.32 −2.22 0.01 −0.31 −3.61

PArthENoPE −0.28 −2.14 −0.02 −0.27 −3.49

alterBBN −0.26 −2.16 0.00 −0.25 −3.60

PRIMAT −0.28 −2.20 0.01 −0.27 −3.58

NUC123(†) −0.31 −2.39 0.01 −0.29 −3.93

PArthENoPE(†) −0.27 −2.29 0.03 −0.26 −3.80

alterBBN(†) −0.25 −2.32 0.01 −0.24 −3.92

PRIMAT(†) −0.27 −2.37 0.01 −0.25 −3.90

Ref. [14] −0.27 −2.36 0.01 −0.26 −3.84

Ref. [11] −0.22 −1.4 0 −0.20 −2.5

B3He NUC123 −2.35 3.76 0.01 −5.49 −6.47

PArthENoPE −2.37 3.67 0.04 −5.61 −6.57

alterBBN −2.42 3.68 0.01 −5.66 −6.72

PRIMAT −2.36 3.73 0.01 −5.61 −6.75

NUC123(†) −2.44 3.94 0.01 −5.66 −8.13

PArthENoPE(†) −2.73 3.76 0.11 −6.16 −8.06

alterBBN(†) −2.58 3.91 0.01 −5.91 −8.37

PRIMAT(†) −2.46 3.91 0.01 −5.79 −8.41

Ref. [14] −2.38 3.85 0.01 −5.72 −8.27

Ref. [11] −2.1 3.0 0 −3.1 −9.5

B4He NUC123 −0.01 −0.79 −0.00 −66.73 −49.91

PArthENoPE −0.02 −0.83 0.00 −66.67 −50.14

alterBBN −0.08 −0.85 0.00 −66.72 −50.90

PRIMAT −0.02 −0.82 0.00 −66.91 −50.48

NUC123(†) −0.01 −0.80 −0.00 −69.49 −57.39

PArthENoPE(†) −0.02 −0.84 0.01 −69.53 −57.64

alterBBN(†) −0.09 −0.86 0.00 −69.49 −58.43
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Table 2 continued
X code 2H 3H+3He 4He 6Li 7Li+7Be

PRIMAT(†) −0.02 −0.83 0.00 −69.70 −58.06

Ref. [14] −0.03 −0.84 0.00 −69.8 −57.4

Ref. [11] −0.01 −0.57 0 −59 −57

B6Li NUC123 −0.00 0.00 0.00 75.40 0.00

PArthENoPE −0.01 −0.01 0.01 75.34 0.02

alterBBN 0.00 −0.01 0.00 75.35 0.01

PRIMAT −0.00 0.00 0.00 75.65 0.00

NUC123(†) −0.00 0.00 0.00 78.51 0.00

PArthENoPE(†) 0.02 0.01 −0.01 78.60 −0.02

alterBBN(†) 0.00 −0.00 0.00 78.48 0.00

PRIMAT(†) −0.00 0.00 0.00 78.81 0.00

Ref. [14] 0.00 0.00 0.00 78.9 0.00

Ref. [11] 0 0 0 69 0

B7Li NUC123 −0.00 −0.00 −0.00 −0.00 −22.65

PArthENoPE −0.02 −0.01 0.02 −0.02 −23.12

alterBBN 0.01 −0.00 −0.00 0.01 −23.17

PRIMAT −0.00 −0.00 0.00 −0.00 −23.39

NUC123(†) −0.00 −0.00 −0.00 −0.00 −23.54

PArthENoPE(†) 0.01 0.01 −0.01 0.01 −24.09

alterBBN(†) 0.01 0.00 −0.00 0.01 −24.09

PRIMAT(†) −0.00 0.00 0.00 −0.00 −24.31

Ref. [14] 0.03 0.01 0.00 0.02 −25.1

Ref. [11] 0 0 0 0 −6.9

B7Be NUC123 −0.00 −0.00 0.00 −0.00 86.58

PArthENoPE 0.02 0.00 −0.01 0.01 87.31

alterBBN 0.00 0.00 −0.00 0.00 88.47

PRIMAT −0.00 −0.00 −0.00 0.00 88.38

NUC123(†) −0.00 −0.00 0.00 −0.00 97.43

PArthENoPE(†) −0.02 −0.01 0.00 −0.03 98.25

alterBBN(†) 0.00 −0.00 −0.00 0.00 99.43

PRIMAT(†) 0.00 −0.00 −0.00 0.00 99.33

Ref. [14] 0.00 0.00 0.00 0.00 99.1

Ref. [11] 0 0 0 0 81

τn NUC123 0.41 0.14 0.72 1.36 0.44

PArthENoPE 0.41 0.14 0.74 1.37 0.45

alterBBN 0.42 0.14 0.73 1.38 0.43

PRIMAT 0.42 0.14 0.73 1.38 0.44

Ref. [14] 0.41 0.14 0.72 1.36 0.43

Ref. [11] 0.41 0.15 0.73 1.4 0.43

Yn are the number ratios of the abundances relative to hydrogen; Yp is conventionally the 4He/H mass ratio.
The results obtained with the four BBN codes: NUC123 [18], alterBBN [20], PArthENoPE [23], PRIMAT
[4] are given in four subsequent rows for each nuclear parameter. Below that, for comparison also listed are
the values obtained in [14] (see Table VII), where η = 6.19 × 10−10 was used, obtained in [11] (see Table 1),
where η = 6.1×10−10 and τn = 885.7 s were used, as well as the dependence on the deuteron binding energy
listed in [12] (method 2 in Table 1), where η = 6.22 × 10−10 was used. The entries with (∗) are obtained by
assuming a a2

s dependence of the n + p → d + γ rate, as was done in [14]. The entries with (†) ignore the
T -dependence of the rates of the leading reactions, as also done in [14]
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Fig. 6 Baryon-to-photon density η-dependence of the transfer matrix
elements ∂ log Yn/∂ log Xk , n = 2H (crosses in red), 3H + 3He
(asterisks in blue), 4He (open squares in black), 6Li (filled squares
in magenta) and 7Li + 7Be (open circles in orange; color online).
For each of the programmes: a NUC123, b PArtHEnoPE, c
alterBBN, d PRIMAT, the variation of the response matrix ele-
ments is shown as 9 subsequent points for η10 := η × 1010 =

5.94, 5.99, 6.04, 6.09, 6.14, 6.19, 6.24, 6.29, 6.34, the central values at
6.14 corresponding to the values listed in Table 2. For better visibility,
in the panels labeled “4He” and “6Li” the values of the response matrix
elements ∂ log YB6Li

/∂ log Xk (filled squares, in magenta) have been

divided by 100. The same applies to the panels labeled “4He”, “7Li”
and “7Be” for the response matrix elements ∂ log Y7Li+7Be/∂ log Xk
(open circles, in orange)

values found with the other programmes. The depen-
dence of the 3H + 3He abundance on the binding energy
of 4He varies between all programmes by ≈ 8%.

5 Summary and conclusion

We reexamined the response matrix elements ∂ log Yn/∂ log
Xk , i.e. the linear fractional change in the abundance Yn of
the nuclides 2H, 3H + 3He, 4He, 6Li and 7Li + 7Be due to a
fractional change in nuclear parameters Xk : the life time of
the neutron τn , the 1S0 np scattering length as and the binding

energies of 2H, 3H, 3He, 4He, 6Li, 7Li and 7Be. In addition
the dependence of these quantities on the baryon-to-photon
density ratio η was studied. In order to obtain an estimate
for the model dependence of the response matrix elements,
these were determined with four publicly available codes for
calculating the abundances of light elements in primordial
nucleosynthesis. The calculated values were found to be by
and large mutually consistent, the largest deviations were
found for matrix elements that almost vanish anyway. Overall
systematic deviations between the codes of a few percent do
occur, however.
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Table 3 Comparison of the range of values obtained with the four codes
studied here with the results of [14]

X 2H 3H +3He Yp
6Li 7Li +7Be

as −0.41 0.15 0.01 −0.41 2.52

−0.37 0.18 0.01 −0.36 2.60

−0.39 0.17 0.01 −0.38 2.64

−2.89 −2.28 0.67 −6.54 6.11

B2H −2.45 −2.08 0.68 −6.10 8.71

−2.91 −2.08 0.67 −6.57 9.44

−0.31 −2.39 0.01 −0.29 −3.93

B3H −0.25 −2.29 0.03 −0.24 −3.80

−0.27 −2.36 0.01 −0.26 −3.84

−2.73 3.76 0.01 −6.16 −8.41

B3He −2.44 3.94 0.11 −5.66 −8.06

−2.38 3.85 0.01 −5.72 −8.27

−0.09 −0.86 −0.00 − 69.7 −58.4

B4He −0.01 −0.80 0.01 −69.5 −57.4

−0.03 −0.84 0.00 −69.8 −57.4

−0.00 −0.00 −0.01 78.5 −0.02

B6Li 0.02 0.01 0.00 78.8 0.00

0.00 0.00 0.00 78.9 0.00

−0.00 −0.00 −0.01 −0.00 −24.3

B7Li 0.01 0.01 0.00 0.01 −23.5

0.03 0.01 0.00 0.02 −25.1

−0.02 −0.01 −0.00 −0.03 97.4

B7Be 0.00 −0.00 0.00 0.00 99.4

0.00 0.00 0.00 0.00 99.1

0.41 0.14 0.72 1.36 0.43

τn 0.42 0.14 0.74 1.38 0.45

0.41 0.14 0.72 1.36 0.43

For each parameter X the first two lines then give the minimal and
maximal values obtained with the four codes, on the basis of the same
assumptions as in [14], i.e. these were extracted from the entries labeled
(∗) and (†) in Table 2. The third line below the horizontal rule contains
the values reported in [14]

In the present treatment the nominal values of nuclear
binding energies (and hence of nominal Q0-values) were
updated according to the most recent nuclear data bases cur-
rently available. Moreover, in contrast to previous studies, we
did account for temperature dependences of the sensitivity of
the rate of the leading n+ p → d +γ reaction on the 1S0 np
scattering length as , as well as that of the sensitivity of the
rates of a dozen other leading reactions in the BBN-network
to the Q-values of these reactions. Both effects lead to a
reduction of the magnitude of the response matrix elements:
the first effect to a reduction by a factor of three, the latter
in some cases approximately by 10% . The η dependence of
the response matrix elements was found to be a minor effect
only.

These findings should be taken into account before mak-
ing e.g. claims on bounds from primordial nucleosynthesis on

Table 4 Model dependence of the response matrix elements

X 2H 3H +3He Yp
6Li 7Li +7Be

as −0.18 0.06 0.00 −0.17 0.97

−0.12 0.09 0.04 −0.12 1.07

B2H −2.93 −2.27 0.67 −6.38 6.16

− 2.49 − 2.07 0.69 − 5.93 8.76

B3H − 0.32 −2.22 −0.02 −0.31 −3.61

−0.26 −2.14 0.01 −0.25 −3.49

B3He −2.42 3.67 0.01 −5.66 −6.75

−2.35 3.76 0.04 −5.49 −6.47

B4He −0.08 −0.85 −0.00 −66.9 −50.9

−0.01 −0.79 0.00 −66.7 −49.9

B6Li −0.01 -0.01 0.00 75.3 0.00

0.00 0.00 0.01 75.7 0.02

B7Li −0.02 −0.01 −0.00 −0.02 − 23.4

0.01 −0.00 0.02 0.01 −22.7

B7Be −0.00 −0.00 −0.01 −0.00 86.6

0.02 0.00 0.00 0.01 88.5

τn 0.41 0.14 0.72 1.36 0.43

0.42 0.14 0.74 1.38 0.45

Listed are the ranges for results extracted from Table 2. For each param-
eter X the upper row gives the minimal and the lower row the maximal
value found with any of the four codes

more fundamental parameters, such as quark masses or cou-
pling constants, underlying the nuclear parameters studied
here. Here we shall refrain from determining such bounds,
postponing that to a future publication and merely mention
an important issue to be addressed prior to that. Ideally, a
study of varying nuclear parameters in order to investigate
their impact on abundances in BBN-nucleosynthesis should
rely on accurate theoretical descriptions of at least the major
reactions, such that the dependence of the cross sections of
the leading reactions on nuclear parameters such as scattering
lengths, effective range parameters and binding energies can
be determined in detail. Presently such a description is avail-
able for the leading n+ p → d+γ reaction only in the form
of an accurate EFT-treatment. Therefore this was elaborated
on in some detail here. A similar treatment of other reactions
is the subject of current research, see e.g. the discussion of
α − α scattering in [38]. A first application of the insight
obtained here will be a reassessment of the dependence of
primordial abundances on the electromagnetic fine-structure
constant [39].
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