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Abstract The absolute atomic mass of 208Pb has been
determined with a fractional uncertainty of 7 × 10−11 by
measuring the cyclotron-frequency ratio R of 208Pb41+ to
132Xe26+ with the high-precision Penning-trap mass spec-
trometer Pentatrap and computing the binding energies
EPb and EXe of the missing 41 and 26 atomic elec-
trons, respectively, with the ab initio fully relativistic multi-
configuration Dirac–Hartree–Fock (MCDHF) method. R has
been measured with a relative precision of 9 × 10−12. EPb

and EXe have been computed with an uncertainty of 9.1 eV
and 2.1 eV, respectively, yielding 207.976 650 571(14) u
(u = 9.314 941 024 2(28)× 108 eV/c2) for the 208Pb neutral
atomic mass. This result agrees within 1.2σ with that from the
Atomic-Mass Evaluation (AME) 2020, while improving the
precision by almost two orders of magnitude. The new mass
value directly improves the mass precision of 14 nuclides
in the region of Z = 81–84 and is the most precise mass
value with A > 200. Thus, the measurement establishes a
new region of reference mass values which can be used e.g.
for precision mass determination of transuranium nuclides,
including the superheavies.

1 Introduction

Heavy and superheavy nuclides beyond the doubly magic
nucleus of 208Pb can only exist due to nuclear shell effects
holding them together by counteracting the rapidly increas-
ing Coulomb repulsion with growing proton number Z
[1]. Insight into these quantum-mechanical nuclear structure
effects can be derived from the masses of such nuclides. In

a e-mail: kathrin.kromer@mpi-hd.mpg.de (corresponding author)

addition to some direct heavy mass measurements [2–5], a
network of nuclear transitions and relative mass measure-
ments, i.e. the Atomic-Mass Evaluation (AME), provides
mass values for most heavy and superheavy nuclides by
tracing them back to a few well-known masses of uranium
isotopes [6]. However, no nuclide beyond Z = 70 can be
found whose mass is known to a relative precision of better
than 2 × 10−9 to act as a precise reference point for these
heavy elements. This directly limits the achievable precision
in the heavier mass regions and can possibly lead to tensions
or shifts of the relative measured masses due to their refer-
encing to only one reference point. The limitations by mass
dependent shifts can be reduced significantly once there is
a reference mass with similar mass known to high precision
[7]. The need for new anchor points for the AME arose during
recent mass measurements with TRIGA-TRAP [5,8] at the
research reactor TRIGA in Mainz, specifically, an improved
absolute mass of 208Pb [9]. Measuring this mass will also
directly improve the masses of several Pb isotopes and other
nuclides in this mass region [6].

In addition to the impact as a mass reference for other
mass measurements, the mass of 208Pb will soon be needed
when the magnetic moment, or the g-factor, of the bound
electron of hydrogen-like 208Pb is planned to be determined
by the Penning-trap experiments Alphatrap at the MPIK in
Heidelberg [10] and Artemis at GSI Darmstadt [11]. This
measurement could be the most stringent test of bound-state
quantum electrodynamics in strong fields. The error of the
mass of the nucleus, however, enters the error budget and
therefore needs to be known to high precision [12]. With the
results of this paper, the error of the mass of 208Pb will be
negligible in future g-factor determinations.
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Based on the accurate absolute mass of 132Xe [13,14], in
this paper, we present a determination of the absolute atomic
mass of 208Pb with a fractional uncertainty of 7 × 10−11.
This is the result of measuring the cyclotron-frequency ratio
of 208Pb41+ and 132Xe26+ with the high-precision Penning-
trap mass spectrometer Pentatrap [15,16] in combination
with a computation of the binding energies of the missing
41 and 26 atomic electrons, respectively, using the ab ini-
tio fully relativistic multi-configuration Dirac–Hartree–Fock
(MCDHF) method. The masses of 132Xe26+ and 208Pb41+
can be related to their neutral counterparts via

m
(

132Xe26+)
= m

(
132Xe

)
− 26me + EXe, (1)

m
(

208Pb41+)
= m

(
208Pb

)
− 41me + EPb, (2)

with me = 5.485 799 090 65(16) × 10−4 u being the elec-
tron rest mass [17] and m

(
132Xe

) = 131.904 155 086(10) u
being the mass of a neutral 132Xe atom [13,14], each has a
relative accuracy of 2.9×10−11 and 7.6×10−11, respectively.
EXe and EPb are the binding-energy differences that repre-
sent the energies required to ionize the outermost 26 and 41
electrons, respectively, from neutral Xe and Pb atoms. With
the mass ratio

R = m
(

208Pb41+)

m
(

132Xe26+) (3)

being experimentally measured, one can improve the accu-
racy of the absolute mass of 208Pb via

m
(

208Pb
)

= R
[
m

(
132Xe

)
+ 26me − EXe

]

+41me − EPb , (4)

based on the theoretically calculated EXe and EPb. By
improving the mass of 208Pb the masses of other Pb iso-
topes and nearby elements can be improved accordingly since
they are linked via decays of which the energy has been
measured.

2 Experimental and theoretical methods

If one introduces a charged particle into a magnetic field
B, it will describe a free space cyclotron motion with the
frequency ωc = q

m B, with q/m being the charge-to-mass
ratio. The working principle of a Penning trap is based on
a strong homogeneous magnetic field in combination with
an electrostatic quadrupole potential. While the electrostatic
potential prevents the ion from escaping in axial direction,
forcing it onto an oscillatory axial motion with frequency
ωz , the magnetic field forces the ion in radial direction onto
a circular orbit with a modified cyclotron frequency ω+. The

cross product of the two fields in the Lorentz equation leads
to an additional slow drift around the trap center called mag-
netron motion with frequency ω−. When comparing these
three Penning-trap eigenfrequencies to the movement of a
free charged particle in a purely magnetic field, it holds [18]:

ωc =
√

ω2+ + ω2
z + ω2− . (5)

From this equation we can see that the determination of eigen-
frequencies of an ion in a Penning trap can be used to deter-
mine its mass, if the magnetic field inside the trap is known.
However, a determination of a magnetic field of B ≈ 7 T
inside a volume of just a few 10 μm3 to sufficient precision
is not possible. Therefore, a relative measurement is chosen at
Pentatrap, using a reference ion and a sequential measure-
ment scheme to determine mass ratios [15]. Highly charged
ions are used due to the advantage that with higher q/m the
modified cyclotron frequency increases and can therefore be
measured to a higher relative precision. For each mass deter-
mination a reference nuclide and charge states have to be
chosen that form a q/m doublet with the nuclide of interest in
order to largely suppress systematic effects in the cyclotron-
frequency ratio determination [15,16]. The advantage being,
that with q/m doublets the same trapping voltage can be used
to match the axial frequency to the detection tank circuit’s res-
onance frequency. Using the same trapping voltage reduces
systematic shifts due to trap anharmonicities. In addition,
the absolute mass of the reference nuclide has to be known
better than the aimed uncertainty of the mass of the nuclide
of interest. More technical restrictions are posed by the pro-
duction of the reference ion, limited by binding energies and
the availability of probe material. For these reasons, the near
q/m doublet 208Pb41+ (q/m = 0.197 138 e/u) and 132Xe26+
(q/m = 0.197 113 e/u) [13,14] was chosen. The 132Xe26+
ion was created from a gaseous natural source inside a com-
mercialDresden electron beam ion trap (DREEBIT) [19,20].
The DREEBIT is connected to a beamline with a large bender
magnet for q/m selection, see Fig. 1a upper beamline. The
208Pb41+ ion was produced in a Heidelberg Compact electron
beam ion trap (compact EBIT) [21] equipped with an in-trap
laser-desorption target of monoisotopic 208Pb [22]. After ion
breeding, the q/m selection was achieved using the time-of-
flight separation technique with fast high-voltage switches
recently developed at the MPIK [23], supplying the voltages
to a Bradbury-Nielson gate [24], see Fig. 1a lower beamline.
Once the ions were selected and decelerated by two pulsed
drift tubes, they were consecutively trapped in the first of
Pentatrap’s five traps and transported down to their indi-
vidual traps.

Due to the five stacked Penning traps available, see Fig.
1b, a simultaneous measurement in two traps is possible,
increasing the measurement speed by higher statistics and
offering up the opportunity for cross checks between the traps
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(a)

(b)

Fig. 1 a Schematic illustration of the ion production section, the two
beamlines, and the combined deceleration region ending in the trap
chamber. The ion bunches with their respective energies are shown after
they have been q/m selected by the bender magnet or the Bradbury-
Nielson gate (BNG). b Schematic drawing of the Penning-trap tower

with two measurement ion configurations. The ions are moved from
position 1–2 or back every ≈ 15 min. The frequency measurements are
carried out in traps 2 and 3. Traps 1 and 4 are utilized as storage traps
and trap 5 is currently not in use but is planned to be used to monitor
magnetic field fluctuations in the future

and several analysis methods. Out of the other three traps,
two are needed for ion storage and one trap is planned for
monitoring, however, currently not in use.

The ion’s frequencies depend on the magnetic field and the
electrostatic potential. All environmental influences on these
quantities need to be stabilized over the duration of the mea-
surement. For this, thePentatrap laboratory is temperature-
stabilized to δT < 50 mK/h and the height of the liquid
helium level zlHe used for cooling the superconducting mag-
net, Penning traps, and the detection system is stabilized to
δzlHe < 1 mm/h along with the pressure of helium gas inside
the magnet’s bore to δp < 10 µbar/h [15].

We employ the Fourier-transform ion-cyclotron-resonance
detection technique [25] using cryogenic tank circuits con-
nected to the Penning traps to pick up the small image cur-
rent induced in the trap electrodes by the ion. The largest
frequency ω+, and therefore the frequency with the high-
est contribution to the overall error, is measured using the
phase-sensitive pulse and phase (PnP) method [26,27]. This

method, described in more detail below, sets an initial phase
of the reduced cyclotron frequency, then the motion is left
decoupled for a variable phase accumulation time tacc dur-
ing which the phase can evolve freely, before reading out the
final phase φmeas. The other two frequencies ωz and ω− are
measured with the Fast-Fourier-Transform (FFT) dip and the
double-dip technique, respectively [28].

The measurements of 208Pb41+ versus 132Xe26+ were car-
ried out with the measurement scheme shown in Fig. 2. After
a rough estimate of all three frequencies of both ions in both
positions, shown in Fig. 1b, using the dip and double-dip
technique, the measurement run starts with an N determi-
nation, with N being the integer number of full turns of
the reduced cyclotron motion during the phase accumula-
tion time. This preparatory measurement is necessary before
the actual PnP measurement because the cyclotron phase of
the ion increases linearly with time with the increment of
the frequency ω+ and will thereby pass a full turn of 2π

many times during the phase accumulation time. The inte-
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Fig. 2 The figure depicts a flowchart of the measurement scheme and
the relevant measurement times during the lead mass campaign. In blue
at the top one can see the intial N determination followed by the main
measurement PnP loop in orange with the simultaneous measurement of
axial frequency and modified cyclotron phase. The ions are frequently
swapped in order to minimize the magnetic field drift between position
1 and 2

ger N needs to be known in order to determine the modified
cyclotron frequency through the total accumulated phase

φ(tacc) = tacc × ω+ = 2π × N + φmeas , (6)

with φmeas being the measured phase at the end of the accu-
mulation time tacc. The N determination utilizes 9 different
phase accumulation times between 0.1 and 40.05 s and finds
an ω+ for which each N for all accumulation times is integer.

A constant phase offset, unavoidable due to the phase read-
out, is cancelled out by subtracting a short reference phase
with an accumulation time of 0.1 s from each long measure-
ment phase. After concluding the N determination in both
traps for lead and xenon, the actual PnP loop is started, see
Fig. 2 lower half. Here, a starting phase is imprinted on the
modified cyclotron motion by an ω+ dipole excitation pulse.
The phase can then evolve freely for tacc before the final
modified cyclotron phase is imprinted on the axial motion
by a coupling π -pulse, where it can be detected as an axial
phase [26,27]. All excitation and coupling pulses are shaped
with a Tukey window [29] in order to avoid systematic phase

shifts during the phase readout. During the phase evolution
time of the PnP sequence, an FFT axial-dip measurement is
performed. This simultaneous phase determination and dip
detection leads to a reduction of systematic effects associated
with the temporal variation of the trap potential and the mag-
netic field, since they cancel out when calculating the free
cyclotron frequency, using the invariance theorem in Eq. (5).
After repeating the measurement of the two ions in trap 2
and 3 ten times, the ions are swapped. If 132Xe26+ was in
the trap, then 208Pb41+ is swapped in and vice versa. This
is repeated for around 12 hours before restarting the whole
measurement scheme again with the N determination. The
magnetron frequency, being a factor ≈ 1, 600 smaller than
the modified cyclotron frequency, does not need to be mea-
sured repeatedly since the double-dip determination during
the preparation phase is sufficiently precise. After one mea-
surement run a relative statistical uncertainty of ≈ 10−11 is
reached.

To determine a neutral mass of 208Pb from the ions’
free cyclotron frequency ratio we need to include the mass
of the missing electrons in combination with their bind-
ing energies (in the following we always refer to the abso-
lute binding energies). We employ the ab initio fully rel-
ativistic multiconfiguration Dirac–Hartree–Fock (MCDHF)
method [30–32] to compute the binding energies EXe and
EPb of the outermost 26 and 41 electrons, respectively, in
neutral Xe and Pb atoms. First, for the case of Xe, the
ionization energy of the outermost 8 electrons has been
experimentally determined to be of 424.7(7) eV [33]. Thus,
one only needs to calculate the binding-energy difference
between the ground states of Xe26+ ([Ar]3d10 1S0) and
Xe8+ ([Kr]4d10 1S0). Similarly, since the ionization energy
of the outermost 4 electrons in neutral Pb has been mea-
sured to be 96.719 04(61) eV [33], only the correspond-
ing binding-energy difference between the ground states of
Pb41+ ([Kr]4d5 4P5/2) and Pb4+ ([Xe]4 f 145d10 1S0) needs
to be determined theoretically. In the following, we use
EXe08−26 and EPb04−41 to represent these two terms.

Within the MCDHF scheme, the many-electron atomic
state function (ASF) is constructed as a linear combina-
tion of configuration state functions (CSFs) with common
total angular momentum (J ), magnetic (M), and parity (P)
quantum numbers: |�P JM〉 = ∑

k ck |γk P JM〉. The CSFs
|γk P JM〉 are given as j j-coupled Slater determinants of
one-electron orbitals, and γk summarizes all the information
needed to fully define the CSF, i.e. the orbital occupation and
coupling of single-electron angular momenta. � collectively
denotes all the γk included in the representation of the ASF.
The set of CSF basis is generated by the GRASP2018 code
[32] via single and double (SD) excitation of electrons from
the reference configurations to high-lying virtual orbitals.
After solving the self-consistent MCDHF equations for the
radial wavefunctions and the mixing coefficients ck , the rel-
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ativistic configuration interaction (RCI) method is applied to
account for the corrections arising from the quantum elec-
trodynamic terms and Breit interactions. We systematically
expand the size of the basis set by adding and optimizing
virtual orbitals layer by layer up to n = 10 (n is the principle
quantum number), with the final correlation energies being
derived by extrapolating to n = ∞.

As the ground states of Xe26+ and Xe8+ are both in closed-
shell configurations, the CSF basis sets used for the calcula-
tions can be generated by allowing SD excitations from all
the core electrons starting with the 1s orbitals. This gives
a contribution from the SD electron correlation energy of
25.6 eV. The contributions from the Breit interactions and
QED effects are 4.0 and 0.5 eV, respectively.

For the calculation of Pb41+, however, due to its open
4d5 configuration, the number of CSFs for J = 5/2 eas-
ily grows above 4 million even for the SD exchanges of the
4s24p64d5 electrons and becomes not tractable. Therefore,
to access EPb04−41 , one needs to construct an ion chain in
the calculation to reduce the errors. We first calculate the
binding-energy difference between Pb4+ and Pb22+ via SD
excitations from core electrons down to the 3p subshell, and
then calculate the binding-energy difference between Pb22+
and Pb36+ by allowing SD excitations of all the core elec-
trons. Finally, the connection between Pb36+ and Pb41+ is
bridged over Pb42+ via SD excitations from the 4s orbitals.
In total, the SD electron correlation effects contribute 58.1 eV
to EPb04−41 . The Breit interactions and QED terms give rise
to corrections of 9.3 and −0.6 eV, respectively, to the binding
energy difference.

Until now, only the SD correlation energies are included
in the calculations. Considering that the uncertainties in Breit
and QED terms are small, the neglected higher-order correla-
tions will account for the systematic errors. To estimate these
errors, we make use of the accurate ionization data of the
outermost 8 and 4 electrons in Xe and Pb, respectively. The
estimations are based on three observations. First, as a self-
consistent theory, the MCDHF always approaches the real
ground-state energy from above. Thus, the MCDHF binding
energy of a given ionic ground state is always smaller than
its real value. Second, for a given element, the contributions
from higher-order correlation terms scale with the number
of bound electrons. Therefore, the differences between the
MCDHF binding energy and its real value is more likely to
be smaller in highly charged ions. Lastly, within the same
isoelectronic sequence, the contributions from higher-order
correlations are always smaller for highly charged ions. This
is because, perturbatively, in the denominator of each per-
turbation term, the energy differences between atomic states
in highly charged ions are much larger than those in lower
charged ions. As a result, for closed-shell ions, the calculated

binding-energy differences based on the SD excitations are
always smaller than their real values, but their deviations
become narrower when the charge states become larger.

For the case of Xe, we find that the calculated binding-
energy difference between Xe8+ and Xe is 3.5 eV smaller
than the experimentally measured value of 424.7(7) eV, with
the single-electron ionization energies of Xe, Xe7+, and
Xe8+ being 0.32 eV, 0.22 eV and 0.10 eV, respectively,
smaller than their experimental measurements. Though the
deviations of the single-electron ionization energies for some
open-shell ions between Xe8+ and Xe26+ may be larger than
the 0.22 eV deviation of that in Xe7+, one can still conser-
vatively expect that the average deviation of the 16 electrons
will not be larger than 0.22 eV. This indicates that the sys-
tematic shift of EXe08−26 shall be within 4.0 eV. To cover the
range between 0 to 4.0 eV, one can add a systematic correc-
tion of 2.0(2.0) eV, with both systematic shift and uncertainty
being 2.0 eV. This leads to EXe08−26 = 8546.5(2.0) eV and
EXe = 8971.2(2.1) eV.

With a similar procedure, the ionization energy of Pb2+
and Pb3+ are found to be 1.26 and 0.95 eV smaller than
their experimental measured values when SD excitation from
the 3p subshells are considered. This indicates an average
deviation of < 1.0 eV for the single-electron ionization
energies for Pb4+ to Pb22+, and a systematic correction of
9.0(9.0) eV to the binding energy of the corresponding 18
electrons. For the ions between Pb22+ and Pb41+, since they
are close to the isoelectronic systems of Xe ions, one can
conservatively assume a < 0.22 eV average deviation of
the corresponding single-electron ionization energies. After
the summation, we obtain EPb04−41 = 28633.9(9.1) eV and
EPb = 28730.6(9.1) eV.

3 Results

After calculating the free cyclotron frequencies during each
PnP loop, the interpolation method [34] is applied to calcu-
late the frequency ratios, see Fig. 3. This method uses two
consecutive cyclotron frequencies of one trap in position 1
and interpolates them to the time the cyclotron frequency of
the position 2 in the same trap was measured. Then the fre-
quency ratio of the interpolated value of position 1 and the
matching value of position 2 can be formed cancelling out
in first order the magnetic field drift over time. The linear
drift of the magnetic field is 	B/B = −2.3 × 10−10 /h.
The impact of the non-linear drifts of the B-field was thor-
oughly investigated and found insignificant on the level of
the achieved statistical uncertainty. The final measured ion
frequency ratio is
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Fig. 3 The plot shows the frequency ratios for the different PnP loops.
Each color represents a different measurement run. The 1σ error band
of the averaged ratio R̄meas is visualized in red

Table 1 Systematic shifts and their uncertainties on the measured
modified-cyclotron frequency ratio Rmeas. For more details see text

Effect Correction to Rmeas Uncertainty
(10−12) (10−12)

Image charge shift 185 9

Relativistic shift 0 4

Total 185 10

Rmeas − 1 = ν(208Pb41+)

ν(132Xe26+)
− 1

= 1.252 194 24(9) × 10−4, (7)

with a relative statistical uncertainty of 9 × 10−12.
The measured ratio is then corrected for known systematic

shifts and their respective uncertainties. An overview of the
relevant systematic effects and their size is listed in Table 1.

The largest systematic shift comes from the image charge
shift (ICS) [35]. The highly charged ions induce an oscillating
image charge in the trap electrodes. While this is necessary
for detection, it causes a shift of the ions’ frequencies by
generating a counteracting electric field. The image charge
shift depends strongly on the mass difference of the ions
and on the radius of the trap, the latter being in the case of
Pentatrap 5.000(5) mm. The ICS was determined to be
Rmeas − R̃ = 	(Rmeas)ICS = 1.85(9)×10−10, with R̃ being
the corrected ratio. In addition to this, the relativistic shift due
to relativistic mass increase [36] leads to another systematic
uncertainty related to the size of the excited radii during the
PnP measurement scheme: 	(Rmeas)rel = 0(4) × 10−12.

All other known systematic effects, due to e.g. trap poten-
tial anharmonicity, are on the order of 10−13 and below and
are therefore neglected. Thus, the final ωc-ratio is R − 1 =

Fig. 4 This colormap depicts a cutout of the nuclide chart. The color
corresponds to the improvement factor (with 1 being no improvement) in
mass precision after including the new mass value of 208Pb in the AME
[6]. The labeled arrows show the relevant connections for the mass
determination of the different nuclides via different forms of decays
from which the energy is known

1.252 192 39(9)(10)(13) × 10−4, where the number in the
first, second, and third brackets indicate the statistical, sys-
tematic, and total uncertainty, respectively.

Combining the binding energies of the missing electrons
calculated by theory, the experimentally determined mass
ratio, and the mass excess of the reference isotope of 132Xe
[13,14] as listed in the AME2020, the mass excess of 208Pb
is determined to be −21749.855(13) keV, which amounts
to a neutral atomic mass of 207.976 650 571(14) u. The new
value improves the mass uncertainty of neutral 208Pb by a
factor of 88 to a relative uncertainty of δm/m = 7 × 10−11

and shifts the mass excess value by −1.4(1.1) keV.

4 Discussion and conclusion

In addition to the improvement of precision of the mass of
208Pb itself, our measurement also improves the masses of a
series of lead isotopes, connected by (n, γ ) reactions. So far,
their mass precision was limited by the precision of 208Pb,
but is now limited by the precision of the energy of the (n,
γ ) reactions. Furthermore, Fig. 4 shows the improvement in
precision of, in total, 14 neighbouring nuclides’ masses con-
nected to the mass of 208Pb via different decays, e.g. α decay,
for which the energy is well known. Since the new value of
the mass excess of 208Pb is shifted downward, all these con-
nected nuclides will be shifted down by 1.4 keV. Table 2
lists the new mass values for all nuclides which were signif-
icantly improved. With the reported measurement we have
established a new region in the nuclear chart with reference
masses for experiments on heavy and superheavy nuclides.
When measuring masses around m = 200 u the error due to
the reference mass will be as low as a few 10−10 and therefore
negligible for mass determinations on radionuclides.

Furthermore, with the new mass precision of 208Pb of 7×
10−11 the g-factor of the bound electron can be determined
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Table 2 New mass values of affected nuclides, when including the new mass value of 208Pb in the AME2020 [6]

Z A el. T1/2 [37] AME2020 mass (μu) Improved mass (μu) Improvement factor

81 203 Tl Stable 202,972,344.1 (1.3) 202,972,342.7 (0.4) 3.2

81 204 Tl 3.783(12) y 203,973,863.4 (1.2) 203,973,862.01 (0.26) 4.8

82 204 Pb 1.4(6) × 1017 y 203,973,043.5 (1.2) 203,973,042.09 (0.18) 7.0

81 205 Tl Stable 204,974,427.3 (1.3) 204,974,425.9 (0.6) 2.4

82 205 Pb 1.70(9) × 107 y 204,974,481.7 (1.2) 204,974,480.26 (0.13) 9.2

81 206 Tl 4.202(11) min 205,976,110.1 (1.4) 205,976,108.7 (0.7) 2.1

82 206 Pb Stable 205,974,465.2 (1.2) 205,974,463.79 (0.12) 10.6

82 207 Pb Stable 206,975,896.8 (1.2) 206,975,895.39 (0.06) 21.6

82 208 Pb Stable 207,976,652.0 (1.2) 207,976,650.571 (0.014) 88.0

83 209 Bi 2.01(8) × 1019 y 208,980,398.6 (1.5) 208,980,397.2 (0.8) 1.8

82 210 Pb 22.20(22) y 209,984,188.4 (1.6) 209,984,187 (1.0) 1.6

83 210 Bi 5.012(5) d 209,984,120.2 (1.5) 209,984,118.9 (0.8) 1.8

84 210 Po 138.376(2) d 209,982,873.7 (1.2) 209,982,872.27 (0.14) 8.8

84 211 Po 0.516(3) s 210,986,653.2 (1.3) 210,986,651.7 (0.6) 2.4

84 212 Po 294.3(8) ns 211,988,868.0 (1.2) 211,988,866.55 (0.12) 10.1

to the same level of precision. It therefore allows to carry
out the experiments on 208Pb81+ at Alphatrap and Artemis
without having a large mass dependent error limiting their
g-factor determination.
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