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Abstract Inverse problems often occur in nuclear physics,
when an unknown potential has to be determined from the
measured cross sections, phase shifts or other observables.
In this paper, a data-driven numerical method is proposed
to estimate the scattering potentials, using data, that can be
measured in scattering experiments. The inversion method is
based on the Volterra series representation, and is extended
by a neural network structure to describe problems, which
require a more robust estimation. The Volterra series method
is first used to describe the one-dimensional scattering prob-
lem, where the transmission coefficients, and the phase shifts
are used as inputs to determine the unknown potentials in the
Fourier domain. In the second example the scattering process
described by the radial Schrödinger equation is used to esti-
mate the scattering potentials from the energy dependence of
the phase shifts, where neural networks are used to describe
the scattering problem. At the end, to show the capabilities
of the proposed models, real-life data is used to estimate the
3S1 NN potential with the neural network approach from
measured phase shifts, where a few percent relative match is
obtained between the measured values and the model calcu-
lations.

1 Introduction

Inverse problems in low-energy nuclear physics are related
to the determination of (generally) local scattering poten-
tials from observables such as scattering phase shifts, trans-
mission coefficients, total- and differential cross sections,
spin observables etc. [1–5]. These problems are generally
ill-conditioned, and in many cases even ill-defined [6,7] and
require a careful examination of the actual problem on which
the inversion is done. In low-energy nuclear physics, usually
the interaction potential is sought from elastic scattering data,
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which could be measured in colliding experiments [8]. At
high enough energies, where inelastic channels could open,
the potentials could also contain imaginary parts, that takes
into account the absorption of the incoming flux, thus able to
describe non-elasticity in the scattering experiments. Nuclear
interactions are generally very complicated in nature, how-
ever at low energies it can be described fairly well, with
optical potential models, which could take into account the
elastic- and inelastic interactions as well [9,10].

There are several methods for estimating the interaction
potentials from measured data that can be used in differ-
ent scenarios. One such possibility is the original Gelfand–
Levitan–Marchenko method, which uses the energy depen-
dence of the phase shifts of a specific partial wave, to deter-
mine the scattering potential [11]. Another type of inversion
is the Newton–Sabatier method, which solves the inversion
problem at fixed energy from measured phase shifts of the
different partial waves [12]. Apart from the fixed-angular
momentum and fixed-energy cases, there also exist mixed
case inversion techniques, where the phase shifts of several
angular momenta, at different energies are used to obtain the
potentials [13].

In this work, two different methods are proposed, which
are both able to estimate the interaction potential from
measurable data in quantum scattering problems. The first
method uses a non-causal Volterra series representation to
make a connection between the observables and the poten-
tials in the Fourier domain, while the second method gives
a sequential method to estimate the potentials at discrete
space-points with neural networks, using only the energy
dependent phase shifts at fixed angular momenta. The meth-
ods described here are purely data-driven and the identified
systems are constrained to an operating range, in which the
training has been done. If the differential equations, which
govern the inverse systems are known, then it could be pos-
sible to analytically express e.g. the Volterra kernels [14],

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-022-00839-y&domain=pdf
mailto:balassa.gabor88@gmail.com


186 Page 2 of 14 Eur. Phys. J. A (2022) 58 :186

thus giving a more robust estimation, in a much wider oper-
ating range. The inverse system, however is rarely known,
and is usually highly nonlinear, in which case it is necessary
to constrain ourselves into a well-defined range, where the
nonlinearities could be locally modeled.

The paper is organized as follows. In Sect. 2 the neces-
sary mathematical tools are summarized, which contains the
Volterra series representation of nonlinear dynamical sys-
tems, and the applied neural network model as well. After
the short summary, in Sect. 3 the one-dimensional scatter-
ing problem is addressed, where a non-causal Volterra rep-
resentation is used to estimate the scattering potentials in
the Fourier domain, using the phase shifts and the transmis-
sion coefficients as inputs. In Sect. 4 the low-energy elas-
tic scattering is addressed, where a neural network model
is used to describe the interaction potential in low-energy
nuclear scattering, from the energy dependent phase shifts as
inputs. The proposed neural network model is then used in
Sect. 5 to describe the low-energy neutron + proton scattering
data, giving an approximate 2% relative match between the
measured-, and the obtained phase shifts calculated from the
potential after inversion. At the end, Sect. 6 concludes the
paper, giving some further possibilities on how to use and
extend the proposed methods.

2 Mathematical models

In this section the necessary mathematical tools are summa-
rized, including the causal and non-causal Volterra series,
and the multilayer perceptron (MLP) type neural network
structures, which will be both used in the later sections. Both
mathematical models are able to identify nonlinear dynami-
cal systems, and were used in many engineering applications,
where the underlying mathematical models are too complex
or not known exactly [15–17].

2.1 Volterra series

In linear system theory, where a physical system can be
described by linear differential equations, the system can
be characterized by a simple convolution integral, where an
input u(t) is convolved with a so-called transfer function
h(t), giving the y(t) output of the system as follows [18]:

y(t) =
∞∫

−∞
h(τ )u(t − τ)dτ, (1)

where y(t) is the output of the system, u(τ ) is the input,
while h(τ ) is the transfer function. Here, the value t is some
parameter e.g. time, position, or any other variable on which
the inputs, and outputs could depend. This simple representa-
tion can be extended even if the physical system is described

by a system of linear differential equations, in which case
a transfer matrix can be introduced [19]. In the linear case
the behavior and the stability of the system is fully charac-
terized by the transfer function, thus the main problem is to
identify the h(t) kernel. In real-life, however, many physical
systems are nonlinear in nature, and the simple linear repre-
sentation is simply not valid. In this case many simplifying
assumptions can be made e.g. one could take the best lin-
ear approximation (BLA) of a weakly nonlinear system in
the least-squares sense [20,21]. The best linear approxima-
tion could be enough in many practical applications, how-
ever if the nonlinearities are dominant, other methods are
necessary to adequately model the nonlinear system. One of
these methods is the Volterra series representation of nonlin-
ear dynamical systems [22,23], which is the extension of the
linear theory by introducing higher order polynomial terms
in the convolutional integral, and can be written as:

y(t) = h0 +
∞∫

−∞
h1(τ )u(t − τ)dτ

+
∞∫

−∞

∞∫

−∞
h2(τ1, τ2)u(t − τ1)u(t − τ2)dτ1dτ2 + · · ·

· · ·

+
∞∫

−∞
. . .

∞∫

−∞
hn(τ1, . . . , τn)u(t − τ1) . . . u(t − τn)

× dτ1 . . . dτn, (2)

where hn(τ1, . . . , τn) is the nth order Volterra kernel of the
system. In the most general case the integrals are going from
−∞ to ∞, in which case the model is called non-causal. In
this case all the future and past values are used to describe
the system, however, as it was mentioned before, the param-
eter t does not have to be time, but can be position or any
other variable on which the system depends. If the system
is causal, then the integral limits can be changed to [0,∞],
which greatly simplifies the identification problem. As it will
be shown later, the non-causal representation is a very use-
ful tool in the addressed problems, which is also shown in
[24], where a discrete, non-causal Volterra model is used to
describe inverse quantum mechanical problems.

In practical applications, the system is usually discretized
and the mathematical model could be cast into a system of lin-
ear equations, where the coefficient matrix contains the inputs
with different lags, while the unknown parameter vector con-
tains the identifiable kernel functions at the discrete points
[25]. The identification of the kernel functions h1, h2, . . . , hn
are quite the cumbersome task, if the order, and the memory
of the system is large, in which case alternative methods exist
to identify the kernels [26,27]. One particularly interesting
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Fig. 1 The schematic view of a multiple input–multiple output, feed-
forward, multilayer perceptron model, with h hidden layers

method is the neural network approach, where different neu-
ral network structures are used to obtain the nth order Volterra
kernels by Taylor expanding the activation functions around
the bias values [28].

In the applications in this paper, multiple input and sin-
gle output (MISO) systems are in focus, in which case the
Volterra representation changes to:

y(t) = h0 +
N∑
i=1

Hi
1{ui (t)} +

N∑
i1,i2=1

Hi1,i2
2 {ui1(t)ui2(t)}

+ · · · +
N∑

i1,...,iN=1

Hi1,...,iN
N {ui1(t), . . . , uiN (t)}, (3)

where ui (t) is the ith input variable, while the HN {·} multi-
input kernel functions are expressed as:

Hi1,...,iN
N {ui1(t), . . . , uiN (t)}

=
∞∫

−∞
. . .

∞∫

−∞
hi1,...,iNN (τ1, . . . , τN )ui1(t − τ1) . . .

uiN (t − τN )dτ1 . . . dτN . (4)

As it can be seen, in the MISO case, the inputs can be mixed
together giving higher order mixed terms e.g the second order
h2(τ1, τ2)u1(t − τ1, t − τ2), which could be included in the
identification process.

2.2 Neural networks

The neural network model is a different approach, which
can be used to describe nonlinear dynamical systems. In this
case the system is described by many interconnected layers
built up by so-called neurons, which could have nonlinear or
linear activation functions as well [29,30]. In this paper only
feed-forward multilayer perceptron structure is used, there-
fore in this section, only that will be described in more detail.
The schematic view of a fully-connected, feed-forward MLP
network can be seen in Fig. 1, where for the sake of gener-
ality the multiple input and multiple output (MIMO) case is
shown. The number of inputs are set to N , while the number

of outputs are set to M . The mapping from u1, u2, . . . , uN

to y1, y2, . . . , yM are described by the block structure shown
in Fig. 1, where each line corresponds to a weight parameter,
and each rectangular block corresponds to a neuron, which
is decribed by an activation function and a bias parameter.
The first h columns are the so-called hidden layers, while the
last layer labeled by o is the output layer. The input–output
relationship can be expressed in a simple compact form if
one introduces vector and matrix notations, in which case
the output vector y = [y1y2 . . . yM ]T can be expressed as:

y = No
(
bo + WoNh

(
bh + WhNh−1

(
. . . . . . N 1

(
b1 + W 1u

))))
, (5)

where Nh = [nh1nh2 . . . nhkh ]T is a vector of the activation
functions at the hidden-layer h (or at the output layer o),
while bh = [bh1bh2 . . . bhkh ]T is the vector of bias paremeters,

and Wh is a weight matrix constructed by the elements wh
i j .

This feed-forward structure is usually trained by the back
propagation technique [31], which is a very efficient way
in calculating the derivatives, that is needed for solving the
optimization problem for the unknown weights and biases.
A very good property of the neural network approach is its
generalization capability, which is the ability to predict the
output to previously unseen input data. With a careful con-
struction of the network, very good generalization properties
can be achieved [32] for different network structures as well.

3 One-dimensional scattering with a non-causal
Volterra model

The first problem, which is addressed with the Volterra for-
malism will be the one-dimensional quantum scattering prob-
lem, where an incoming particle, described by the wave func-
tion φ(x) = eikx is scattered on a bounded potential V (x),
giving a scattered wave Ψ (x). The scattering process can be
described by the Lippmann–Schwinger equation [33], which
in one-dimension has the following form:

Ψ (x) = φ(x) +
∞∫

−∞
dx ′G(x, x ′)Ψ (x ′), (6)

whereG(x, x ′) is the Green function of the Schrödinger oper-
ator in one-dimension [34], k is the wave number, while φ(x)
is the incoming-, and Ψ (x) is the outgoing wave function.
Assuming that the potential goes to zero at some finite dis-
tance, after discretization the integral equation can be rewrit-
ten into a linear system of equations, then can be solved
by standard numerical methods. In the inverse problem, the
unknown potential is sought from observables, which can be
measured in scattering experiments. In [24] the above prob-
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Fig. 2 The block diagram of the inverse system

lem was examined with a non-causal Volterra model using the
real and imaginary parts of the scattered wave as inputs of the
system. In an experimental setup however, the scattered wave
is not accessible and the typical observables are the asymp-
totic phase shifts and/or transmission/reflection coefficients
[35,36]. In this section, a non-causal Volterra system is used
to describe the scattering potential in the Fourier domain,
using the scattering phase shifts, and transmission coeffi-
cients as inputs. The block diagram of the system in question
can be summarized in Fig. 2, where the input-output rela-
tionship is described by a dynamical system, which is essen-
tially nonlinear. The nonlinear nature of the inverse scattering
problem will be more apparent in Sect. 4, where the phase-
shift→potential relation can be described by a first order
nonlinear differential equation. In this section, a closed form
of the dynamical system will not be derived, and a purely
data-driven technique is proposed, which is able to describe
the inverse problem sketched in Fig. 2. The two inputs of the
system are the k-dependent phase-shifts, and transmission
coefficients, which is defined as the ratio of the transmitted
intensity to the incident intensity:

T (k) = |ΨT R(x)|2
|ΨI N (x)|2 , (7)

where T (k) is the transmission coefficient, ΨT R is the trans-
mitted wave function, ΨI N is the incoming wave function.

An example for the system inputs and outputs can be seen
in Fig. 3, where the potential V (x) and the corresponding
Δφ(k) and T (k) functions are also shown.

It is apparent from the block diagram in Fig. 2, that the
output of the system is not V (x), but instead its Fourier trans-
form V (k), which is a more natural choice if the inputs of
the system are all k-dependent quantities. The non-causal
nature of the applied Volterra system means, that after
discretization, the output V (ki ) depends on the previous
ki−1, ki−2, . . . ki−M , the current ki , and the following values
ki+1, . . . ki+M as well, which can be summarized as follows:

V (ki ) = h0 + HΔφ
1

[
Δφ[k]

]
+ HT

1

[
T [k]

]

+HΔφ,T
2

[
Δφ[k], T [k]

]
, (8)

where Δφ is the phase shift, T is the transmission coefficient,

HΔφ
1

[
Δφ[k]

]
and HT

1

[
T [k]

]
are the Volterra kernels for the

single inputs Δφ and T , while HΔφ,T
2

[
Δφ[k], T [k]

]
con-

tains the cross-kernels for the two inputs. The Volterra ker-

Fig. 3 Typical system inputs (phase shift, transmission coefficient) for
a symmetric potential for k ∈ [0.1, 5] MeV

nels are practically truncated at order N , and with memory
M , so that they can be identified with numerical techniques.

To identify the kernels, 12,000 training samples have been
generated by solving the Lippmann–Schwinger equation,
with V (x) ∈ [0, 1] MeV, when x ∈ [−4, 4] MeV−1, and
V (x) = 0, if |x | > 4 MeV−1, which will be the operating
range of the identified system. The potentials used for training
were uniformly generated random samples, in the predefined
range, which is a common technique in system identification
to excite the system [37]. There are more refined methods
for generating excitation signals e.g. random phase multi-
sines [38], which could have been also used in this case as
well. In addition, only symmetric potentials were generated
so that the Fourier transform of V (x) will be purely real.
Here, the h̄ = c = 1 natural system of units is used, and the dis-
tance is measured in inverse energies. The Fourier transform
for the potential has been calculated between k ∈ [0, 20]
MeV, with Δk = 0.2 MeV, so the Volterra system is dis-
cretized into 100 discrete points in momentum space. The
choice of this discretization in momentum space corresponds
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to δx ≈ 0.163 MeV−1 in position space, which is approxi-
mately the maximum resolution, what we can get after inverse
Fourier transforming the obtained V (k) potential.1 To each
wave-number ki , one Volterra system is identified. This does
not take away from the generality of the system, as it is always
possible to extend the model by introducing an extra input (in
this case the wave number k), so that only one Volterra model
is needed to describe the inverse system. It is, however, much
simpler to identify separate Volterra systems for each wave
number, due to the complicated cross-terms, which would
arise otherwise. Identifying the kernels, it turned out that sec-
ond order kernels, with M = 35 memories, and first order
cross-terms were sufficient to describe every system, giving
a few percent relative error at all of the wave numbers, for
which the mean squared error (which is used in the optimiza-
tion process, and is defined in Eq. 9) can be seen in Fig. 4.

MSE j = 1

N

N∑
i=1

(
Vtrue(k j ) − Vest (k j )

)2
, (9)

where N is the number of samples, Vtrue is the true potential,
and Vest is the estimated potential given by the second order
Volterra model, which has been identified at k j . In Fig. 5 the
results can be seen for a randomly generated test potential,
discretized for 50 points between x ∈ [−4, 4] MeV−1 in
position space, where a remarkable agreement is achieved
between the estimated and the true potentials in Fourier-,
and also in position space, after inverse Fourier transforming
the obtained V (k) potential. For better visibility, the true
potential in Fig. 5 is linearly interpolated between the 100
inversion points in the Fourier space, and also between the 50
discrete points in position space, which are used in the inverse
Fourier transform. The model works for more complicated
test potentials as well, which can be seen in Fig. 6. Here,
some larger discrepancies can be seen near k ≈ 6 MeV,
which corresponds to the largest MSE values in Fig. 4, and
therefore is expected. With more memories and/or including
higher order terms and cross-terms, the model can be further
improved.

In this operating range, the nonlinearities are quite neg-
ligible, as only second order systems were enough to cover
them, with a good accuracy. If the magnitude of the potential
is larger, or the potential covers a wider range in space, the
simple second order approximation might not be enough,
and one has to include higher order terms as well. It was
also important to include, at least the first order cross terms,
in which case the combinations of the two inputs at differ-
ent ki -s e.g. Δφ(ki )T (k j ), are also appearing in the Volterra
representation.

In the next section, we go a step further, and only the
phase shift information will be used at a wider operating

1 The maximum resolution is the consequence of the Nyquist criteria.

Fig. 4 Mean squared errors for the 100 Volterra models at different
wave numbers

Fig. 5 Validation of the non-causal Volterra model for a discretized
test potential. The upper figure show the Fourier transformed true-, and
estimated potentials, while the lower figure shows the inverse Fourier
transform of the true-, and estimated potentials

range, where a different approach is more suitable to solve the
inverse problem in low-energy elastic scattering problems,
which arises in low-energy nuclear physics.

4 Low-energy elastic scattering with neural networks

In this section, a new data-driven method will be introduced,
which is able to determine the scattering potentials in low-
energy elastic scattering experiments, when the only observ-
ables are the energy dependent s-wave phase shifts. In this
regard, the inversion is a fixed angular momenta method,
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Fig. 6 Validation of the non-causal Volterra model for a discretized
test potential. The upper figure show the Fourier transformed true-, and
estimated potentials, while the lower figure shows the inverse Fourier
transform of the true-, and estimated potentials

where the energy dependence of the phase shifts are used
at fixed angular momentum to describe the inverse scatter-
ing problem. The method is universal, and it could be easily
extended to different angular momenta as well, which is a
future goal of the proposed method. In the previous section a
Volterra model is used to describe the inverse problem, while
here the method is extended with the use of a feed-forward
neural network structure, which is able to grasp higher order
nonlinearities. After describing the neural network model,
and showing its working principles through simple exam-
ples, it will be used to describe real-life scattering data in
Sect. 5.

Here, first a short introduction is given of the theory of low-
energy quantum scattering, where we solely focus on spher-
ically symmetric potentials, but now in three-dimensions,
so that the method can be readily used and compared with
real experiments as well. In low-energy nuclear scattering
the two-body scattering system with masses m1 and m2

can be described by the three-dimensional time-independent
Schrödinger equation:

− h̄2

2μ
ΔΨ (r) + V (r)Ψ (r) = EΨ (r), (10)

where μ = m1m2/(m1 + m2) is a reduced mass of the
two colliding particles, Ψ (r) is the normalized wave func-
tion, r = (x, y, z) space-vector, Δ = ( ∂2

∂x2 , ∂2

∂y2 , ∂2

∂z2 ) is
the Laplace operator, while V (r) is the potential, and E
is the energy. If we only consider spherically symmetric
potentials and separate the radial and the angular parts as
Ψ (r) = Rl(r)Ym

l (θ, φ) the problem can be simplified into

solving the radial Schrödinger equation, which has the form
of:

− h̄2

2μ

∂2ul(r)

∂r2 +
[
V (r) + h̄

2μ

l(l + 1)

r2

]
= Eul(r), (11)

where ul(r) = r Rl(r) is the radial wave function, and l is the
angular momentum of the system. In scattering experiments,
we are interested in the asymptotic behavior of the wave
functions, which can be expressed as the sum of an incoming
plane wave eikr and an outgoing spherical wave, weighted
by the scattering amplitude f (k, θ), which is related to the
differential cross section as [39,40]:

dσ

dθ
= | f (k, θ)|2. (12)

The scattering amplitude can be expressed with the scattering
phase shifts by doing a partial wave expansion, giving the
following form:

f (k, θ) = 1

2ik

∞∑
l=0

(2l + 1)(e2iδl−1 − 1)Pl(cosθ), (13)

where δl is the phase shift of the lth partial wave, and Pl is
the lth order Legendre polynomial. In scattering experiments
the differential-, and total cross sections are measured, and
the phase shifts are determined by fitting the different partial
waves [41,42].

The forward problem is therefore to solve the Schrödinger
equation, and by fitting the expected asymptotic wave-
function, to obtain the phase shifts. The Schrödinger equa-
tion, which describes the problem is linear, however the
inverse problem, which appears in measurements are non-
linear, as it can be seen from the so-called Variable Phase
Approximation (VPA) [43–46], which is a first order nonlin-
ear differential equation, which relates a compact and local
scattering potential to the asymptotic phase shifts as:

dδl(r)

dr
= −U (r)

k

(
jl(kr) · cos δl(r) − nl(kr) · sin δl(r)

)2
,

(14)

where δl(r) is the accumulated phase shift at r , whileU (r) =
2μV (r)/h̄2, and k = (2μE/h̄2)1/2. The jl and nl functions
are the Ricatti–Bessel and Ricatti–Neumann functions. The
initial condition for the VPA equation is δl(r = 0) = 0,
which corresponds to a zero phase shift, when the potential
still not disturbs the incoming wave. The measured, accumu-
lated phase shift will be the asymptotic δl(r → ∞) value.
This equation can be used in atomic and nuclear physics to
obtain the scattering phase shift for a given potential [47,48],
however for higher angular momenta the numerical solution
is quite difficult, and a very precise solver e.g. fourth or fifth
order Runge–Kutta method is necessary.
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In this paper, only the s-wave (l = 0) scattering is consid-
ered, in which case the VPA equation becomes:

dδ0(r)

dr
= −U (r)

k
sin2

(
kr + δ0(r)

)
. (15)

In the inverse problem, the asymptotic δ(r → ∞) values at
different energies are used as inputs to describe the unknown
potential V (r).

Knowing that the phase shifts can be described directly
by a first order nonlinear differential equation, one way for
inversion would be to give a closed form to the direct problem
(if its possible) at different energies, then solve the nonlinear
system of equations with a suitable method. In ideal case,
the closed form would be the analytical solution of Eq. (15),
however due to the nonlinearities, it is not a trivial problem
to solve. In the system identification side, it is possible to
estimate the behavior of the nonlinear dynamical system in
a well defined operating range, with either Volterra series or
neural networks. This is, however, not an efficient way to
do the inversion, because one still has to solve a system of
nonlinear equations to obtain the potentials.

In the Volterra system theory there are methods on how
to obtain the inverse kernels from the identified direct ker-
nels [49], while in the neural network case, there are several
methods exist for inversion [50–52]. Most of these meth-
ods require a numerical inversion scheme, where e.g. gradi-
ent methods are used to determine the inverse solution. One
especially interesting method is the use of an invertible neu-
ral network structure [53,54], where the inverse of the sys-
tem could be uniquely determined from the forward network.
This could be a convenient way to solve these kind of prob-
lems, because the forward process is usually much simpler to
train, however in this case a very careful training is needed if
the inverse system is badly conditioned. Another interesting
method, which could be tested in the future is the use of one-
dimensional convolutional neural networks (1D CNN) [65],
which could have nice properties e.g. insensitivity to small
perturbations in the input data, and due to its convolutional
form it could be well suited to describe dynamical systems as
well. In the followings only multilayer perceptron type neu-
ral networks are used to describe the dynamical systems, and
the usage of other types of networks is left to future works.

The method, which will be proposed, identifies the inverse
system sequentially, using the phase shifts as inputs and the
potentials as outputs. The schematic view of the inversion
process can be seen in Fig. 7, where Δφ refers to the energy
dependent s-wave phase shifts, while V (r) is the potential.
In the method the position space (distance from the origin
r ) is discretized at M different space points, denoted by
r1, r2, r2, . . . , rM , where r1 is the closest point to the ori-
gin, while rM is the furthest. The inversion will be given
in these so-called inversion points, which ideally spans the
whole space, where the V (r) potential differs significantly

Fig. 7 The schematic view of the inversion process, where each Ni
block corresponds to a fully connected MLP network

from zero. In this sense, we assumed that the potential goes
to zero (or at least close to zero) at a finite distance, which
is a reasonable assumption in nuclear physics. In practice, it
is usually possible to give, at least a crude estimation to the
range of the potential, thus this information could be easily
put into the identification process. If nothing is known from
the potential, then it also should not be a problem, however
the identification process could take a longer time, because
one have to span a larger region, with possibly more inversion
points.

The method starts from the assumption, that a closed form
can be given to the potential at the last inversion point V (rM ),
using only the phase shifts as inputs. To describe this rela-
tion, a multilayer perceptron model is identified, which is
marked as N1 in Fig. 7. For the next point, V (rM−1), the
phase shifts, and also the previously estimated V (rM ) poten-
tial value is used as inputs for the second dynamical system
N2. The V (rM−1) potential still only depends on the mea-
sured phase shifts, but now through N1 as well. In this way
the identification process turned out to be much simpler. The
method can be generalized for the following points as well,
where the last inversion point V (r1) will depend on the phase
shifts, and all of the previously estimated potentials as well,
which also depend on the input phase shifts, so ultimately
we will arrive at a closed form between the phase shifts and
the potentials in the inversion points. The method can be
summarized as follows:

V (rM ) = N1(Δφ1,Δφ2, . . . , Δφk), (16)

V (rM−1) = N2(Δφ1,Δφ2, . . . , Δφk, V (rM )),

... (17)

V (r1) = NM (Δφ1 . . . , Δφk, V (rM ), . . . , V (r2)), (18)

where each Ni (·) expression represents a multilayer percep-
tron model. The number of free parameters can be expressed
by counting the weight and bias parameters at every MLP
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used in the inversion points as:

Ntot =
M∑
i=1

⎡
⎣(k + i − 1)h(i)

1 +
n(i)−1∑
j=1

h(i)
j h(i)

j+1

+hn(i) +
n(i)∑
j=1

h(i)
j + 1

⎤
⎦ , (19)

where M is the number of inversion points, h(i)
j is the number

of neurons in the j’th hidden layer of the i’th MLP, k is the
number of phase shifts used as inputs, whilen(i) is the number
of hidden layers in the i’th MLP.

To test the method in a simple scenario, let us assume, that
the sought potential is bounded between V (r) ∈ [−10, 0]
MeV in r ∈ [0, 6] fm, and dies out at r > 6 fm, while for
the mass, we fix m = m1 = m2 = 1 GeV. These values
give a good benchmark to examine the method, as the non-
linearities in this case are becoming non-negligible, thus a
nonlinear dynamical model is necessary. Here, instead of the
wave number k, we introduce the laboratory kinetic energy
Tlab as:

k = m2
2(T

2
lab + 2m1Tlab)

(m1 + m2)2 + 2m2Tlab
, (20)

where Tlab is the laboratory kinetic energy. In the follow-
ing examples Tlab is going to be used as the input parameter
for the phase shifts, so Δφ(k) → Δφ(Tlab) exchange is
used, to be able to compare the model results directly with
the measurements in Sect. 5. To do the identification, 10,000
training-, and 2000 validation samples has been generated in
the predefined range, where the phase shifts has been calcu-
lated by the VPA equation shown in Eq. (15).

The identification has been done for different systems con-
taining different number of hidden layers and/or neurons to
be able to determine an optimal system complexity for the
actual problem. The inputs for the system were the labora-
tory kinetic energy dependent phase shifts, Δφ(Tlab), from
1 to 99 MeV, with ΔTlab = 5 MeV steps, so in overall 20
points at Tlab = [1, 6, 11, 16, . . . , 99] MeV. The number of
inversion points is set to M = 20 between 0 and 5.713 fm,
with Δr = 0.3007 fm. To train the system the Levenberg-
Marquardt back propagation algorithm is used [63] sequen-
tially for every inversion point one after another, starting from
the last point at the largest distance. The inputs and outputs
were normalized between [−1, 1] in every neural block, and
to avoid overfitting, the training is stopped after the valida-
tion error starts to increase, or the gradient reaches a minimal
value set to be 10−7.

To make a first guess for the complexity, four different sys-
tems were trained and compared by calculating the relative
errors in the inversion points for 2000 test samples, which
can be seen in Fig. 8, where the relative errors are shown in

Fig. 8 Relative errors in the inversion points for four different MLP’s

each of the inversion points. In each of these systems all of
the Ni neural blocks are assume to have a feed-forward MLP
structure, with the same number of hidden layers, and the
same number of neurons.

Three of the four systems consists only one hidden layer
h(i), with 2, 5, 20 neurons in each of the neural blocks Ni ,
while in the last system two hidden layers were used, with
20 neurons in each. The activation functions were tanh(·)
nonlinearities in the hidden layers, and a linear relationship
in the output layer. For the first inversion point in r = 5.713
fm only the input phase shifts could be used for teaching,
therefore one could expect a larger error, and a slower learn-
ing rate, which can be seen in the calculated relative errors
as well. It can be seen that with increasing complexity, the
relative errors are decreasing in each of the inversion points.
With using 10 neurons and one hidden layer, the relative
error is just a few percent in almost all of the points. In all
cases, the largest errors can be seen in the last few points
at small distances below 0.5 fm, which is the consequence
of the large sensitivity of the inversion in this range. With
using two hidden layers (or more neurons), the errors could
be further reduced, however to achieve a very good inversion
it is not necessary to use two hidden layers in each of the
inversion points. The final model, which will be used in the
followings consists one hidden layer, with [10] neurons in the
first 16 inversion points r20, r19, . . . , r5, and [20, 20] neurons
in two hidden layers in the last 4 inversion points r4, . . . , r1,
where the errors are the largest. Following Fig. 7 this means,
that N1,N2,. . .,N16 are MLP’s with one hidden layer and 10
neurons, while N17,N18,N19, and N20 are MLP’s with two
hidden layers, each having 20 neurons. The relative errors
in the inversion points for this system can be seen in Fig. 9,
where again, a few percent relative error has been obtained
in all of the points.
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Fig. 9 Relative errors in the inversion points for the identified MLP.
The h(i) notation refers to the number of neurons used in the hidden
layers in the i’th inversion point, where i corresponds to the distance
r20−i+1

In Fig. 10 the training process can be followed, where
the dependence of the mean squared error on the number of
epochs determined from the normalized inputs/outputs are
shown in four different inversion points r20, r13, r5, r1, where
the training and validation loss is shown as well. The figures
clearly show the previously mentioned behavior regarding
the time to reach an optimal solution. The first inversion point
(r20) needs more than 102 epochs to reach an MSE, which
corresponds to a few percent relative error in that point, while
in the subsequent points a convergence can be achieved rela-
tively fast, after 10–20 epochs. Near the last inversion point
(r1) the MSE of the converged solution is a little larger than
in the previous points, which is also expected from the pre-
viously determined relative errors in Fig. 9.

To further examine the model, the accuracy has been cal-
culated using different number of training samples for the
previously determined model, which can be seen in Fig. 11.
The accuracy shows a sharp rise at a few hundred samples,
then a slowly saturating region after a few thousand samples,
which is the usual shape one will get with multilayer per-
ceptron models [64]. This shows us, that in this system, with
only a few thousand training samples a good generalization
can be obtained with the proposed model.

To show the model capabilities through some examples,
the results for two randomly generated potential compared
with the original potentials can be seen in Fig. 12. The inver-
sion technique is capable to give satisfying results within a
few percentage of relative error, even with this simple neural
network structure. It is worth mentioning, that the discrep-
ancies, especially at small r -s, could be improved, by setting
up more inversion points, and/or using more phase shifts as

Fig. 10 Training and validation losses during the training process for
four inversion points

Fig. 11 Model accuracy dependence on the number of training sam-
ples

inputs, however in that case the time of training and the com-
plexity of the model could also increase.

5 Estimating the 3S1 NN scattering potential with
neural networks

After introducing the neural network model through a sim-
ple example, let us proceed to the main application of the
inversion method, which is the determination of the scat-
tering potential in low-energy elastic S-wave NN scattering
from the experimental phase shifts. In particular, we are inter-
ested in the 3S1 channel, in which case one bound state, the
deuteron, appears in the measured phase shifts [55,56]. In the
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Fig. 12 Validation of the model for two randomly generated potentials.
The red markers represent the values at the inversion points, while the
black lines are the true potentials

identification process, there are no restrictions to the num-
ber of possible bound states, however, knowing apriori the
number of bound states, it could be possible to restrict the
training samples to only consist potentials, which can give a
specific number of bound states. In this case the training and
the identification of the system could be greatly simplified,
however the obtained model will be more restricted.

Before generating the training samples, it is necessary to
gather some information about the identifiable system, as
it could greatly simplifies the identification process. In this
case, it is known, that the effective range of the scattering
process should be a few Fermi in position space, however it
is also known, that strong repulsive, and Coulomb-like terms
could also appear in the potentials. As it was described in the
previous section, the first inversion point (furthest from the
origin) does not have to be zero, but it is desirable, to be at
least close to zero, as in that case, the identification is much
simpler, and a simpler model could be used to describe that
point. In this case, we can assume, that at approximately r ≈
3 fm, the potential is negligible, so for first approximation, we
set the range of the inversion to r ∈ [0, 3] fm, with M = 30
inversion points, starting from r1 = 0 fm, and ending at
r30 = 2.9986 fm, which corresponds to Δr = 0.1034 fm.

The operating range for the inversion has been set, so
the model could describe a bounded attractive and repulsive
potential in the whole range, and also a highly repulsive term
e.g. a Coulomb-, or a nonperturbative strong repulsive core,
at low r -s near r = 0. The potentials are also assumed to
go to zero at r ≈ 3–4 fm. Furthermore, it would be possi-

ble to include infinities at r = 0 as well, in which case the
inversion point at r = 0 fm has to be excluded. In this case,
we assumed that the potential at r < 0.5 fm is a finite value
between −500 and 20, 000 MeV, while at r > 0.5 fm the
values are constrained in the range of V (r) ∈ [−500, 500]
MeV, and go to zero at 3–4 fm. In the generation of the excita-
tion functions, or in other words the V (r) training potentials,
it is necessary to include the previous assumptions, while
keeping the randomness of the generated functions. This is
realized with the help of Piecewise Hermite Interpolating
Polynomials (PCHIP) [57], which is a polynomial interpo-
lation method, that is able to give continuous functions in a
predefined range, so it is possible to generate V (r) functions,
where |V (r)| < Vmax constraint can be easily satisfied. To do
the interpolation a number of control points has to be given,
which are used as fixed points, in which between the interpo-
lation is done. To keep the randomness of the potentials, the
control points are chosen randomly between rc ∈ [0, rmax ]
for each Vi (r) excitation, by first generating a random num-
ber N , which gives the number of control points, then gen-
erating N number of ri points, which will be the place of the
control points. At the final step a random number is generated
for each control point in the operating range of V (r), then we
interpolate between the control points. Two randomly gener-
ated potential, which respects our previous assumptions are
shown in Fig. 13, where it can be seen, that at small distances
the potential could be very large, while in the region r > 3
fm it goes to zero. It can also be seen, that if the number
of control points are large, then the potential keeps its ran-
domness, that we desire in an identification process, where
one optimally wants to excite all of the frequencies until the
Nyquist limit. To train the neural network, 10,000 samples
have been generated with different number of control points
in each sample from N = 2 up to N = 18, while for valida-
tion another 2000 samples have been generated, which are
also used in the training process to avoid overfitting. Follow-
ing the reasoning of the previous example, the complexity
of the network has been chosen, so that it could describe
the system with a few percent relative errors in all of the
inversion points. The final structure for all of the inversion
points are MLP’s with two hidden layers, having 30 neurons
in each, with tanh(·) activation functions, and a linear output
layer. In this model, every inversion point is described by this
structure, so every Ni (·) (i = 1, . . . , 30) has the same MLP
structure, which has to be trained sequentially, starting from
the first inversion point r30.

The training process for two representative inversion
points (r30, r23) can be followed in Fig. 14, where the
expected behavior is seen again. The first inversion point
r30, which only depends on the input phase shifts, the train-
ing process is slower and need more epochs to reach con-
vergence, than what is observed in the following inversion
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Fig. 13 Two randomly generated potential, used for training the neural
network, with different number of control points in the PCHIP repre-
sentation

Fig. 14 Loss function (MSE) dependence on the number of epochs of
the training and validation samples during the training process

points, which depend on the previous inversion points and
the input phase shifts as well.

The obtained relative error in the 30 inversion points for
2000 test samples after training are shown in Fig. 15. The
largest errors again occur in the first few inversion points
at the largest distances, and at the last few inversion points
at small distances, which was the observed behavior in the
last example as well. In overall a few percent error could be
achieved with this model. An example of the model capabili-
ties to a randomly generated potential can be seen in Fig. 16.

After the inverse system is identified in the desired oper-
ating range, it is possible to estimate the low-energy NN
scattering potentials from the measured phase shifts. In this

Fig. 15 Relative errors of the trained neural network in the inversion
points

Fig. 16 Validation of the model for a randomly generated test potential

section the neutron+proton scattering is investigated between
Tlab ∈ [1, 300] MeV laboratory kinetic energies, for which
the measured phase shifts are taken from [58]. After inver-
sion, the obtained potential and the laboratory kinetic energy
dependent, re-calculated phase shifts can be seen in Fig. 17,
where a very good match has been achieved between the
original-, and the re-calculated phase shifts. The averaged
relative error, through the measured points, between Tlab ∈
[1, 300] MeV is approximately 2%. The obtained potential
has a strong repulsive core at small distances, while at larger
distances a moderate attractive force emerges. This picture
is comparable with the usual nuclear potential models for
s-wave scattering [59,60], where the strong repulsive core is
the consequence of the strong force at small distances, while
the medium and large distance attractive terms are related
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Fig. 17 Estimated 3S1 NN potential, obtained from the neural network
inversion model. The upper panel shows the calculated values at the
inversion points, and also the PCHIP interpolation between the inversion
points, while the lower panel shows the calculated and measured phase
shifts

to the various meson exchange forces [61,62]. It is worth
mentioning, that we did not have to make any distinction for
scattering with-, and without bound states, and could include
them both in the identified model. The identified system in
this form can only be used to describe l = 0 scatterings, how-
ever by adding the angular momenta to the inputs, it can be
easily extended to describe potentials, with different angular
momenta as well.

6 Conclusions

In this paper, two data-driven inversion methods are pro-
posed, which are both able to describe inverse quantum
mechanical scattering systems, in a well-specified operat-
ing range, using nonlinear system identification techniques.
In these problems, the scattering potential is sough from the
known observables e.g. phase-shifts, and transmission coef-
ficients, using finite dimensional, truncated Volterra systems,
and feed-forward neural networks. Two main structure is pro-
posed, which are tested in two scattering scenarios. Firstly,
a non-causal Volterra system is used to describe the one-
dimensional quantum scattering problem, where the inputs
were the energy dependent phase shifts, and the transmission
coefficients, while the output was the Fourier transformed
scattering potential. The system was designed, so that in

every ki (in the range, constrained by the Nyquist limit),
one non-causal Volterra system is identified, which used the
input functions at ki−M , ki−M+1, . . . , ki , . . . , ki+M , defined
by the memory of the system. To test the method, the oper-
ating range has been set to V (x) ∈ [0, 1] MeV, with a test
mass of m = 1 MeV. With these parameters the nonlinear-
ity of the system could be modeled by second order Volterra
series, with M = 35 memories, by including only the first
order cross-terms of the input phase shifts, and transmission
coefficients.

For the second problem, a more realistic model is pro-
posed, where the low-energy elastic scattering on spherically
symmetric potential is addressed, with neural networks. In
this model, only the energy dependent phase shifts were used
as inputs to the inverse system, while the potential in position
space is used as the output. To solve the inversion, a sequential
neural network architecture is proposed, which consists one
MLP network at each inversion point, which are connected
by their outputs. To test the model, the operating range has
been set to Tlab ∈ [1, 99] MeV, and V (r) ∈ [−10, 0] MeV,
with test masses of m1 = m2 = 1 GeV. The network has
been trained by generating a sufficient number of training
samples, with the help of the Variable Phase Equation, then
tested to randomly generated continuous potentials, giving
good results in each case, with a few percent relative error.

The neural network construction then used to describe the
low-energy elastic neutron+proton scattering from measured
phase shifts between Tlab ∈ [1, 300] MeV. To train the net-
work, the operating range has been set to be able to describe
the short distance repulsive-, and the larger distance attractive
terms as well, where the training samples were constructed
with the help of Piecewise Cubic Hermitian Interpolating
Polynomials, which were able to easily constraint the poten-
tial functions between the prespecified range. The results of
the inversion shows a physically reasonable potential, with
a short range repulsive, and a long range attractive part. The
phase shifts were calculated back from the obtained poten-
tial, and compared to the measured phase shifts, giving good
results, with around 2% relative error, averaged through the
number of measurement points.

The methods proposed here, were both able to solve the
inversion problem in quantum scattering, at a predefined
operating range. As the inverse system is essentially nonlin-
ear, by extending the operating range, the nonlinearities will
have greater roles, and a more complex system has to be iden-
tified, which in the case of the Volterra model, means more
memories, and higher order terms, with more cross-terms as
well, while in the neural network structure, it means more
hidden-layers, with more neurons. This method is advanta-
geous, if the full nonlinear dynamical equations, which gov-
erns the system, are not known, or one only wants to operate
the system in a well-defined range. In this case one option
would be to identify a model (Volterra/Neural Network) for
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the forward system, than by generating a sufficient number of
samples, identify the inverse system as well, with one of the
described methods. Another possibility would be to directly
identify the inverse system by using only the measured data,
which could be more problematic if there are no sufficient
number of observables to work with. In low-energy quantum
scattering experiments the dynamical equations, which gov-
erns the system are well-known, therefore there is no need to
identify a black box system, and one can utilize the apriori
knowledge in quantum mechanics to build a sufficient model
even for more complex systems as well.

In the case, that the dynamical equations are known pre-
cisely, the Volterra kernels can be calculated analytically and
the higher order terms can be obtained more easily. As the
Variable Phase Equation describes the forward problem, it
could be possible to analytically calculate the Volterra ker-
nels for the forward process, then invert the obtained Volterra
system, to be able to estimate the potentials from the phase
shifts, which could be a future application of the proposed
methods.
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