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Abstract We study the dressing of four-quark interaction
by the ring diagram, and its feeding back to the quark gap
equation, in an effective chiral quark model. Implementing
such an in-medium coupling naturally reduces the chiral tran-
sition temperature in a class of chiral models, and is capable
of generating the inverse magnetic catalysis at finite temper-
atures. We also demonstrate the important role of confining
forces, via the Polyakov loop, in a positive feedback mecha-
nism which reinforces the inverse magnetic catalysis.

1 Introduction

A robust description of chiral symmetry restoration and its
manifestation in a medium of partially deconfined quarks and
gluons is essential to making progress in understanding the
properties of QCD matter under extreme conditions, such as
those created in the laboratory during the ultra-relativistic
heavy-ion collisions or fill the core of neutron stars.

Effective models are a flexible exploratory tool to study a
dynamical system. One of the advantage is the ability to tem-
porarily include (or suppress) a certain class of interactions
or diagrams and examining the effect in isolation. One can
also gain insights on the values of phenomenological param-
eters used and examine their connections to the properties of
underlying constituents. These make this approach useful to
complement the more powerful numerical methods such as
lattice QCD (LQCD).

In this paper we study the in-medium dressing of the four-
quark interaction by resumming a class of ring diagrams
within an effective chiral quark model. Screening of the
potential by ring diagram finds the most famous application
in regulating the long-range Coulomb forces in an electron
gas [1,2]. (See Refs [3,4] for discussions in condensed mat-
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ter theory.) Here we shall see that it reveals rich features of
the QCD phase diagram in an effective model [5–8].

In a previous work [9] we have demonstrated that polar-
ization provides a natural mechanism to connect the large
transition temperature scale (Td ≈ 270 MeV) in a pure gauge
theory and that of chiral symmetry restoration (Tpc ≈ 156.5
MeV) in the presence of light, dynamical quarks. It also
drives the phenomenon of inverse magnetic catalysis [10,11]
at finite temperatures, i.e. the chiral condensate decreases
more rapidly with temperature in the presence of a magnetic
field.

In this work we explore further theoretical issues of the
proposed model. We shall revisit the chiral condensate and in
addition examine how the Polyakov loops are influenced by
the ring diagram. We shall also elucidate some details in the
calculation of the polarization tensors in the vector, scalar and
pseudoscalar channels. While the calculation of ring diagram
with a given quark mass is well known [12–15], its feeding
back to the quark gap equation for consistent solution, and
thereby including the backreaction, is usually not performed
in studies of effective quark model. As we shall see, it is
precisely this extra step that leads to a substantial change
in the temperature and magnetic field dependences of quark
condensate, and is demonstrated to improve the description
of many aspects of QCD phase diagram. A merit of the cur-
rent scheme is that there is no need to introduce an artificial
tuning of Td parameter in the gluon sector, nor the need to
introducing an explicit B-dependent coupling, as advocated
in Refs. [16,17]. Instead, the mechanism serve as a tentative
explanation for such a medium dependence.

2 Chiral quark model with dressed interaction

We begin with a brief review of the theoretical model: an
effective chiral quark model motivated from the Coulomb
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Gauge QCD [5,18–24]. The Lagrangian density reads:

L(x) = ψ̄(x) (i /∂ x − m) ψ(x)

− 1

2

∫
d4y ρa(x) V ab(x, y) ρb(y)

(1)

where ρa(x) = ψ̄(x)γ 0T aψ(x) is the color quark current
and T a is a generator of the SU (Nc) symmetry group, with
a = 1, 2, . . . , N 2

c − 1. For the class of model where the
interaction potential V is instantaneous and color-diagonal,
i.e.,

V ab(x, y) → δab × δ(x0 − y0) V (x − y), (2)

the gap equation for the dynamical quarks has been derived
[5]. The leading order result can be summarized as follows:

S−1(p) = /p − m − Σ(p) (3)

where

Σ(p) = CF

∫
d4q

(2π)4 V (p − q) i γ 0S(q)γ 0. (4)

The constant CF = N2
c −1

2Nc
is introduced via the quadratic

Casimir operator

N2
c −1∑
a=1

T aT a = CF INc×Nc . (5)

The solution to the gap equation (3) can be parametrized as

S−1(p) = A0(p) p
0γ 0 − A(p) p · γ − B(p) (6)

with the quark dressing functions, to be determined self-
consistently, given by

A0(p) = 1

A(p) = 1 + CF

∫
d3q

(2π)3 V ( �p − �q)
A(q) p̂ · q̂

2Ẽ(q)
Θ

B(p) = m + CF

∫
d3q

(2π)3 V ( �p − �q)
B(q)

2Ẽ(q)
Θ

Θ = 1 − 2 Nth(Ẽ), (7)

where Ẽ(q) = √
A(q)2q2 + B(q)2 is a generalized energy

function of the dynamical quarks, Nth(E) = 1
eβE+1

is the
Fermi-Dirac distribution.

Considering an instantaneous gluon potential (2) means
that there is no p0 dependence in the gap equations. The
remaining dependence on the 3-momentum p disappears
when considering a contact interaction: taking

V (p − q) → V0 (8)

in Eq. (7) immediately forces A(p) = 1, and the quark mass
function reduces to

M = m + CF V0

∫
d3q

(2π)3

M

2
√
q2 + M2

Θ. (9)

This is of the same form as the familiar result for quark mass
(N f flavors) in the model [12] of Nambu and Jona-Lasinio
(NJL), with the identification

CF V0 ↔ 4 Nc N f (2 GNJL). (10)

In fact the present model provides a more natural starting
point as an effective model of QCD: First, it closely mim-
ics the quark-gluon interactions of QCD by implementing a
vector nature of the four-quark interactions originated from
a gluon exchange, both in the color and the Dirac space.
Note that an effective interaction in the scalar-scalar chan-
nel is also generated from such vector-vector (from Fock-
type exchange), giving rise to a spontaneous chiral symmetry
breaking. This may also be understood from a Fierz transfor-
mation [25] of the original Lagrangian in Eq. (1): a vector-
vector interaction can generate scalar-scalar type interactions
(and vice versa). Second, it makes possible a systematic
improvement on the quark potential by taking into account
features of gluon propagators, e.g. momentum dependence.

The generalization of the model (9) to include an in-
medium dressing of the interaction potential V0 via the polar-
ization tensor Π00 [5] proceeds by:

Ṽ0
−1 = V0

−1 − 1

2
N f Π00 (11)

where

Π00(p
0, p) = 1

β

∑∫
Tr

(
γ 0S(q)γ 0S(q + p)

)
. (12)

Here
∑∫

denotes a Matsubara sum over the fermionic fre-
quencies (ωn = (2n + 1) π/β), and an integral over the
momenta d3q. In this work we work only in the static, van-
ishing momentum limit of the ring and thus p0 = 0, p → 0
are eventually taken in the calculation.

Equation (11) can be understood as the dressing of the
gluon propagator by the Debye mass. The factor of 1

2 in
Eq. (11) originates from the color structure, i.e. Tr T aT b =
1
2 δab, and is essential to reproduce the known result [26] of
the perturbative Debye mass for QCD, instead of QED.

We choose to work in an effective model with quarks and
gluons as the degrees of freedom. According to quark-hadron
duality one should be able to include the hadron effects by
including, and iterating, multi-particle interactions among
quarks and gluons. The appearance of the higher order terms
in a quark-based picture, however, is different from those
constructed out of mesons. There is no one-to-one mapping
without further approximation [6,7,27,28]. Even in the usual
NJL model [12], where a Hubbard-Stratonovich transforma-
tion is used to introduce the meson fields, the kinetic terms
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[29] of mesons are not formally derived. In this work we
shall explore the effect of quark loops and their feeding back
to the quark gap equation, thus going beyond the standard
mean-field treatment.

In many studies, polarization tensors are computed with
the fermion propagator determined from a leading order
mean-field gap equation such as Eq. (9). The use of Ṽ0,
in lieu of V0, amounts to implementing a back-reaction of
the fermion loops to the fermionic gap equation. In the lan-
guage of condensed matter theory, the scheme is similar to
an iteration of GW-scheme [3,4] with polarization insertions
but without vertex corrections. This effectively dresses the
four-quark interaction and can substantially modify aspects
of chiral phase transition, such as driving the phenomenon
of inverse magnetic catalysis.

3 Polarization tensors

Many observables within an NJL-like model can be under-
stood in terms of the following integrals [12,15]:

I0 = 1

β

∑∫ 1

ω2
n + E2

1

,

I1(p
0, p) = 1

β

∑∫ 1

ω2
n + E2

1

1

(ωn − i p0)2 + E2
2

,

I2(p
0, p) = 1

β

∑∫ 1

ω2
n + E2

1

q2 + q · p

(ωn − i p0)2 + E2
2

. (13)

Note that the (constituent) quark mass dependence enters via

Ei =
√

q2
i + M2, where q1 = q and q2 = q + p. These

integrals can be decomposed into a UV-divergent vacuum
piece and a finite temperature piece. For example, I0 can be
written as

I0 = I vac
0 + I T0 . (14)

The first piece requires regularization, e.g., by a 3D regulator
R3D(q) = e−q2/Λ2

:

I vac
0 →

∫
d3q

(2π)3

1

2E1
R3D(q). (15)

Alternatively, one can choose a 4D cutoff scheme:

I vac
0 →

∫
d4qE
(2π)4

1

q2
E + E2

1

R4D(q), (16)

or a Schwinger proper-time regularization scheme:

I vac
0 →

∫ ∞

1/Λ2

dt

(16π2)

1

t2 e−M2 t . (17)

The finite temperature piece, on the other hand, requires no
regularization, and is given by

I T0 =
∫

d3q

(2π)3

−1

2E1
× 2Nth(E1), (18)

Under a general regularization scheme, the finite temperature
piece of I0 can be defined in a regularization independent
manner [30,31] by

I T0 = lim
Λ→∞ (I0(T,Λ) − I0(T → 0,Λ)) . (19)

Similar analysis can be applied to I1 and I2. The results are:

I1(p
0, p) =

∫
d3q

(2π)3

−1

4E1E2
× (Q1 + Q2),

Q1 = (R(q) − N1 − N2)

×
(

1

p0 − E1 − E2
− 1

p0 + E1 + E2

)

Q2 = (N1 − N2)

×
(

1

p0 − E1 + E2
− 1

p0 + E1 − E2

)

(20)

and

I2(p
0, p) = −

∫
d3q

(2π)3

q2 + q · p
4E1E2

× (Q1 + Q2), (21)

where Ni = Nth(Ei ).
The merit of studying these expressions (13) is that various

results of the model can be written in terms of them. For
example, the gap equation in Eq. (9) can be neatly expressed
as

M = m + CF V0 M × I0. (22)

The chiral condensate (per flavor) is given by

〈ψ̄ ψ〉 = −4NcM × I0. (23)

Moreover, the pion decay constant (N f = 2) can be esti-
mated from the low energy limit of I1 by

f 2
π ≈ 4NcM

2 × I1(p
0 → 0, p = 0). (24)

In this work the four-quark coupling Ṽ0 in Eq. (11) is
dressed by the Π00 polarization tensor evaluated at the static
limit. Note that the full polarization tensor Π00(p0, p) can
also be expressed in terms of integrals in Eq. (13) as

Π00(p
0, p) = 4

(
−I0 + (−1

2
p2 + 2M2) I1 + 2I2

)
. (25)

In the zero-temperature and static limit the expression in
Eq. (25) vanishes. This is a familiar result in the Hard-
Thermal-Loop (HTL) study [32], where a further M → 0
limit is implicitly taken. The relation remains true for a gen-
eral M , as one can directly verify

Π00(0, p = 0) ∝
(
−I0 + 2M2 I1(0, 0) + 2I2(0, 0)

)
, (26)

and the second and third terms add up to I0, exactly canceling
the first term. See Eqs. (20) and (21).

For the finite temperature part, besides a direct numerical
evaluation of Eq. (25), an alternative convenient method to
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obtain the result [9] is through a formal relation to the ther-
mal pressure of a free (single species) fermion gas at finite
temperature and vanishing chemical potential:

Π00(p
0 = 0, p → 0) = 1

β

∑∫
Tr

(
γ 0S(q)γ 0S(q)

)

= − 1

β

∑∫
Tr

(
γ 0 ∂

∂μ
S

)

= − ∂2

∂μ∂μ

1

β

∑∫
Tr ln S−1. (27)

Note that S−1(q) = (i ωn + μ) γ 0 − q · γ − M , and we set
μ → 0 after taking the derivatives. This yields an explicit
expression:

ΠT
00(p

0 = 0, p → 0) = −
∫

d3q

(2π)3 4βN1(1 − N1). (28)

Similar analysis can be performed on other channels, e.g.
for scalar and pseudoscalar cases:

ΠS(p
0, p) = − 1

β

∑∫
Tr (S(q)S(q + p))

= 4

(
I0 + (

1

2
p2 − 2M2) I1

)
. (29)

and

ΠPS(p
0, p) = 1

β

∑∫
Tr (γ5S(q)γ5S(q + p))

= 4

(
I0 + 1

2
p2 I1

)
.

(30)

The finite temperature contribution of scalar polarization can
also be extracted by taking derivatives of pressure, now with
respect to M rather than to μ:

ΠT
S (p0 = 0, p → 0) = ∂2

∂M∂M

1

β

∑∫
Tr ln S−1

= −
∫

d3q

(2π)3 4β (S1 − S2)

S1 = T

E1
(1 − M2

E2
1

) N1

S2 = M2

E2
1

N1(1 − N1). (31)

which has the following limits: (1) at small M ,

ΠT
S (p0 = 0, p → 0) ≈ −1

6
T 2 (32)

verifying the low mass (or high temperature) expansion by
Haber and Weldon [26,33]; and (2) the Boltzmann approxi-
mation,

ΠT
S (p0 = 0, �p → �0) ≈ 2

π2 M2 ×
(
K0(M/T ) − T

M
K1(M/T )

)
,(33)

where Kn’s are the modified spherical Bessel function of the
second kind. Note the competition between the two terms
in Eq. (33): the latter, negative contribution dominates at
M/T 
 1, while the former positive contribution deter-
mines the M/T � 1 behavior. This simply reflects the mass
dependence of the thermal pressure of a free fermion gas PF :
while the pressure drops, at fixed T , when M increases, the
rate of change, reflected by ∂2

∂M∂M PF , starts being a negative
value at small M , exhibits a peak at an intermediate M , and
is suppressed (but with a positive value) at large M .

Lastly, we write down the corresponding results for
ΠT

00(p
0 = 0, p → 0): (1) at M → 0 (or large T ),

ΠT
00(p

0 = 0, p → 0) ≈ −T 2

3
; (34)

and (2) at large M (or small T ), where the Boltzmann approx-
imation is valid,

ΠT
00(p

0 = 0, p → 0) ≈ − 2

π2 M2

(K2(M/T ) − K2(2M/T )). (35)

In Fig. 1 we demonstrate a numerical calculation of these
finite temperature quantities. Various limits can be readily
verified. Note that the scalar channel approaches the known
high temperature limit substantially slower than the 00-
channel. There, the Boltzmann approximation of the former
reaches 2/π2 × T 2, compared to the full result of 1/6 × T 2.

Fig. 1 The finite temperature polarization tensors (00-channel (28) and
scalar (31)) in the static limit, normalized to T−2 versus temperatures.
We fix M = 0.136 GeV in this calculation. Dashed lines in gray are the
corresponding quantities in the Boltzmann approximation. Full lines
denote massless limits. See text
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4 Results

4.1 Condensates and Polyakov loop

Including the in-medium dressing by the Π00 polarization
tensor naturally relates the deconfinement transition temper-
ature and that of the chiral crossover transition. It also plays
a pivotal role in generating the inverse magnetic catalysis at
finite temperatures within the model.

The results of chiral condensate have been presented in
Ref. [9] and here we show the observables obtained under
the Schwinger proper-time regularization scheme. See Fig. 2
(left) The results are similar to those obtained before in a 4D
cutoff scheme [9].

We highlight key theoretical features of the model:
(1) A coupling to the Polyakov loop � [34–38] is imple-

mented in the model (9). This is done by replacing [39] the
thermal weight Nth(E) with (Nc = 3)

Nth(E) → 1

3

3∑
j=1

�̂
( j)
F

eβE + �̂
( j)
F

= 1

3

3� e−βE + 6� e−2βE + 3e−3βE

1 + 3� e−βE + 3� e−2βE + e−3βE
, (36)

where [39,40]

�̂F = diag
(
eiγ1 , 1, e−iγ1

)

� = 1

3
Tr �̂F = 1

3
(1 + 2 cos γ1). (37)

The expectation value of the Polyakov loop needs to be deter-
mined from another gap equation,

∂

∂�
(Uglue(�) +UQ(M, �)) = 0, (38)

for a given pure gauge potential Uglue(�) and the quark
potential UQ(M, �), the latter describes the coupling of the
Polyakov loop with quarks. These potentials have been stud-
ied extensively in Refs [34,35,37,38,40,41] and will not be
repeated here. In this work we employ the pure gauge poten-
tial in Ref. [37].

(2) The final set of gap equations for quarks becomes

M = m + CF Ṽ0 M × I0(T ; M, �), (39)

and

Ṽ0(T ; M, �) = 1

V−1
0 − 1

2 N f ΠT
00(T ; M0, �)

. (40)

As in Ref. [9], we make a further approximation of using
M0 = 0.136 GeV in the ring. This point will be further
improved in Sect. 4.2. We have made explicit the dependence
on temperature and the order parameter fields (M, �).

(3) The generalization of various quantities to a finite mag-
netic field B can be implemented by replacing the momentum
integral with a sum over the Landau levels [10]:

∫
d3q

(2π)3 → |e f |B
2π

∞∑
n=0

1

2
αn

∫ ∞

−∞
dqz
2π

(41)

where αn = 2 − δn0, e f is the electric charge of the species,
and replacing the transverse momentum by

q2
x + q2

y → 2 n × |e f |B. (42)

The modification of the integrals in Eq. (13) is summarized
in the appendix.

(4) One of the key objectives of this work is to examine the
influence of ring diagram on the Polyakov loop. (See Fig. 2
(right).)

Fig. 2 The chiral condensate (normalized to the vacuum value) (left),
and the Polyakov loop (right), versus the temperature, at finite mag-
netic field. Dashed lines represent results obtained from a PNJL model

with undressed coupling. The model with dressed coupling is capable
of producing the inverse magnetic catalysis at finite temperatures
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The important observation is that the Polyakov loop
becomes substantial at lower temperatures as magnetic field
increases, signaling lower transition temperature for decon-
finement. This correct trend is brought forth by the polariza-
tion, and is quite robust against the use of different regular-
ization schemes.

To obtain known vacuum values of the physical observ-
ables: fπ = 92.9 MeV, mπ = 137.8 MeV, and 〈ψ̄ψ〉 =
−(250 MeV)3 (per flavor) in the Schwinger proper-time reg-
ularization scheme, the set of model parameters is adjusted
compared to Ref. [9]. They are given by Λ = 1.101 GeV,
GNJL Λ2 = 3.668 and a current quark mass m = 5 MeV. We
note that the constituent quark mass value in the Schwinger
scheme is substantially smaller (≈ 200 MeV) compared to
the previous scheme (≈ 300 MeV) for the same value of
chiral condensate.

(5) A positive feedback mechanism: Solving Eqs. (39),
(40) and (38) consistently, we obtain the results in Fig. 2.
The reduction of the chiral transition temperature is obvious:
the ring weakens the effective four-quark coupling at finite
temperatures, leading to an earlier transition. Also, without
the polarization dressing in Eq. (11), the PNJL model pre-
dicts an increasing chiral transition temperature with B. The
dressed interaction reverses this trend, and the appearance of
quarks enhances explicit Z(3) breaking, which weakens the
confining effect and in turn enhances the polarization [42].
This model demonstrates such a positive feedback mecha-
nism in a very transparent manner.

(6) Lastly we examine the effect of using a temperature
(and B) dependent (M, �), obtained as the solution to the
gap equations, on the ring. This is shown in Fig. 3. The
extra (M, �) dependence turns out to give a modulation of
the theoretical limits studied in Fig. 1. Note that the polar-
ization can increase substantially at intermediate tempera-
tures with increasing B, which can drive the phenomenon of
inverse magnetic catalysis. We find no need to introduce a B-
dependent coupling as advocated in Refs. [16,17]. Instead,
Eq. (11) could accommodate a theoretical explanation of
such an effect.

4.2 Truncation schemes

It was reported in Ref. [9] that the use of full M in
Ṽ0(T ; M, �) within a 4D cutoff scheme induces a first order
phase transition, instead of the expected crossover behav-
ior. This is the reason why an extra condition M = M0 is
imposed. In this study, we find that the crossover nature of the
transition is retained at B = 0 when the Schwinger proper-
time regularization scheme for the vacuum term is imposed.
See Fig. 4. Similar to the previous result, a transition temper-
ature of ≈ 160 MeV is achieved, compared to > 200 MeV
without the ring. This shows that the improvement is not con-
structed via a judicious choice of M0, rather, it is a natural

Fig. 3 The polarization tensor as a function of temperature, evaluated
with the quark mass and Polyakov loop determined from the gap equa-
tions. Dashed lines represent results obtained from a PNJL model with
undressed coupling

Fig. 4 The chiral condensate (with current quark mass contribution
subtracted), normalized to the vacuum value, versus the temperature,
at zero magnetic field. Dashed (gray) line represents result obtained
from a PNJL model without screening effect. The dash-dotted (black)
line is the result computed with the ring, under a further approximation
of M = M0 = 0.136 GeV. Such approximation is lifted in the fully
consistent scheme (”full M”)

result from iterating M in the gap equation (40). 1 The ability
to link different scales naturally is one of the desirable fea-
ture of implementing the ring in the chiral model. Finally, the
dependence on cutoff scheme should motivate further study
to explore how the chiral phase transition depends on the
assumed properties of gluons.

4.3 Effect of Polyakov loop on ring

To illustrate the effect of the confinement, we perform the
same calculation while setting the value of the Polyakov loop

1 In fact the results are not very sensitive to the value of M0 used.
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field to unity, thus removing the confining effect on quarks.
This leads to a dramatic decrease in the transition tempera-
ture, as shown in Fig. 4. We have checked that such drastic
change is insensitive to the choice of the cutoff scheme.

Clearly, allowing the deconfined quarks in the ring dia-
gram to dress the 4-point interaction at the low temperature
phase gives a screening effect which is too strong to produce
an acceptable Tc. The coupling to the Polyakov loops, as
shown in Eq. (36), remedies this problem. In addition, due to
the crossover nature of the transition, the chiral phase tran-
sition is now also dependent on the details of the Polyakov
loop potential.

The problem of too strong screening by the quark loops
has also been realized in Ref. [42] even for a more elaborated
model, giving transition temperatures as low as ∼ 30 MeV.
The study here suggests that implementing the suppression
of free, though massive, quarks with a confining force in
constructing the ring could provide a resolution.

5 Conclusion

In this work we have investigated the in-medium dressing of
the four-quark interaction by the polarization. This provides
a natural mechanism to resolve the problem of an overesti-
mated chiral transition temperature in common PNJL mod-
els, and is capable of generating an inverse magnetic catalysis
at finite temperatures. It is accomplished by a field theoretical
incorporation of a quark loop dressing and its feeding back to
the quark gap equation. There is no need for artificial tuning
of Td parameter in the gluon sector, nor the need to introduc-
ing an explicit B-dependent coupling. Thus, the mechanism
can serve as a tentative explanation for the medium depen-
dence discussed in the literature.

Nevertheless, the current model makes some simplify-
ing assumptions which require improving. For example to
make the problem more tractable we have employed the
static approximation of the ring. However dynamical (3-
momentum dependences) and timelike (energy dependence)
effects can sometimes be drastic [31]. Note that similar quark
loops, in their timelike limits, are computed in the model
to derive pions and other mesons. In fact, it is an impor-
tant question to understand how hadron loops enter in the
quarks-and-gluons-based picture. In principle, it is possible
to understand, in accordance to quark-hadron duality, the for-
mer by including, and iterating, multi-particle interactions in
the latter. Note that the role of gluon propagator, approxi-
mated as an effective four-quark coupling, is formally recog-
nized here. This is why quark loop dressing (40) is introduced
as an extension of standard mean-field results. However, the
current truncation scheme only includes these quark loops in
dressing the coupling. It has yet to include additional inter-
actions with the derived objects.

While we have explored the role of polarization in this
work, vertex corrections are not examined. The contact model
is not ideal for this purpose, instead it would be more satis-
fying to start with model which has a closer connection to
QCD. In addition, further work needs to be done to include
an explicit treatment of dynamical gluons (and ghosts) in the
confinement model [42]. This gives a natural extension to
introduce non-local interactions among quarks, and allows
to study the role played by the gluons in a chiral phase tran-
sition. Finally we note an analogous dressing of the gluons
is present at finite baryon density [43]. This could provide
an additional handle to probe detailed features of the criti-
cal end point [8] predicted by the current model, and will be
explored in the future.
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Appendix A: Finite B integrals

Here we collect the formulae of the integrals (13) suitable for
calculations at a finite magnetic field B. For the following,

we take Ei =
√

q2
i + M2 and q1 = q and q2 = q + p.

Starting with expression for I0:

I0 = I vac
0 + I vac, B

0 + I T,B
0

I vac
0 =

∫
d3q

(2π)3

1

2E1
R3D(q)

I vac, B
0 = lim

Λ→∞

(
Svac, B

0 − I vac
0

)

Svac, B
0 = |e f |B

2π

∞∑
n=0

1

2
αn

∫
dqz
2π

1

2E1
R3D(q)

I T,B
0 = |e f |B

2π

∞∑
n=0

1

2
αn

∫
dqz
2π

−1

2E1
× 2Nth(E1), (43)
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where

E1 =
√
q2
z + 2 n |e f |B + M2. (44)

The vacuum integral in the Schwinger proper-time regu-
larization scheme reads

I vac
0 =

∫ ∞

1/Λ2

dt

(16π2)

1

t2 e−M2 t . (45)

An analytic expression for I vac, B
0 can be derived from Refs.

[42,44], it reads

I vac, B
0 = M2

16π2

×
(

ln Γ (x f )

x f
− ln 2π

2x f
+ 1 − (1 − 1

2x f
) ln x f

)

x f = M2

2|e f |B .

(46)

A similar analysis for I1 gives:

I1 = I vac
1 + I vac, B

1 + I T,B
1

I vac
1 (p0, p) =

∫
d3q

(2π)3

−1

4E1E2
R3D(q))

×
(

1

p0 − E1 − E2
− 1

p0 + E1 + E2

)

I vac, B
1 (p0, pz) = lim

Λ→∞(Svac, B
1 − I vac

1 )

Svac, B
1 (p0, pz) = |e f |B

2π

∞∑
n=0

1

2
αn

∫
dqz
2π

−1

4E1E2
R3D(q)

×
(

1

p0 − E1 − E2
− 1

p0 + E1 + E2

)

I T,B
1 = B

2π

∞∑
n=0

1

2
αn

∫
dqz
2π

−1

4E1E2
× (QT

1 + QT
2 ),

QT
1 = −(N1 + N2)

×
(

1

p0 − E1 − E2
− 1

p0 + E1 + E2

)

QT
2 = (N1 − N2)

×
(

1

p0 − E1 + E2
− 1

p0 + E1 − E2

)
.

(47)

We also record the vacuum result in the Schwinger proper-
time regularization scheme:

I vac
1 (p) =

∫ 1

0
dx

∫ ∞

1/Λ2

dt

(16π2 t)

1

t
e−M̃2 t , (48)

where

M̃2 = M2 − x(1 − x) p2. (49)

At vanishing external momentum, the vacuum integral
I vac
1 (0, 0) (the timelike and spacelike limits coincide in vac-

uum) may be computed from a derivative relation:

I vac
1 (0, 0) = − 1

2M

d

dM
I vac
0 . (50)

Note how Eqs. (45) and (48) cleanly illustrate this relation.
Another application is to derive an analytic expression for
I vac, B
1 (0, 0) from Eq. (46):

I vac, B
1 (0, 0) = − 1

2M

d

dM
I vac, B
0

= 1

16π2 ×
(

−ψ(x f + 1) + 1

2 x f
+ ln x f

)
,

(51)

where ψ is the digamma function. This agrees with the result
obtained in Ref. [14].

Finally we study the finite magnetic field extension of
Π

T,B
00 in Eq. (28) (per flavor):

Π
T,B
00 (p0 = 0, p → 0) = −|e f |B

2π

∞∑
n=0

1

2
αn

×
∫

dqz
2π

4βN1(1 − N1). (52)

Examining in particular the contribution from the lowest Lan-
dau level (LLL) (n = 0), we get

Π
T,B
00 (p0 = 0, p → 0) = −|e f |B

4π

∫
dqz
2π

× 4βeβ
√

q2
z +M2

(eβ
√

q2
z +M2 + 1)2

, (53)

which for massless quarks reduces to

Π
T,B
00 (p0 = 0, p → 0) = −|e f |B

2π2 . (54)

This gives an alternative derivation of the result in Ref. [45,
46]. A similar integral appears in the study of the explicit
Z(3) symmetry breaking [42].

References

1. M. Gell-Mann, K.A. Brueckner, Correlation energy of an electron
gas at high density. Phys. Rev. 106, 364–368 (1957)

2. D. Bohm, D. Pines, A collective description of electron interac-
tions: III. coulomb interactions in a degenerate electron gas. Phys.
Rev. 92, 609–625 (1953)

3. R.D. Mattuck, A Guide to Feynman Diagrams in the Many Body
Problem (Second Edition). (1976)

4. G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body The-
ory of Quantum Systems: A Modern Introduction (Cambridge Uni-
versity Press, Cambridge, 2013)

5. P.M. Lo, E.S. Swanson, Confinement models at finite temperature
and density. Phys. Rev. D 81, 034030 (2010)

123



Eur. Phys. J. A (2022) 58 :172 Page 9 of 9 172

6. K. Fukushima, J.M. Pawlowski, Magnetic catalysis in hot and dense
quark matter and quantum fluctuations. Phys. Rev. D 86, 076013
(2012)

7. A. Ayala, M. Loewe, A.J. Mizher, R. Zamora, Inverse magnetic
catalysis for the chiral transition induced by thermo-magnetic
effects on the coupling constant. Phys. Rev. D 90, 036001 (2014)

8. A. Ayala, L.A. Hernández, M. Loewe, C. Villavicencio, QCD phase
diagram in a magnetized medium from the chiral symmetry per-
spective: the linear sigma model with quarks and the Nambu–Jona-
Lasinio model effective descriptions. Eur. Phys. J. A 57(7), 234
(2021)

9. P.M. Lo, M. Szymanski, K. Redlich, and C. Sasaki, Polarization
effects at finite temperature and magnetic field. arXiv 2107.05521

10. J.O. Andersen, W.R. Naylor, A. Tranberg, Phase diagram of QCD
in a magnetic field: a review. Rev. Mod. Phys. 88, 025001 (2016)

11. V.A. Miransky, I.A. Shovkovy, Quantum field theory in a mag-
netic field: from quantum chromodynamics to graphene and Dirac
semimetals. Phys. Report 576, 1–209 (2015)

12. S.P. Klevansky, The Nambu-Jona-Lasinio model of quantum chro-
modynamics. Rev. Mod. Phys. 64(3), 649–708 (1992)

13. J. Jankowski, D. Blaschke, H. Grigorian, Quarkonium dissociation
in a PNJL quark plasma. Acta Phys. Pol. Suppl. 3, 747–752 (2010)

14. S.S. Avancini, W.R. Tavares, M.B. Pinto, Properties of magnetized
neutral mesons within a full RPA evaluation. Phys. Rev. D 93(1),
014010 (2016)

15. R. Zhang, F. Wei-jie, Y. Liu, Properties of Mesons in a strong
magnetic field. Eur. Phys. J. C 76(6), 307 (2016)
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