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Abstract The well known analytical formula for SU (2)

matrices U = exp(i �τ · �ϕ ) = cos | �ϕ |1 + i �τ · ϕ̂ sin | �ϕ | is
extended to the SU (3) group with eight real parameters.
The resulting analytical formula involves the sum over three
real roots of a cubic equation, corresponding to the so-called
irreducible case, where one has to employ for solution the
trisection of an angle. When going to the special unitary
group SU (4) with 15 real parameters, the analytical formula
involves the sum over four real roots of a quartic equation.
The associated cubic resolvent equation with three positive
roots belongs again to the irreducible case. Furthermore, by
imposing the pertinent condition on SU (4) matrices one can
also treat the symplectic group Sp(2) with ten real parame-
ters. Since there the roots occur as two pairs of opposite sign,
this simplifies the analytical formula for Sp(2) matrices con-
siderably. An outlook to the situation with quasi-analytical
formulas for SU (5), SU (6) and Sp(3) is also given.

1 Introduction and summary

In chiral effective field theories for low-energy quantum
chromodynamics [1] one typically works with special uni-
tary matrices U as the field variable, since this allows for
a convenient implementation of (chiral and other) symme-
try transformations. The excitations on top of the sponta-
neously broken groundstate, represented by the unit matrix
1, are pseudoscalar Goldstone bosons (pions, kaons and the
η(548)-meson). In the two-flavor case the special unitary
2 × 2 matrices that constitute the compact Lie group SU (2)

are often given in the exponential form

U = exp(i �τ · �ϕ ) = cos | �ϕ |1 + i �τ ·ϕ̂ sin | �ϕ | , (1)

with �τ = (τ1, τ2, τ3) the Pauli matrices and | �ϕ | the mag-
nitude of a three-component real vector �ϕ = (ϕ1, ϕ2, ϕ3)

related e.g. to the pion-fields. Since the manifold of SU (2) is

a e-mail: nkaiser@ph.tum.de (corresponding author)

identified with a three-sphere S3, one can provide alternative
algebraic or rational parametrizations

U = ±
√

1 − �π 2 1 + i �τ · �π, | �π | ≤ 1,

U = (1 − �φ 2/4)1 + i �τ · �φ
1 + �φ 2/4

, (2)

which are advantageous in specific calculations or for cer-
tain applications. In the three-flavor case, where the matrices
U belong to the eight-dimensional compact Lie group SU (3),
no such alternatives to parametrize the manifold are known
and one has to stay with the exponential formU = exp(i�λ·�v )

in terms of eight Gell-Mann matrices �λ = (λ1, . . . , λ8)

and eight real parameters �v = (v1, . . . , v8). The aim of the
present work is solve the corresponding matrix exponential
function. A key ingredient to limit the number of matrix pow-
ers to few independent ones is the Cayley-Hamilton relation,
which states that any matrix � gets nullified when inserted
into its characteristic polynomial P(z) = det(z1 − �). The
coefficients [2] of the latter are given by the traces of increas-
ing matrix powers of � and ultimately the determinant of �.
When carrying out this procedure for SU (3), one encounters
the problem of determining the roots of a cubic polynomial
in the so-called irreducible case. It corresponds to the situ-
ation when all three roots are real and the Cardano formula
exhibits under the cube-root a square-root with a negative
radicand. Then the problem gets effectively solved through
a trigonometric ansatz and the trisection of an angle. When
continuing the solution of the matrix exponential function to
SU (4), the four real roots of a quartic polynomial are deter-
mined with the help of a cubic resolvent equation that also
belongs to the irreducible case. As an interesting byproduct
of this analysis one obtains the shape of the allowed region for
certain real-valued invariants η and ζ . Moreover, be impos-
ing the condition related to a quaternionic structure one can
treat as a subgroup of SU (4) the symplectic group Sp(2) with
ten real parameters. The situation with more elaborate quasi-
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analytical formulas for SU (5), SU (6) and Sp(3) matrices in
the exponential parametrization is discussed in perspective.

2 Special unitary group SU(3)

One starts with the usual exponential representation of an
SU (3) matrix

U = exp(i�λ· �v ) , (3)

in terms of the eight Gell-Mann matrices1 �λ = (λ1, . . . , λ8)

normalized to tr(λaλb) = 2δab and an eight-component real
parameter vector �v = (v1, . . . , v8). The aim is to give an
analytical expression for U that involves the 3×3 unit matrix
1 and the rescaled matrix � = �λ·v̂ (with v̂ = �v/|�v | a point on
the seven-sphere S7), each multiplied with coefficient func-

tions that depend on the magnitude |�v | =
√

v2
1 + · · · + v2

8
and another invariant. Considering the traces tr � = 0 and
tr �2 = 2 one finds as a pertinent invariant the (real-valued)
determinant η = det �. According to the Cayley-Hamilton
relation the traceless hermitian matrix � (a Lie algebra ele-
ment) gets nullified when inserted into its characteristic poly-
nomial, which lead to the cubic relation

�3 = � + η 1 . (4)

Consequently, any power of � can be written as a linear
combination of 1, �, and �2. Starting at order n with �n =
αn 1 + βn � + γn �2 and multiplying with � one obtains
via the relation in Eq. (4) the expansion coefficients at order
n + 1. The resulting linear recursion relation reads in vector
notation

⎛

⎝
αn+1

βn+1

γn+1

⎞

⎠=M3

⎛

⎝
αn

βn

γn

⎞

⎠ , with the matrix M3 =
⎛

⎝
0 0 η

1 0 1
0 1 0

⎞

⎠ ,

(5)

and the initial values α0 = 1, β0 = 0, γ0 = 0. By diag-
onalization of M3 the exponential series exp(i |�v |M3) =∑∞

n=0(i |�v |M3)
n/n! can be solved2 and after vector multi-

plication with (1, 0, 0)t from the right and (1, �,�2) from
the left, one ends up with the following analytical formula
for an SU (3) matrix

U = exp(i�λ · �v )

=
3∑

j=1

exp(i z j |�v |)
3z2

j − 1

{
(z2

j − 1)1 + z j �λ · v̂ + (�λ · v̂)2
}
,

1 The two diagonal Gell-Mann matrices are λ3 = diag(1,−1, 0) and
λ8 = diag(1, 1,−2)/

√
3, while the other six have two non-zero entries

either 1, 1 or −i, i placed symmetrically at positions above and below
the diagonal.
2 When using Mathematica, the routine MatrixExp[, ] gives the result
directly in terms of RootSum[, ].

(6)

where the η-dependent quantities z1, z2, z3 subject to the
zero-sum constraint z1 + z2 + z3 = 0 and z2

1 + z2
2 + z2

3 = 2
are the three real roots of the cubic equation

P3(z) = z3 − z − η = 0 . (7)

Note that at the same time z1, z2, z3 are the eigenvalues of
the traceless hermitian matrix � = �λ· v̂. One also observes
that the trace of U is given by a much simpler formula:
trU = ∑3

j=1 exp(i z j |�v |). Another interesting feature is that

the denominator in Eq. (6) is the derivative P ′
3(z) = 3z2 − 1

evaluated at the root z j . Before turning to the solution of the
cubic equation, one should analyze the generic behavior of
the polynomial P3(z) = z3 − z−η as it is sketched in Fig. 1.
When having three zero-crossings, the local maximum at
z = −1/

√
3 must be positive, 2

√
3/9 − η ≥ 0, and the local

minimum at z = 1/
√

3 must be negative, −2
√

3/9 − η ≤ 0.
Both conditions together fix the range of the determinant η

to the interval

−2
√

3

9
≤ η ≤ 2

√
3

9
. (8)

In the irreducible case at hand, the cubic equation z3−z−η =
0 is treated by the substitution z = 2√

3
cos ψ which leads (via

the relation cos 3ψ = 4 cos3 ψ − 3 cos ψ) to the auxiliary
equation

cos 3ψ = 3
√

3η

2
, ψ = 1

3
arccos

3
√

3η

2
, (9)

that provides an angle ψ in the range 0 ≤ ψ ≤ π/3. It is an
important solvability criterion that the argument in Eq. (9)
has indeed magnitude less equal to 1 as a consequence of
the determinantal range derived before. The three real roots

Fig. 1 Generic behavior of the cubic polynomial P3(z) = z3 − z − η
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entering the analytical formula in Eq. (6) are given by

z1 = 2√
3

cos ψ > 0, z2 = − sin ψ − cos ψ√
3

< 0,

z3 = sin ψ − cos ψ√
3

, (10)

where in this (arbitrary) ordering the sign of z3 is yet unde-
termined. At the boundary values η = ±2

√
3/9 two roots

coincide and the formula in Eq. (6) is evaluated by means of
a limiting procedure ε → 0

η = 2
√

3

9
: z1 = 2√

3
, z2,3 = − 1√

3
∓ ε,

3�2 − √
3� = 2, (11)

η = −2
√

3

9
: z1,3 = 1√

3
± ε, z2 = − 2√

3
,

3�2 + √
3� = 2, (12)

and one recognizes that in these exceptional situations the
three matrices 1, �,�2 are no more linearly independent.
The validity of the quasi-analytical formula has been checked
numerically in many cases. A disadvantage for applica-
tions is its rather inexplicit dependence on η which can-
not be expressed in terms of real-valued algebraic functions,
but requires a detour via the real roots of a cubic equa-
tion in the irreducible case. For comparison in the case of
SU (2) the iteration matrix M2 is the Pauli matrix τ1 and
exp(i | �ϕ |τ1)(1, 0)t = (cos | �ϕ |, i sin | �ϕ |)t .

3 Special unitary group SU(4)

One starts again with the exponential representation of an
SU (4) matrix

U = exp(i�λ· �v ) , (13)

in terms of 15 traceless hermitian generators3 �λ = (λ1, . . . ,

λ15) normalized to tr(λaλb) = 2δab and a 15-component
real parameter vector �v = (v1, . . . , v15). One works with
the 4×4 unit matrix 1 and the rescaled matrix � = �λ · v̂
that get multiplied by functions depending on the magnitude

|�v | =
√

v2
1 + · · · + v2

15 and further invariants. Besides the

constant traces tr � = 0 and tr �2 = 2 one finds now as the
two pertinent (real-valued) invariants the determinant and the
trace of the cube

η = det � , ζ = 1

3
tr �3 , (14)

3 The three diagonal generators are λ3 = diag(1,−1, 0, 0), λ8 =
diag(1, 1,−2, 0)/

√
3, and λ15 = diag(1, 1, 1,−3)/

√
6. The remain-

ing 12 generators have two non-zero entries either 1, 1 or −i, i placed
symmetrically at positions above and below the diagonal.

where the factor 1/3 is included for convenience. In the
present case the Cayley-Hamilton relation sets up an equation
for the fourth power of � of the form

�4 = �2 + ζ � − η 1 , (15)

which allows to write any higher power of � as a linear
combination of 1, �,�2, and �3. Starting at order n with
�n = αn 1+βn � + γn �2 + δn �3 and multiplying with �
one obtains via the relation in Eq. (15) the expansion coeffi-
cients at order n + 1. The resulting linear recursion relation
reads

⎛

⎜⎜
⎝

αn+1
βn+1
γn+1
δn+1

⎞

⎟⎟
⎠=M4

⎛

⎜⎜
⎝

αn
βn
γn
δn

⎞

⎟⎟
⎠ , with the matrix M4 =

⎛

⎜⎜
⎝

0 0 0 −η

1 0 0 ζ

0 1 0 1
0 0 1 0

⎞

⎟⎟
⎠ ,

(16)

and the initial values α0 = 1, β0 = 0, γ0 = 0, δ0 = 0.
Through diagonalization of M4 (or an application of Matrix-
Exp[, ]) the exponential series exp(i |�v |M4) = ∑∞

n=0(i |�v |
M4)

n/n! can again be solved and by dotting with (1, 0, 0, 0)t

from the right and (1, �,�2, �3) from the left, one ends up
with the following quasi-analytical formula for an SU (4)

matrix

U = exp(i�λ· �v ) =
4∑

j=1

exp(i z j |�v |)
4z3

j − 2z j − ζ

{
(z3

j − z j − ζ )1

+(z2
j − 1)�λ·v̂ + z j (�λ·v̂)2 + (�λ·v̂)3

}
, (17)

where the (η, ζ )-dependent quantities z1, z2, z3, z4 subject
to the zero-sum constraint z1 + z2 + z3 + z4 = 0 and z2

1 +
z2

2 + z2
3 + z2

4 = 2 are now the four real roots of the quartic
equation

P4(z) = z4 − z2 − ζ z + η = 0 . (18)

At the same time z1, z2, z3, z4 are the eigenvalues of the
traceless hermitian 4×4 matrix � = �λ·v̂ and one gets again a
simpler formula for the trace: trU = ∑4

j=1 exp(i z j |�v |). The
denominator in Eq. (17) stems from the derivative P ′

4(z) =
4z3 − 2z − ζ .

Borrowing results from advanced algebra [3], the determi-
nation of the four roots z j of the quartic equation P4(z) = 0
proceeds via three auxiliary quantities θ1, θ2, θ3 in the fol-
lowing way

z1 = 1

2

(√
θ1 + √

θ2 + √
θ3

)
,

z2 = 1

2

(√
θ1 − √

θ2 − √
θ3

)
, (19)

z3 = 1

2

(√
θ2 − √

θ1 − √
θ3

)
,

123



170 Page 4 of 6 Eur. Phys. J. A (2022) 58 :170

z4 = 1

2

(√
θ3 − √

θ1 − √
θ2

)
, (20)

where it has to be noted that there is only a twofold sign ambi-
guity in taking square roots, since the sign of the product is
fixed by the condition

√
θ1

√
θ2

√
θ3 = ζ . The four choices of

signs ++,+−,−+,−− correspond merely to a relabeling
of the four roots. The θ -values derive from the roots through
the inverse relations

θ1 = −(z1 + z2)(z3 + z4), θ2 = −(z1 + z3)(z2 + z4),

θ3 = −(z1 + z4)(z2 + z3), (21)

and these are all positive, since each is a square in view of the
zero-sum z1 + z2 + z3 + z4 = 0. As a matter of fact [3] the
three θ -values are the roots of the cubic resolvent equation
[3]

R3(θ) = θ3 − 2θ2 + (1 − 4η)θ − ζ 2 = 0 . (22)

The generic behavior of R3(θ) as shown in Fig. 2 implies
several restrictions on the invariants η and ζ . In the presence
of three zero-crossing on the positive θ -axis and R3(θ <

0) < −ζ 2, the local maximum and local minimum must lie
in between at positions θmax,min = 1

3 (2 ∓ √
1 + 12η) ≥ 0.

This implies first η ≥ −1/12 and secondly η ≤ 1/4, leading
to the (narrow) range −1/12 ≤ η ≤ 1/4 for the determinant.
The conditions R3(θmax) ≥ 0 and R3(θmin) ≤ 0 multiplied
together yield after some manipulation the inequality

(27

2
ζ 2 + 36η − 1

)2 ≤ (1 + 12η)3 ≤ 64 . (23)

The resulting allowed range for the invariants η and ζ is the
bounded region shown in Fig. 3 from which one deduces also
the extremal values ζ± = ±2

√
6/9.

The cubic resolvent equation in Eq. (22) belongs again to
the irreducible case such that its solutions are conveniently

Fig. 2 Generic behavior of the cubic resolvent polynomial R3(θ) =
θ3 − 2θ2 + (1 − 4η)θ − ζ 2

Fig. 3 The allowed values of the invariants η and ζ lie inside
the bounded region. The enclosed area in the ηζ -plane amounts to
8
√

2/105, and the circumference of the tricorn measures 2.3847

obtained via the substitution θ = 2
3 (1 + √

1 + 12η cos ψ).
The auxiliary angle ψ lying within the interval [0, π/3] is
determined from the equation

cos 3ψ =
27
2 ζ 2 + 36η − 1

(1 + 12η)3/2 , ψ = 1

3
arccos

27
2 ζ 2 + 36η − 1

(1 + 12η)3/2 ,

(24)

where solvability is guaranteed by the inequality derived pre-
viously in Eq. (23). The three positive θ -values read (up to
permutation of the indices)

θ1 = 2

3

(
1 + √

1 + 12η cos ψ
)
,

θ2 = 2

3

[
1 − √

1 + 12η sin
(
ψ + π

6

)]
,

θ3 = 2

3

[
1 + √

1 + 12η sin
(
ψ − π

6

)]
, (25)

and after taking square roots and forming appropriate sums
and differences as prescribed in Eqs. (19, 20) one obtains the
four real roots z j entering the quasi-analytical formula Eq.
(17) for an SU (4) matrix.

One can continue the procedure to SU (5) with 24 trace-
less hermitian generators4 �λ = (λ1, . . . , λ24) normalized
to tr(λaλb) = 2δab and a 24-component real parameter
vector �v = (v1, . . . , v24). In terms of the invariants η =
det �, ζ = tr �3/3, and a properly chosen new one, namely
ξ = tr �4/4−1/2, the Cayley-Hamilton relation for the fifth
power of � = �λ·v̂ reads now

�5 = �3 + ζ �2 + ξ � + η 1 . (26)

4 The four diagonal generators read λ3 = diag(1,−1, 0, 0, 0), λ8 =
diag(1, 1,−2, 0, 0)/

√
3, λ15 = diag(1, 1, 1,−3, 0)/

√
6, and λ24 =

diag(1, 1, 1, 1,−4)/
√

10. The remaining 20 generators have two non-
zero entries either 1, 1 or −i, i placed symmetrically at positions above
and below the diagonal.
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By setting up the linear recursion for five expansion coeffi-
cients and solving the matrix exponential function exp(i |�v |
M5) one arrives at the following quasi-analytical formula for
an SU (5) matrix

U = exp(i�λ· �v ) =
5∑

j=1

exp(i z j |�v |)
5z4

j −3z2
j −2ζ z j −ξ

{
(z4

j −z2
j −ζ z j −ξ)1

+(z3
j −z j −ζ )�λ·v̂ + (z2

j −1)(�λ·v̂)2 + z j (�λ·v̂)3 + (�λ·v̂)4
}
.

(27)

Here z1, z2, z3, z4, z5 are the five real roots (with zero sum
and

∑5
j=1 z

2
j = 2) of the quintic polynomial equation

P5(z) = z5 − z3 − ζ z2 − ξ z − η = 0 , (28)

whose determination with their detailed (η, ζ, ξ)-dependence
is a formidable task. As the denominator in Eq. (27) one rec-
ognizes again the derivative P ′

5(z) = 5z4 − 3z2 − 2ζ z − ξ

evaluated at the root z j .
In perspective one can consider SU (6) with 35 trace-

less hermitian generators, �λ = (λ1, . . . , λ35) normal-
ized to tr(λaλb) = 2δab (the last one reads λ35 =
diag(1, 1, 1, 1, 1,−5)/

√
15) and a 35-component real param-

eter vector �v = (v1, . . . , v35). The characteristic polynomial
that nullifies the rescaled matrix � = �λ·v̂ is of degree six

P6(z) = z6 − z4 − ζ z3 − ξ z2 + (ζ − χ)z + η , (29)

with a new invariant χ = tr �5/5. The quasi-analytical for-
mula for SU (6) matrices is analogous to Eq. (27) and it
involves a sum over the six real roots defined by P6(z j ) = 0.
The denominator in the formula is P ′

6(z j ) = 6z5
j − 4z3

j −
3ζ z2

j − 2ξ z j + ζ − χ and the coefficients of the expansion

with respect to 1 and increasing powers of �λ · v̂ (up to the fifth
power) are z5 − z3 − ζ z2 − ξ z + ζ − χ, z4 − z2 − ζ z − ξ ,

z3 − z − ζ , z2 − 1 , z , 1 , respectively, each evaluated at the
real root z j .

4 Symplectic group Sp(2)

The 15-dimensional special unitary group SU (4) contains a
particular 10-dimensional subgroup, the so called (compact)
symplectic group Sp(2) defined by imposing the condition
(of respecting a quaternionic structure [4])

Ut J U = J , J =
(
0 −1
1 0

)
, J 2 = −

(
1 0
0 1

)
, (30)

on U ∈ SU (4), where t stands for transposition, and 1 and 0
denote momentarily the 2×2 unit and zero matrix. For the Lie
algebra elements �λ· �v that depend linearly on 15 parameters
v1, . . . , v15 this implies the constraint

(�λ· �v )t = J (�λ· �v )J , (31)

which as a result eliminates five of the 15 real parameters
through the linear relations

v9 = v6, v10 = v7, v13 = −v1, v14 = v2,

v15 = 1√
2

(
v8 − √

3v3
)
. (32)

The squared magnitude of the yet 15-component parameter
vector �v becomes a sum of ten squares

|�v |2 = 2v2
1 + 2v2

2 + 3ṽ2
3 + v2

4 + v2
5 + 2v2

6 + 2v2
7

+ṽ2
8 + v2

11 + v2
12, (33)

after introducing the linear combinations ṽ3 = (
√

3v3 −
v8)/2 and ṽ8 = (v3 + √

3v8)/2. Moreover, one finds that
the trace of the cube vanishes, tr(�λ·�v )3 = 0, just as a conse-
quence of the five linear relations in Eq. (32) or the underlying
constraint in Eq. (31). Thus one is dealing for the subgroup
Sp(2) of SU (4) with the special case ζ = 0 and the quartic
polynomial P4(z) = z4 − z2 +η becomes biquadratic, and is
effectively equivalent to P̃2(x) = x2 − x + η. The four real
roots are then given by

z1,3 = ±√
x1, x1 = 1

2

(
1 − √

1 − 4η
) ≥ 0,

z2,4 = ±√
x2, x2 = 1

2

(
1 + √

1 − 4η
) ≥ 0, (34)

where the determinant η must be confined to the interval
0 ≤ η ≤ 1/4. Since for Sp(2) the roots of P4(z) occur as
pairs of opposite sign, the sum in Eq. (17) can be simplified
to

U = exp(i�λ· �v ) =
2∑

j=1

(x j − 1)1 + (�λ·v̂)2

2x j − 1

×
{

cos
(√

x j |�v |) 1 + i√
x j

sin
(√

x j |�v|) �λ·v̂
}
, (35)

while the trace of such symplectic matrices is always real-
valued: trU = 2

∑2
j=1 cos(

√
x j |�v |).

In perspective one can consider the 21-dimensional sym-
plectic group Sp(3) by imposing on SU (6) matrices the con-
dition Ut J U = J , with J constructed from 3×3 matrices 1
and 0. The condition (�λ· �v )t = J (�λ· �v )J for the Lie algebra
elements eliminates 14 of the original 35 parameters through
linear relations, where the more interesting ones associated
to the diagonal generators read5

v24 = 1√
5

(√
3v15 − 2

√
2v3

)
,

v35 = 1

2
√

5

(
2
√

2v15 − 5v8 − √
3v3

)
. (36)

5 The remaining 12 relations equate parameters with high and low
indices: v16 = v11, v17 = v12, v22 = −v1, v23 = v2, v25 =
v13, v26 = v14, v27 = v20, v28 = v21, v31 = −v4, v32 = v5, v33 =
−v6, v34 = v7.
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Fig. 4 The allowed values of the invariants ξ and η for Sp(3) lie
between the two curves starting at the point ξ = −1/3, η = −1/27. The
enclosed area in the ξη-plane amounts to 1/480, and the circumference
of the tricorn measures 0.67763

As a consequence of the imposed condition the traces of odd
powers of �λ · v̂ vanish, and therefore one is dealing for the
subgroup Sp(3)of SU (6)with the special case ζ = 0, χ = 0.
The six real roots come as pairs with opposite sign, ±√

x j ,
where x j are the three positive roots of the cubic polynomial
P̃3(x) = x3 − x2 − ξ x + η. The further analysis based on a
behavior of P̃3(x) similar to that shown in Fig. 2 leads to the
following inequalities

−1

3
≤ ξ ≤ 0 , η ≤ 0 , (2 − 27η + 9ξ)2 ≤ 4(1 + 3ξ)3 .

(37)

The resulting allowed range of the invariants ξ and η is shown
in Fig. 4 and one recognizes as the minimal value ηmin =
−1/27. Making the substitution x = 1

3 (1+2
√

1 + 3ξ cos ψ)

one obtains for the three positive roots the expressions

x1 = 1

3

(
1 + 2

√
1 + 3ξ cos ψ

)
,

x2 = 1

3

[
1 − 2

√
1 + 3ξ sin

(
ψ + π

6

)]
,

x3 = 1

3

[
1 + 2

√
1 + 3ξ sin

(
ψ − π

6

)]
, (38)

with the angle ψ ∈ [0, π/3] given by

ψ = 1

3
arccos

2 − 27η + 9ξ

2(1 + 3ξ)3/2 . (39)

In the end the semi-analytical formula for Sp(3) matrices
reads

U = exp(i�λ· �v ) =
3∑

j=1

1

3x2
j − 2x j − ξ

×
{

cos(
√
x j |�v |)1 + i√

x j
sin(

√
x j |�v |) �λ·v̂

}

×
{
(x2

j −x j −ξ)1 + (x j − 1)(�λ·v̂)2 + (�λ·v̂)4
}
, (40)

where the trace trU = 2
∑3

j=1 cos(
√
x j |�v |) is again real-

valued.
In passing one reminds that in low dimensions the

spin groups Spin(n), defined as the two-sheeted simply-
connected coverings of the special orthogonal goups SO(n),
obey the following isomorphisms

Spin(3) = SU (2), Spin(4) = SU (2) × SU (2),

Spin(5) = Sp(2), Spin(6) = SU (4), (41)

together with Sp(1) = SU (2). For all these compact Lie
groups the analytical evaluation of the matrix exponential
function has been studied in this work. Actually, the obtained
formula can be evaluated most straightforwardly for the sym-
plectic group Sp(2), whereas in the other cases one has to
make a (somewhat) cumbersome detour via the three real
roots of a cubic polynomial equation.
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