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Abstract We introduce a family of equations of state (EoS)
for hybrid neutron star (NS) matter that is obtained by a two-
zone parabolic interpolation between a soft hadronic EoS at
low densities and a stiff quark matter EoS with color super-
conductivity at high densities within a finite region of bary-
onic chemical potentials /ﬂ}g < up < M%- ‘We consider two
scenarios corresponding to a cross-over and a strong first-
order transition between quark and hadron phases considered
at finite and zero temperatures. This allows us to analyze the
effects of finite entropy on the EoS and mass-radius rela-
tion of NS. We demonstrate that the formation of a color
superconducting state of quark matter drives the evolution
of matter in supernovae explosions under the condition of
entropy conservation to higher temperatures than in the case
of deconfinement to normal quark matter. Within the pre-
sented hybrid EoS scenario, regions of the QCD phase dia-
gram may be accessible to supernovae and NS mergers that
can be reached also in terrestrial experiments with relativistic
heavy ion collisions.

1 Introduction

Simulations of core-collapse supernova (SN) explosions and
binary neutron star (BNS) mergers with model equations of
state (EoS) are a unique tool to investigate the QCD phase
diagram in the region of low temperatures and high baryon
densities (T < 60 MeV at 1 < n/ng < 5) which is oth-
erwise inaccessible, in particular to lattice QCD simulations
and heavy-ion collision (HIC) experiments [1]. Not only that
the detection of signals of a strong first-order phase transi-
tion in BNS mergers [2,3] and/or supernovae [4,5] would
provide support for the existence of a critical end point
(CEP) in the phase diagram that has so far been unsuccess-
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fully been sought for in HIC experiments, there is theoret-
ical evidence for a crossover transition at very low temper-
atures that suggests the existence of a second CEP or even
a crossover-all-over situation. This arises from the observa-
tion [6,7] that a coexistence of chiral symmetry breaking
and diquark condensation occurs at low temperatures due to
the U4 (1) anomaly-generating triangle diagram which, after
Fierz transformation mixes diquark and meson condensates.
This effect realizes the concept of quark-hadron continuity
[8] in a crossover transition. Support for such a picture comes
also from recent progress in NS phenomenology.

We are currently witnessing a paradigm change in the
interpretation of mass and radius measurements of pulsars
that is induced by the observation that from the multi-
messenger analysis of typical-mass neutron star radii with
Riam, = 117758 km [9] (see also [10]) and the
recent NICER radius measurement R0 p, = 13.7f%§ km
[11] (see also [12]) follows that Rz 2 Ria My 1S a
most likely scenario. It is worth mentioning, however, that
the observational data are also marginally consistent with
R2.0 M, < Ris M, although this case is rather unlikely
because the region of radius overlap has a small width of
0.36 km only. The description of such a behaviour as solu-
tion of the Tolman-Oppenheimer-Volkoft (TOV) equations
requires a soft-stiff transition in the EOS at densities n < 2ny,
just before the hyperon onset. This transition could be the
hadron-to-quark matter transition. In recent descriptions one
joins a standard nuclear EOS with a constant speed of sound
(CSS) model for the high-density phase either by a first-
order phase transition (with a vanishing speed of sound in
the mixed phase [13]) or by directly matching the nuclear
and quark matter squared speed of sound cs2 at a certain
transition density ny without a density jump, thus mimick-
ing a crossover transition [14]. The best phenomenological
description fulfilling simultaneously the constraints on both
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radii R0 M, and Ry 4 p, is obtained in this simple picture
by ng ~ 2.0 ng and cf ~ 0.5. We would like to remark that a
CSS model with cg = 0.45...0.54 provides an excellent fit
to a microscopic nonlocal chiral quark model of the Nambu—
Jona-Lasinio (NJL) type with diquark condensation (color
superconductivity) and repulsive vector meson mean field
[15,16]. A direct, one-zone interpolation scheme between
the safely known soft nuclear matter EoS (up to about 1.1 ng
as in [17]) and the suitably chosen stiff quark matter EoS
(e.g., from a NJL model with coupling to a repulsive vector
meson mean field) was pioneered in the works of [18,19].
Such a phase transition construction can be understood as a
shortcut for three physical effects as ingredients:

(i) a stiffening of the nuclear matter EoS Pp (1) due to the
repulsive quark Pauli blocking effect between nucleons
[20,21] which can be effectively accounted for with a
nucleonic excluded volume (see, e.g., [22]),

(ii) astrongreduction of the quark matter pressure Pg (i) at
low chemical potentials due to confining forces (which
result then in a good crossing of curves at . = . allow-
ing for the Maxwell construction Py (1) = Pg(pc) of
a first-order phase transition), and

(iii) a mixed phase construction (e.g., by a parabolic interpo-
lation [23]) that mimics the effects of finite-size struc-
tures (pasta phases) in the quark-hadron coexistence
region.

For more details on the physics background, see [24,25]
and and references therein. With this microphysical basis
behind the interpolation approach, a two-zone interpola-
tion scheme (TZIS) for the hadron-to-quark matter has been
developed in [24], where at the matching point u. situated
between ppy and (g, one can choose the condition of con-
tinuous density (An = 0, crossover) or a finite density jump
(An # 0, first-order transition). In the present work, we
present a generalization of this TZIS to finite temperatures
(and arbitrary isospin densities) as a necessary prerequisite
for investigating the consequences of these recent develop-
ments in the interpretation of neutron star phenomenology at
zero temperature to simulations of supernova explosions and
of binary neutron star merger events. The goal is to model the
general class of hybrid EoS that corresponds to a phase dia-
gram which has not only one CEP at high temperatures which
marks the change from a first-order to a crossover transition
regime, but also second CEP at low temperatures that arises
from the competition and mixing between dynamical chi-
ral symmetry breaking and color superconductivity. Within
the finite-temperature generalization of the TZIS, this can
be achieved by defining the function An[u.(T)] along the
matching line . (7T") between the hadron-like and the quark-
like interpolation zone in the phase diagram. The function
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An[u.(T)] encodes the position of the CEPs Teep1 and Teep
where An = 0 as well as the strength of the first-order tran-
sition between these points where An # 0.

It is the aim of our ongoing research to investigate the
dependence of the above described signals of a strong phase
transition in supernova explosions and binary neutron star
mergers on the detailed structure of the QCD phase diagram
at low temperatures and high baryon densities and thus to be
prepared for interpreting the possible observation of signals
from such events in the near future.

2 Quark matter equation of state

Here we outline the main aspects of the quark matter EoS.
The interested readers are addressed to Refs. [26,27] where
the model was developed. Its is a chirally symmetric for-
mulation of the density functional approach to quark matter
[28], which allows scalar diquark pairing leading to the phe-
nomenon of color superconductivity. In the two flavor case
considered here such pairing leads to formation of the 2SC
phase of quark matter. Note, the three flavor case leading
to formation of the color-flavor locked (CFL) quark matter
was considered within the present approach in Ref. [29]. The
model is represented by the Lagrangian

L=q@(¢—m)q+Ly+Lp—-U. (1)

Quark fields are described by the flavor spinor g7 = (u, d)
and m is the current mass. Vector repulsion and diquark
pairing interactions enter Eq. (1) trough

Ly = —Gy@ru)*. )
Lp = Gpqiystaraq®) (G iystaraq) (3)

with Gy and G p being coupling constants. Attractive inter-
action in scalar and pseudoscalar channels is given by the
potential

1

U=Do|(1+0@f— @’ - Girste?] . @

where (gq)o is vacuum value of chiral condensate, while
constant Dy and « control the interaction strength and con-
stituent quark mass in the vacuum [26,27], respectively. This
potential respects chiral symmetry of strong interaction. It
can be expanded around the mean-field solutions (gg) and
(giystg) = 0. In what follows the subscript index “M F”
labels the quantities defined at the mean field. The second
order expansion of I/ implies the following non-vanishing
expansion coefficients

Uy F
Sup = (5)
M= 9 Gq)
102Uy
Gs = —- ML 6)
5T T20(gq)?
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This brings the Lagrangian to the effective current-current
interaction form of the NJL model type

LN =q(i) —m*)q + Gs@q — (qa)* + Gps(@iystg)*
+Ly +Lp —Uur + (qq)ZmF. )

Here m* = m + X F is the constituent quark mass. Its form
allows us to interpret X/ as a mean-field self-energy of
quarks. On the other hand, it follows from the form of the
scalar and pseudoscalar interaction channels in Eq. (8) that
Gs and G py are nothing else as the corresponding effective
couplings. They are medium dependent and differ in the gen-
eral case. This signals about violation of chiral symmetry.
This violation is a direct sequence of expanding I/ around
the mean-field solution,which is know be chirally broken.
However, at high densities and temperatures Gg and G pg
asymptotically coincide being a consequence of the dynam-
ical restoration of chiral symmetry [26,27].

In Ref. [27] parameters of the present model were fixed
using the strategy typical for chiral models of quark matter,
i.e. by fitting them to vacuum values of the quantities rele-
vant to QCD phenomenology. The most important of them
are mass M, and decay constant F;; of the pseudoscalar mode
representing pion. The scalar mode mass M, also was con-
sidered in the respect. However, the experimental status of the
corresponding meson is far from being clear. Therefore, M,
was allowed to vary around the mass of f(980) meson. Note,
the lightest candidate for the scalar meson role f;(500) was
not considered due to its high width about 500-1000 MeV
[30]. Our approach as well as the most of chiral models of
quark matter [31] is unable to reproduce the vacuum value of
chiral condensate per flavor | (/] )(1) GeV|1/3 = 241 MeV found
from QCD sum rules at the renormalization scale 1 GeV
[32]. In order to fix a compromised value of this quantity
it was analyzed together with the pseudocritical tempera-
ture Tpc defined by the peak position of chiral susceptibil-
ity. In addition to the current quark mass m and interaction
potential parameters Do and « the present model includes
momentum scale A, which regularizes zero point terms in
the expression for the thermodynamic potential (see Ref. [27]
for details). Table 1 shows values of these parameters, which
reproduce M, = 140 MeV, F; = 90 MeV, M, = 980 MeV,
()4 9¢V| = 267 MeV and Tpc = 163 MeV. This parame-
terization of the present model yields m* = 718 MeV in the
vacuum. Such high value of the constituent quark mass pro-
vides an efficient phenomenological confinement of quarks
at low temperatures and densities.

The values of vector Gy and diquark G p pairing constants
from Table 1 were adjusted in order to provide the best agree-
ment with the observational constraints on the mass-radius

Table 1 Parameters of the present model of quark matter EoS

m [MeV] A [MeV] o DoA™2 Gy A? GpAZ?

4.2 573 1.43 1.39 1.58 3.30

diagram of compact stars with quark cores [11,12,33-38]
and their tidal deformabilities [36].

For the chosen parameter set EoS of quark matter is
obtained by applying the mean-field approximation to the
effective Lagrangian (8). It is remarkable that within the
density range from two to ten normal nuclear densities
variation of squared speed of sound of the present model
c% = 0.57 — 0.60 is just 5 %. This serves as a microscopic
justification of the CSS parametrization of the quark matter
EoS.

3 Quark-hadron transition

Quark degrees of freedom are relevant to description of
strongly interacting matter only at high densities, while in
the low density regime they are confined and hadronized.
This requires description of strongly interaction matter in
the mentioned regime with a hadronic EoS. For this we use
the DD2 EoS [39]. Hybrid quark-hadron EoS is obtained by
merging the one phase quark and hadron EoS according to a
given construction of phase transition. In this work we con-
sider two constructions of quark-hadron transition described
below.

These constructions require pressures of hadron and quark
pressures as functions of baryonic g and electric 1 g chem-
ical potentials. Note, the strange chemical potential does
not appear since we consider the two flavor case. Further-
more, requiring a given value of the electric charge frac-
tion Yo = ng/np baryonic chemical potential becomes the
only independent quantity, while electric chemical potential
becomes a function of it, i.e. g = o (up). The tempera-
ture dependence is omitted below for shortening the notations

3.1 Maxwell construction

Gibbs criterion of phase equilibrium implies equality of pres-
sures, temperatures and two chemical potentials of quark
and hadron phases, which defines the phase coexistence sur-
face. The Maxwell construction of phase transition between
hadrons (superscriptindex “/’’) and quarks (superscript index
“q”) relaxes the Gibbs criterion by requiring equality of only
baryonic chemical potential (see the recent review [25]), i.e.
the /L’é = M% = ™. Hereafter, the subscript index “max”
denotes the quantities defined at this value of the baryonic
chemical potential. Thus, the criterion of phase equilibrium
becomes

@ Springer
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ph|max = p?|max- 9)

The characteristic feature of the Maxwell construction is a
discontinuous density jump signalling about strong first order
phase transition. Indeed, defining a given charge density as a
partial derivative of pressure with respect to the correspond-
ing chemical potential we immediately conclude that in the
general case

" glmax # 7% plmax- (10)

This discontinuous change of density is caused by a sharp
interface between quark and hadron phases due to high sur-
face tension leading to separation between them. It leads to
a flat plateau like shape of the mixed phase in the density
pressure-plane. Electric chemical potential entering this rela-
tion also experiences a discontinuous jump at the transition
between two phases

MhQ|max #* M‘]QImaX' (11)

3.2 Two-zone interpolation scheme

Discontinuity of electric chemical potential is a well known
pitfall of the Maxwell construction. It can be removed by an
accurate incorporation of the full Gibbs criterion also known
as the Glendenning construction [40]. As a result flat shape
of the mixed phase region gets washed out, while (g, np
and n g become continuous functions of 1 . In this case the
mixed phase itself is a homogeneous mixture of the quark
and hadron ones, which is possible only at vanishing surface
tension of their interface. In a realistic case surface tension
lays between vanishing Glendenning and high Maxwell val-
ues. Interplay between its effects and Coulomb interaction
leads to formation of inhomogeneous finite size structures
known as pastas [41]. Replacement interpolation construc-
tion provides an efficient and simple way to mimic inhomoge-
neous mixed phase of quarks and hadrons [23]. It, however,
does not allow a strong first order phase transition accom-
panied by discontinuous density jump. In order to consider
such possibility in this work we use TZIS [24], which also
effectively accounts for the effects of stiffening of hadron
EoS due to Pauli blocking. Technically, this method corre-
sponds to merging under certain conditions discussed below
two parabolic interpolating functions. In Ref. [24] TZIS was
developed for the case of zero change fraction. Here we make
the next step and generalize it to finite Y, when the mixed
phase pressure p is a function of baryonic wup and electric
chemical potentials with g = fip(up). Hereafter tilde
labels the quantities related to the mixed phase region defined
within the TZIS. In order to model a jump of the baryonic
density the mixed phase pressure is defined in a peace-wise
way as

@ Springer

P R ) R
.

=3 . . (12)
P [mwe. oup)]. 1§ <unp <nl

where /ﬂé and u% define the edges of the mixed phase inter-
val and for the sake of simplicity merging point is defined
symmetrically, i.e.

uh + uh
ot

The mixed phase boundary from the hadron side is parame-
terized with two constant parameters x and Ty as

, [ 12
wh = W r—o(1 —x) [1 — — (14)
TO

It is seen that Tj is temperature of the mixed phase onset at
zero chemical potential. At this regime quark-hadron tran-
sition is a smooth cross-over governed by the restoration of
chiral symmetry. The corresponding pseudocritical tempera-
ture found in lattice QCD by the position of the peak of chiral
susceptibility C())( (T) is 156.5 = 1.5 MeV [42]. We estimate
T to have the value corresponding to the half-heights of the
C())( peak, i.e. Tp = 140 MeV. On the quark side we parame-
terize the mixed phase boundary as

wh = pE* 1 +x). (15)

max

Equations (14) and (15) provide % = ug
ature. In this work we consider x = 0.01.

Partial derivatives of the interpolating pressure with
respect to baryon and electric chemical potentials give the
densities of the corresponding charges. Using these densities
we formally expand quark and hadron branches of p around
the corresponding edges of the mixed phase interval up to
the second order. Below we give an explicit treatment to the
hadron branch, while the expressions for the quark one can
be obtained by replacing all indexes “h” by “q”. Thus,

at zero temper-

o o dil
P pMn + (s — 1) (n}}; ~|—nhQ—Q>
h

~ ~h ~
+<u3—u’g)2 oy, 90 diig
2 oup oup dup
At diio\2 42
L Mo (ﬂ) +ihSEe) e
g \dusp dug /,

Hereafter the subscript index “A” labels the quantities defined
atup = M%. Similarly, the subscript indexes “g”” and “c” cor-
respond to the quantities defined at up = ,u% and up = uf,
respectively. The densities of baryonic and electric charge

densities can be expanded linearly, i.e.

ant  anl di
LR e )
h

ﬁ}é ~ ﬁ%lh + (up — ult) <3MB Siio dis
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@, ¢ “Q> . 38)
h

~) ~h h
ng ~nglh + (L — wp) -
0 Q B oup Ofig dup

Ratio of the densities of electric and baryonic charges yields

electric charge fraction Yo = ﬁf’Q / ﬁ%. It can be split into the
contributions of baryons Yg and leptons Y’Q. In the electri-
cally neutral case Yy = 0 provided by Yé = —YIQ, while
for symmetric matter Yé =1/2and Y., = 0. In the case of
finite and constant Y one has to require

iigln = Yoiilgln, (19)
oy Vipdig) aly  al djig
+ — = YQ + .
dup  Ojtgdug |, oup N

g dup
These relations allow us to parameterize the hadron branch of
the interpolating pressure through three independent param-
eters

(20)

cg = ", (1)
=i, (22)
L L faaly aih diig

g=3 <8u3 + o d”);f (23)

As is seen form Eq. (16), at finite charge fraction this parame-
terization also requires an information about the dependence
of ftp on up encoded to the corresponding first and second
derivatives evaluated at the mixed phase boundary. This is
a new element of the present paper compared to Ref. [24].
However, the dependence [ip = fio (1 p) is not specified by
TZIS and should be defined independently. For the sake of
simplicity we assume it to be linear, i.e.
q h
_ molg = gl
fig = whln + (MB — N«}é) 2l o (24)
Kp— Hp
This expression can be understood as an expansion of
fto(up) up to the leading order. It leads to djig/dup =
const, dﬂé/dﬂ% = 0 and yields

- h, h, diig\ n.
ph,q = CO 4 + (/'LB - /'LBq) <1 + YQd_Q) Cl q
LB

d
+Hup — wly")? (1 + Yo d—Q> Al @5)
KB

~h, h, h, h,
an :clq+2(MB—MBq)czq. (26)

We might naively think that constant factor 14+-Yodfig/dup
in the expression for 59 can be absorbed to the expansion
coefficients cil’q and cé”q, which makes the present param-
eterization of the mixed phase pressure identical to the one
from Ref. [24]. However, this factor is absent in the expres-
sion for ﬁ}é’q. Therefore, finite Y can not be excluded from
the TZIS even at constant djig/dp.

Before going further we would like to show that expansion
given by Egs. (25) and (26) agrees with the thermodynamic
identitiesng o = dp/dup, . Total derivative of py 4, at T =
const is

dﬁh’q aﬁh,q
dug s

P divg _ <1 + YQ_d'aQ) il
dug dup dug) B
(27)

where on the second step this derivative was explicitly found
from Eq. (25) and rewritten using Eq. (26). From this expres-
sion we immediately conclude that

apha  apha 3

“B 1220) dﬂg:o

B df)h’q Bﬁh'q

aph,q dug ~— dup ~h.q ~h,q

oo = Tig = Yony =ng . (29)

The TZIS has six parameters c{/, cf, ¢!, ¢, ¢ and ¢f.

By requiring continuity of pressure and density at the mixed
phase boundaries we immediately exclude four of them

h,
o = p" g, (30)

h, h,
=0y g (31)

Pressure is continuous at g = %, while baryon density
can experience a discontinuous jump of the amplitude Anp,
ie.

e = e, (32)
iilyle = ii%le — Ang. (33)

The amplitude An p is finite at the first order phase transition
and vanishes at the second order one or for a cross-over.
Therefore, by specifying An p as a function of temperature T
we can model the strongly interacting matter phase diagram
and its CEP(s) phenomenologically. In addition to the high
temperature CEP at T ~ 100 MeV Lt is reported that
the interplay between scalar diquark and chiral condensates
leads to the appearance of another CEP at low temperatures
[6]. Within this scenario, Ang > 0 at Teept > T > Teepn
and Anp = 0 elsewhere. Introducing t| = 7'/ Teep1 — 1 and
tp = T/ Tcepz — 1, we parameterize the density jump as

Ang = n*|0|P10)7260(—1)0 (1), (34)

where the constant n* controls its amplitude and 81, 8, are
critical exponents. These exponents are fixed to their value in
models of the 3D Ising universality class [44],1.e. 81 = B2 =
0.3265. This value also falls into the range 8 = 0.32 — 0.35
of simple liquids [45]. We consider the cases of n* = 0 and

' According to lattice QCD simulations, the high-temperature CEP, if

it exists at all, has to occur at Teep < 132:33 MeV [43].
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n* = 0.15 fm 3, while the critical temperatures are assigned
the values Tcepr = 90 MeV and Teepz = 15 MeV.

The quark-hadron mixed phase can be characterized by the
volume fraction of quark matter A e [0, 1], which should
be defined for the hadron (superscript index “A”’) and quark
(superscript index “g”’) branches of the TZIS. Within this
notation the volume fraction of hadronic matter is 1 — A",
The volume fraction A™-9 is related to the baryonic charge
density of mixed phase as ﬁ}é’q = Maih |y + (1=l ,.
This relation allows us to find

~h,q ~h
h, ng" —iglh
A= (35
nglg = ngln

which provides a direct access to the relevant thermodynamic
quantities of the mixed phase. For example, the mixed phase
entropy density reads

ha — )hh'q§h|h +(1— )Lhﬂ)gqu_ (36)

The energy density needed as an input for solving the TOV
equation can be found using the thermodynamic identity

gh,q — T§h’q +MB,7/§JI +/1Qﬁ}§q _ ﬁh,q
- - ~h, .
=T§"9 + (up + Yoip)ig? — . (37

where in the second step the electric charge density was
expressed through the baryonic charge density and the elec-
tric charge fraction.

3.3 Phase diagram

We first analyze the effect of the electric charge fraction car-
ried by baryons Yg on the shape of the phase diagram of
strongly interacting matter in B-equilibrium. For simplicity
only electrons are taken into consideration. In B-equilibrium,
their chemical potential is ;. = —u . More generally, the
chemical potential of a particle with baryonic charge B and
electric charge Q is u = Bup + Qug. Figure 1 shows the
behavior of the chemical potential of the quark-hadron tran-
sition under the Maxwell construction p'3** as a function of
Y g. It is seen that u'g®* is not monotonous but has a min-
imum at all values of temperature 7. The same qualitative
conclusion holds for ,u’]g and u%, which are not shown in
Fig. 1 for the sake of clarity. In other words, a certain value
of Yg leads to the smallest density of the quark matter onset.

Figure 2 shows the phase diagram of 8-equilibrated quark-
hadron matter found by the Maxwell construction and by the
TZIS. The phase coexistence curve found within the Maxwell
construction has a characteristic shape with pup** shifted
toward small values at low temperatures. This is due to the
lowering of the onset density of quark matter deconfinement
caused by diquark pairing, which is most pronounced at small
T. A similar behavior is observed for the TZIS mixed phase
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Fig. 1 Baryon chemical potential of quark-hadron transition up™
found within the Maxwell construction under the condition of 8-
equilibrium for several values of temperature 7

100

T [MeV]

0 — — — —
900 1100 1300 1500 1700

Fig. 2 Phase diagram of B-equilibrated quark-hadron matter in the
plane of baryon chemical potential ;5 vs. temperature 7 at the charge
fraction carried by baryons YZ = 0.01 (red solid curves), Y g =02

(green dashed curves) and Y’ b =0.4 (orange dotted curves). The curves
are obtained by the Maxwell construction (thick curves) and TZIS (thin
curves) between EoSs of quark and hadron phases

boundary from the quark side /L%, which is strongly corre-
lated with 'z . For the TZIS merging chemical potential 1%
this effect is also present but appears to be less pronounced
due to the normal behavior of the TZIS mixed phase bound-
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Fig. 3 Phase diagram of S-equilibrated electrically neutral quark-
hadron matter in the plane of baryon chemical potential ;1 g vs. temper-
ature 7. The black dotted, dashed and solid curves correspond to the
phase boundary of the Maxwell construction, the phase boundaries of
the TZIS and the merging chemical potential of the TZIS, respectively.
The color mapping of hadron, quark and mixed phases corresponds
to TZIS. The filled black circles show the CEPs. The colored curves
represent adiabates with values of s /n p calculated within the Maxwell
construction (dotted curves), the TZIS with n* = 0.15 fm—3 (dashed
curves) and the TZIS with n* = 0 (solid curves)

ary from the hadron side u}é. At the same time we would
like to stress that the temperature derivatives of /L’é, u and
M% vanish at T = 0. The hadron boundary M’}; found with
Eq. (14) weakly depends on Y g, while the quark one /fé is
strongly sensitive to the value of the electric charge fraction
carried by baryons. It is important to note, that for the ana-
lyzed range of temperatures the width of the mixed phase
region in the TZIS grows with 7" at any Y g
Modelling (proto)neutron stars requires an additional con-
dition on the EoS of stellar matter, i.e. the electric charge neu-
trality provided by a proper amount of electrons. This corre-
sponds to solving Yo = 0 withrespectto it g. Figure 3 shows
the corresponding phase diagram in the plane of baryonic
chemical potential and temperature. Figure 3 also demon-
strates the trajectories of constant entropy per baryon s/np
of B-equilibrated electrically neutral quark-hadron matter. A
remarkable and general feature of the shown trajectories is
temperature increase caused by transition from hadron phase
to the quark one observed at any nonzero s/np within the
Maxwell construction and the TZIS. This is a direct con-
sequence of the reducing the number of microstates due to

diquark pairing as compared to the case of unpaired quark
matter.
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Fig. 4 The same as on Fig. 3 but in the plane of baryon density np
vs. temperature T at n* = 0.15 fm 3 (upper panel) and n* = 0 (lower
panel). Green shading on the upper panel demonstrates the region where
the baryonic density experiences a discontinuous jump within the TZIS.

Low and high temperature CEPs on the lower panel are shown in order
to guide the eye

Indeed, each of the red and green quarks participating
in the pairing can exist in two spin, two color and two fla-
vor states, while a spin-color singlet diquark has just one
available state. Thus, a reduction of the number of available
microstates requires an increase of temperature in order to
conserve the entropy. Figure 4 shows the same phase diagram
in the plane of baryonic density and temperature. The shape
of the mixed phase boundaries is qualitatively similar to the
one in the up — T plane and is not affected by the value of
n*. It is seen from the upper panel that at non-zero values of
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this parameter the temperature range between Tcep1 and Teep2
includes the domain where n g experiences a discontinuous
jump. It is also interesting to note, that at any n* the isen-
tropic trajectories of the mixed phase found within the TZIS
are located above the ones obtained with the Maxwell con-
struction. This means that a reduction of the available num-
ber of microstates due to the transition form hadron matter
to color-superconducting quark matter in the TZIS is more
pronounced than within the Maxwell construction because
of the larger volume fraction of quark matter.

4 Protoneutron stars with quark cores

The quark-hadron matter in the interiors of the protoneutron
stars that are created during supernovae explosions evolves
along the trajectories which are approximately isentropic [4].
Therefore for modelling these astrophysical objects we con-
sider hybrid EoS of -equilibrated electrically neutral matter
calculated under the condition of constant ratio s/np. Fig-
ure 5 shows the corresponding pressure as a function of the
energy density. The first conclusion valid for both TZIS and
Maxwell construction is that growth of the entropy per baryon
and, consequently, temperature leads to increase of pressure
atagiven value of energy density. This stiffening of the quark-
hadron EoS is the most pronounced at low densities, while at
high ¢ effects of s/np and T are relatively weak. Switching
from hadron matter to the quark one leads to softening of
the EoS in the mixed phase region at any s/n g. The stronger
is phase transition, the more pronounced is this effect being
the most spectacular in the case of the Maxwell construc-
tion, while TZIS with vanishing n* diminishes it. As is seen
from Fig. 5, at s /np = 0 our hybrid EoS obtained within the
Maxwell construction and TZIS with vanishing and finite n*
agrees with the low density calculations of the chiral EFT
approach [46] and constraints from the multipolytrope anal-
ysis of the PSR J1614+2230 [17] and PSR J0740+6620 [11]
observational data. As expected, finite values for s /n p mod-
ify the EoS especially in the low density region.

We apply the developed hybrid EoSs as an input to the
problem of relativistic hydrostatic equilibrium, i.e. to solv-
ing the TOV equation giving a mass-radius relation of pro-
toneutron stars. This relation is shown on Fig. 6. In order
to illustrate the effects of nonvanishing entropy we compare
these cases to s/np = 0 and to the observational constraints
on the mass-radius relation of cold neutron stars. The lat-
ter include a constraint on the lower limit of the TOV max-
imum mass given by the mass 2.0118:81 measured in the
binary system of the pulsar PSR J0348+0432 and its white
dwarf companion [33], results of the Bayesian analysis of
the observational data from PSR J0740+6620 [11,12] and
from PSR J0030+0451 [34,35], of the analysis of the grav-
itational wave signal produced in the inspiral phase of the
merger GW 170817 [36] as well as limitations on the stellar
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radius at 1.6 Mg from below by R ¢ > 10.68 km [37] and
at 1.4 Mg from above by Ry4 < 13.6 km [38]. The zero-
entropy hybrid EoS obtained with the Maxwell construction
and with the TZIS fits all these constraints and is used as
a benchmark. Increasing s/np shifts the mass-radius dia-
gram towards large radii, while leaving the maximum mass
almost unchanged. This is due to the fact that entropy effects
are most pronounced in the low density regime, while being
small at high densities. Nevertheless, all the constraints men-
tioned above are fulfilled at s/np = 0.5. At s/np = 1.0
this is the case only within the Maxwell construction of the
quark-hadron transition, while the TZIS provides a marginal
agreement only for n* = 0.15 fm~3. A further increase of the
entropy per baryon leads to large values for the protoneutron
star radii, e.g., R14 >~ 16 — 17 km for s /np = 1.5.

5 Conclusions

We have developed the generalization to finite temperatures
of a recently proposed two-zone interpolation scheme that
matches the domains of pure hadronic and quark matter
phases and thus allows to study the phase diagram of strongly
interacting matter. The extension of the approach to the case
of a finite fraction of electric charge is a novel element of the
presented work. We investigated how this parameter modi-
fies the shape of the phase boundary. We also considered two
scenarios of the quark-hadron transition, namely a continu-
ous and a discontinuous change of the baryon density at the
transition, corresponding to a cross-over and a strong first
order phase transition, respectively. Within the second sce-
nario the phase transition curve is terminated at the low and
high temperature critical endpoints.

An important aspect of the study is incorporation of color
superconductivity based on the approach of a confining den-
sity functional for quark matter. The formation of a color
superconducting state of quark matter is responsible for a
characteristic shape of the mixed phase boundary in the
case of the Maxwell construction and two-zone interpola-
tion scheme. Another important effect of color superconduc-
tivity which is absent in the case of normal quark matter,
is the growth of the temperature at the transition from the
hadronic phase to the quark matter phase. This effect drives
the trajectories of evolution of protoneutron stars produced
in the supernova explosions toward the regions of the phase
diagram that are accessed in the NS mergers and in the labo-
ratory experiments with collisions of relativistic heavy ions.

Finally, we analysed the effects of entropy on the mass-
radius relation of protoneutron stars with quark-hadron tran-
sition within the Maxwell construction and the two-zone
interpolation scheme with a first order phase transition and
cross-over. A finite entropy per baryon strongly modifies stel-
lar radii while leaving the maximum mass almost unchanged.
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Despite the fact that the present study is mostly focused
on the temperature-density region typical for astrophysical
applications, the proposed approach can be applied to the
entire phase diagram of strongly interacting matter.
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