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Abstract We investigate DD∗ and DD̄∗ momentum cor-
relations in high-energy collisions to elucidate the nature
of Tcc and X (3872) exotic hadrons. Single range Gaussian
potentials with the channel couplings to the isospin partners
are constructed based on the empirical data within the pure
hadronic-molecule picture. The momentum correlation func-
tions of the D0D∗+, D+D∗0, D0 D̄∗0, and D+D∗− pairs are
computed with including the coupled-channel effects. We
discuss how the nature of the exotic states are reflected in the
behaviors of the correlation results.

1 Introduction

The study of various exotic resonances in heavy quark sec-
tors has been one of the most interesting subjects in recent
hadron physics [1–3]. The most extensively studied state is
the X (3872) lying just below the DD̄∗ threshold, which
is listed as χc1(3872) in the current PDG paper [4]. Ever
since its first observation in 2003 [5], this exotic hadron
has attracted huge interest of researchers and a bunch of the
experimental and theoretical studies have been devoted to
understand this state. Nevertheless, its nature still remains to
be elucidated.

Recently, the LHCb Collaboration reported a clear signal
of the doubly charmed tetraquark state T+

cc in the mass spec-
trum of D0D0π+ [6,7]. Such exotic states with two heavy
quarks and two light antiquarks are theoretically predicted
with the quark model in Refs. [8,9] more than 30 years ago.
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In contrast to the X (3872), this Tcc state is found in the
genuine exotic channel, which requires at least four valence
quark components (ccūd̄). Although the X (3872) and Tcc
are in different sectors, there is one similarity between them,
i.e., the existence of a nearby two-meson threshold. Namely,
the Tcc peak is also found just below the DD∗ threshold. The
proximity with the DD̄∗ and DD∗ thresholds would imply
the molecular nature of these states. It should be noted, how-
ever, that the structure of X(3872) is still under debate. In
the study of Ref. [10], it is shown that the contribution of
the cc̄ component is important by the analysis of the prompt
production cross section. On the other hand, the enhance-
ment of the production yield in AA collisions observed in
CMS [11] seems to imply that X (3872) contains a signifi-
cant fraction of the hadronic molecule component [12]. In
order to discriminate the possible structures of X (3872), it
is desirable to experimentally access the DD̄∗ interaction.
In the case where the hadronic molecule component is dom-
inant in X(3872), the scattering length of DD̄∗ is expected
to agree with that from the weak binding relation [13–15],
a0 � −Rh = −√−2μEh with μ and Eh being the reduced
mass and the energy from the threshold. In the case where
the cc̄ and compact tetraquark components are significant,
the scattering length will deviate from −Rh .

For the study of the near-threshold resonances, the fem-
toscopy using the two-particle momentum correlation func-
tion in high-energy collisions is a helpful technique because
the correlation function is sensitive to the low-energy hadron
interactions. With the femtoscopy, various interactions in the
strangeness sector have been investigated theoretically [16–
24] and experimentally [25–36]. It turns out that the source
size dependence of the correlation function is useful to distin-
guish the existence or non-existence of hadronic bound states
[22,23]. Recently, the D− p correlation function has been
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measured by the ALICE collaboration [37], which paves the
way to the femtoscopy in the charm sector.

In this study, we discuss the correlation functions of the
DD∗ and DD̄∗ channels towards the understanding of the
nature of the Tcc and X (3872) states. To this end, we con-
struct one-range Gaussian potentials for the DD∗ and DD̄∗
channels which reproduce the empirical information in these
channels by assuming that the Tcc and X (3872) are purely
hadronic molecule states. Including the coupled-channel
effects with the isospin partners and the decay channels, we
compute the correlation functions. Deviation of the so pre-
dicted correlation function from the data to be measured in the
near future signals the existence of non–hadronic-molecule
components in Tcc and X (3872).

This paper is organized as follows. In Sect. 2, we construct
the DD∗ and DD̄∗ potentials from the empirical data and
summarize the method to calculate the correlation function
with coupled-channel source effect. In Sect. 3, we show the
results of the correlation functions of the D0D∗+, D+D∗0,
D0 D̄∗0, and D+D∗− channels and discuss how the exotic
states can be studied in the future femtoscopy experiments.
Section 4 is devoted to summarize this study.

2 Method

Let us first summarize the relevant channels which couple
to the system of interest. For the Tcc and X (3872) states,
we cannot neglect the mass difference among the isospin
multiplets, because the deviation of the eigenenergy from the
threshold is comparable or smaller than the isospin breaking
effect. The Tcc locates just below the D0D∗+ threshold, and
it also couples to the D+D∗0 channel whose threshold lies
slightly above that of the D0D∗+ channel. At energies lower
than the Tcc, the three-body DDπ channels are open, which
provide the finite decay width of Tcc. The X (3872) lies just
below the {D0 D̄∗0} = (D0 D̄∗0 + D̄0D∗0)/

√
2 (C = +)

threshold and couples also to the higher energy {D+D∗−} =
(D+D∗− + D−D∗+)/

√
2 (C = +) channel. At much lower

energies, the decay channels such as ππ J/ψ couple to the
X (3872). In the following, we explicitly treat the D0D∗+ and
D+D∗0 channels for Tcc and {D0 D̄∗0} and {D+D∗−} channels
for X (3872), and the decay effect to the other channels are
renormalized in the imaginary part of the potential. Thus, the
Hamiltonian of the system is expressed by a 2 × 2 matrix in
the channel basis.

Next, we construct the DD∗ and DD̄∗ potentials. Assum-
ing that the interaction is isospin symmetric, the strong inter-
action part of the coupled-channel potentials can be given by
the I = 0 and I = 1 components as

VDD∗/DD̄∗ = 1

2

(
VI=1 + VI=0 VI=1 − VI=0

VI=1 − VI=0 VI=1 + VI=0

)
, (1)

where we assign channel i = 1 and 2 to D+D∗0 and D0D∗+
for the DD∗ system and {D0 D̄∗0} and {D+D∗−} for the DD̄∗
system, respectively. Because the Tcc and X (3872) couples
to the I = 0 channel, we assume that the I = 0 component
gives the dominant contribution, and set

VI=0 = V (r), (2)

VI=1 = 0, (3)

where V (r) is a spherical Gaussian potential:

V (r) = V0 exp(−m2r2), (4)

where V0 is the interaction strength and m is the parameter of
the dimension of mass to control the range of the interaction.
Here we use the charged (isospin averaged) pion mass mπ±
(mπ ) for the DD∗ (DD̄∗) interactions because the lightest
exchangeable meson, pion, determines the interaction range
(see 1 for the different choice of m and the finite VI=1 case
in the DD̄∗ channel). Thus, in this formulation, we are left
with a single parameter V0 for each DD∗/DD̄∗ potential.
Note that V0 takes a complex number, in order to express
the decay effects into the lower energy channels. While the
DD∗ potential is free from the Coulomb interaction, for the
{D+D∗−} channel we should include the Coulomb force:

V c
DD̄∗(r) =

(
0 0
0 −α/r

)
, (5)

with the fine structure constant α. This potential is added to
Eq. (1) for the DD̄∗ potential.

Here we determine the potential strength V0 so as to repro-
duce the empirical data for these systems. For the DD∗ poten-
tial, we use the scattering length aD0D∗+

0 = −7.16 + i1.85
fm, given in the experimental analysis in Ref. [7].1 For the

DD̄∗ potential, we use the scattering length a{D0 D̄∗0}
0 =

−4.23 + i3.95 fm which is determined by the eigenenergy
Eh = −0.04 − i0.60 MeV in PDG [4] measured from

the D0 D̄∗0 threshold, as a{D0 D̄∗0}
0 = −i/

√
2μEh with the

reduced mass μ. We notice that these scattering lengths have
a much larger magnitude than the typical length scale of the
strong interaction ∼ 1 fm. The obtained potential strengths
are summarized in Table 1. For the later use, the scattering
lengths of the higher channels (D+D∗0 and {D+D∗−}) cal-
culated with the same potentials are also listed. Our poten-
tial model looks too simple to describe the mechanism to
produce the Tcc and X (3872) from the DD∗ and DD̄∗
interaction. It should be noted that, however, the correla-
tion function at small relative momenta is mainly determined

1 Here we use the the high-energy physics convention for the scattering
length where the positive (negative) real value corresponds to the weakly
attractive (repulsive or strongly attractive) interaction.
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Table 1 Strength parameters V0 for the DD∗ and DD̄∗ potentials and the scattering lengths in the DD∗ and DD̄∗ channels

DD∗ V0 [MeV] aD0D∗+
0 [fm] aD+D∗0

0 [fm]

−36.569 − i1.243 −7.16 + i1.85 −1.75 + i1.82

{DD̄∗} V0 [MeV] a{D0 D̄∗0}
0 [fm] a{D+D∗−}

0 [fm]

−42.116 − i6.057 −4.23 + i3.95 −0.39 + i1.49

The scattering lengths of the lower channels (third column) are the empirical inputs

by the scattering lengths and the energy from the threshold
together with the source size. Then it is decisive to obtain
the coupled-channel wave function in the low energy region
with the potentials having appropriate scattering lengths. To
this end, our potential model determined directly from the
empirical data is useful to discuss the behavior of the DD∗
and DD̄∗ correlation functions without suffering from the
detailed model dependence. Note that all these calculations
are performed in the coupled-channel scheme.

To calculate the correlation functions C(q) with the
coupled-channel effects, we employ the Koonin-Pratt-
Lednicky-Lyuboshitz-Lyuboshitz formula (KPLLL) formula
[21,24,38] given by

C(q) =
∫

d3r
2∑

i=1

ωi Si (r)|�(−)
i (q; r)|2 , (6)

where the wave function �
(−)
i in the i-th channel is written

as a function of the relative coordinate r , with imposing the
outgoing boundary condition on the measured channel. We
consider the small momentum region and assume that only
the s-wave component of the wave function �

(−)
i is modi-

fied by the strong interaction. The wave function is calculated
by solving the Schrödinger equation with the hermite con-
jugated potential V †, which gives the appropriate boundary
condition for the eliminated decay channels (See 1). We
adopt a common static Gaussian source function for all the
channels Si (r) = exp(−r2/4R2)/(4πR2)3/2 with the source
size R, and the weight factor ωi is taken as unity for all chan-
nels. The weight factor ωi represents the ratio of the pair
production yield in the i th channel with respect to the mea-
sured channel. Since we only include the coupled-channel
effect of the isospin partners, they are considered to have the
equivalent emitting source. The source size R ranges from
∼ 1 fm for the high-multiplicity events in pp collisions to
∼ (5−6) fm for the central PbPb collisions.

While we construct the DD̄∗ potential in the charge conju-
gationC=+ combination which couples to the X (3872), the
experimental measurement of the correlation function will be
done with fixed charge states, i.e., either D0 D̄∗0 or D̄0D∗0.
To obtain the correlation functions of the fixed charge states,
the correlation functions in the C=− sector are also needed
to take an average of the C=+ and C=− contributions. In
this exploratory study, we assume that the C=− interaction

is small and can be neglected with respect to the dominant
C=+ contribution. In this case, we obtain the experimentally
accessible correlation functions from the correlation function
calculated by the C=+ potential as

CD0 D̄∗0 = CD̄0D∗0 = 1

2

(
C{D0 D̄∗0} + 1

)
, (7)

CD+D∗− = CD−D∗+ = 1

2

(
C{D+D∗−} + Cpure Coul.

)
, (8)

where Cpure Coul. is calculated only with the Coulomb inter-
action by switching off the strong interaction contribution.

3 Results

Now we calculate the correlation functions with the con-
structed potentials. First we show the DD∗ sector coupled
with the Tcc state. The correlation function of the D0D∗+ and
the D+D∗0 pairs with source sizes R = 1, 2, 3, and 5 fm are
shown in Fig. 1. We can see that the source size dependence
typical to the system with a shallow bound state for both
correlation functions; the enhancement in the small source
case turns to the suppression for the large source case [24].
The stronger correlation is found in the D0D∗+ channel,
whose threshold is closer to the Tcc pole. The cusp struc-
ture is seen at the D+D∗0 threshold (q � 52 MeV/c) in the
D0D∗+ correlation, while the strength is not very prominent.
The D0D∗+ correlation behavior is typical to the dynam-
ically generated state with the large scattering length [24].
If Tcc is not originated in the D-D interaction and the scat-
tering lengths (aD0D∗+

0 and aD+D∗0

0 ) deviate from −Rh , it
is expected that both correlation function shows the weaker
signal and source size dependence.

Next we show the results of the DD̄∗ correlation function
coupled with the X (3872) in Fig. 2. Here we plot the corre-
lation functions of the fixed charges states in Eqs. (7) and
(8) which can be compared with the experimental measure-
ments. The characteristic strong source size dependence with
the shallow bound state is found in CD0 D̄∗0 . We can also see
the cusp structure at the D+D∗− threshold (q � 126 MeV/c).
The cusp structure is more prominent for the smaller source
case. This is because the coupled-channel source effect by
the D+D∗− channel is stronger for the smaller source case
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Fig. 1 The correlation functions of the D0D∗+ (top) and D+D∗0 (bot-
tom) pair with the source size R = 1, 2, 3, and 5 fm

[23]. On the other hand, due to the attractive Coulomb
force, the CD+D∗− correlations show a strong enhancement
at small q. To extract the contribution by the strong inter-
action, we show the difference from the pure Coulomb case
�C = CD+D∗− − Cpure Coul.. We can see that the effect
of the strong interaction emerges mainly as the suppression
compared to the pure Coulomb case. However, the devia-
tion |�C | is less than 0.2 for the momentum region q > 50
MeV/c. Thus, the correlation of D+D∗− pair is expected to
be dominated by the Coulomb contribution.

Fig. 2 The correlation functions of the D0 D̄∗0 (top) and D+D∗− (bot-
tom) pair with the source size R = 1, 2, 3, and 5 fm. For D+D∗− pair,
the difference from the pure Coulomb case �C is shown in sub figure

Up to here, we have assumed that X (3872) is the quasi-
bound state below the DD̄∗ threshold. Another possibility is
that the X (3872) pole emerges above the threshold energy
in the unphysical Riemann sheet. In this case, the real part

of a{D0 D̄∗0}
0 is positive. We find that when we weaken the

real part of the V0 and take V0 = −32.000 − i6.057 MeV,

a{D0 D̄∗0}
0 = 2.30 + i4.00 fm and a{D+D∗−}

0 = 0.19 + i1.47
fm. We performed the calculation in the same manner and
obtained the D0 D̄∗0 correlation function with the weakened
potential as shown in Fig. 3. We see that the correlation func-
tion shows the source size dependence different from Fig. 2.
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Fig. 3 The D0 D̄∗0 correlation functions calculated with the weak-
ened interaction V0 = −32.000 − i6.057 MeV (thick line) where the
quasibound state does not appear. The scattering length is obtained as

a{D0 D̄∗0}
0 = 2.30 + i4.00 fm

Due to the large absolute value of the a{D0 D̄∗0}
0 , CD0 D̄∗0 from

the small source shows the strong enhancement, which is sim-
ilar to the quasibound case. However, CD0 D̄∗0 from the large
source does not show the clear dip structure unlike Fig. 2.
Thus, even though the pole is originated in the D-D̄∗ inter-
action, the D0 D̄∗0 correlation function shows the different
source size dependence depending on the pole position of
X (3872). On the other hand, D+D∗− pair shows the same

behavior with Fig. 2 due to the small a{D+D∗−}
0 , so we omit the

result of CD+D∗− .
In this study, we used the empirically determined scat-

tering lengths as input to calculate the correlation functions.
Given the correlation data obtained from the precise future
measurement, we can independently determine the scatter-
ing lengths a0 because the correlation functions are sensitive
to the low-energy interaction. According to the Weinberg’s
weak-binding relation [13–15], the compositeness, which is
defined as the probability of finding molecular state in the
eigenstate, is directly related to the ratio of the a0/Rh where
Rh is the length scale determined with the eigenenergy Eh as
Rh = 1/

√−2μEh . Thus, combined with the information of
the pole position, to measure the these correlation functions
leads to understand the nature of Tcc and X (3872) states.

4 Summary

We have studied the correlation functions of the DD∗ and
DD̄∗ pairs for the purpose of the investigation of the Tcc and

X (3872) exotic states. With the assumption of the molecular
nature of these states, one-range Gaussian potentials are con-
structed for the DD∗ and DD̄∗ channels from the empirical
data, the scattering length given in the experimental analysis
[7] for DD∗ and the eigenenergy of X (3872) [4] for DD̄∗.
Due to the large scattering lengths, the calculated correla-
tion functions in the lower channels (D0D∗+ and D0 D̄∗0),
which are closer to the exotic states, show the characteristic
behavior of the bound state below the threshold. On the other
hand, the correlation function of the D+D∗0 channel shows
less prominent behavior due to the energy difference from
the Tcc pole, and the correlation in the D+D∗− channel is
mainly caused by the Coulomb interaction. To extract these
characteristic behaviors, the high resolution data given by
the statistical events from the different collisions systems is
required. According to Refs. [39,40], the ALICE 3 upgrade
with the large acceptance and the high luminosity provides
us the great resolution for the DD∗ and DD̄∗ correlation
data from both different colliding systems (pp and PbPb),
which is enough to see the characteristic behavior. Given the
successful measurement of the D− p correlation function by
the ALICE collaboration [37], we expect that the measure-
ments of the DD∗ and DD̄∗ correlations in future will bring
new insights of the exotic hadrons from the viewpoint of the
femtoscopy.

In this study, we have introduced the potentials in the chan-
nels that couple to the exotic states (isospin I = 0 and charge
conjugation C = +), and have neglected the interactions in
the other channels. This is because the existence of near-
threshold states implies the strong interaction, which is con-
sidered to give the dominant contribution for the correlation
function. For more quantitative discussion of the correlation
functions, these subleading effects should also be consid-
ered. In particular, the cusp structure may be sensitive to the
isospin I = 1 interaction, because the coupling between the
isospin partners are given by the difference of the two isospin
components. The DD̄∗ interaction in theC = − sector is still
unclear at this moment, but the neutral partner of Zc(3900)

[41] may play an important role in this channel. These effect
should be discussed in the future studies.
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AppendixA:Outgoingboundary condition for the optical
complex potential

The wave function for the KPLLL formula (6) must satisfy
the outgoing boundary condition where the flux of the outgo-
ing wave of the reference channel is normalized to be unity.
On the other hand, the complex optical potentials are con-
structed based on the scattering problem with the incoming
boundary condition where the flux of the incoming wave
is normalized. This boundary condition is applied to the
integrated channels, whose coupling to referenced channels
(D+D∗0 and D0D∗+ in the case of DD∗ sector) give the
imaginary part of the potential. Thus, we cannot obtain the
correct wave function ψ by solving the Schrödinger equation

Hψ = [H0 + V ]ψ = Eψ, (A.1)

with the boundary condition only with the referenced chan-
nels.

We claim that we can just take the hermite conjugate of
the potential V and solve the Schrödinger equation in order
to obtain the wave function which satisfies the boundary con-
ditions for all the channels,

[H0 + V †]ψ = Eψ, (A.2)

with the outgoing boundary condition.
Taking the hermite conjugate of the potential V corre-

sponds to consider the time reversal of the system. This can be
understood as follows. Let us consider the two channel scat-
tering problem with spinless particles where channel 1 (2)
has higher threshold energy and is measured (lower thresh-
old energy and is not measured). The Hamiltonian for this
system is given as

H =
(
H11 H12

H21 H22

)
=

(
H0

11 + V11 V12

V21 H0
22 + V22

)
, (A.3)

where H0
i j and Vi j are the free Hamiltonian and the interac-

tion potential, respectively. The Lippmann-Schwinger equa-
tion for the T matrix is given as

T = V + VG0T, (A.4)

G0 = diag.(G0
1,G

0
2), (A.5)

with the free propagator

G0
i (z) = (z − H0

i i )
−1. (A.6)

With the Feshbach projection [42,43] for channel 2, the
Lippmann-Schwinger equation for channel 1 can be written
with the effective potential Veff as

T11(z) = Veff(z) + Veff(z)G
0
1(z)T11(z), (A.7)

Veff(z) = V11 + V12G2(z)V21, (A.8)

where Gi (z) is the full propagator given as

Gi (z) = (z − Hii )
−1. (A.9)

The contour of the time integration of G(0)
i (z) can be chosen

by taking z → E + iε for the scattering problem. On the
other hand, that of the time-reversed system can be given
as z → E − iε. This effective potential is complex due to
the pole term included in G2(E − iε). Then the effective
potential in the time reversed system is given as

Veff(E − iε) = V11 + V12G2(E − iε)V21

= V †
11 + V †

21G
†
2(E + iε)V †

12

= [V11 + V12G2(E + iε)V21]†

= V †
eff(E + iε). (A.10)

Here we assumed that the full Hamiltonian is hermitian and
the potential V is real. Thus, the hermite conjugated effec-
tive potential corresponds to that in the time reversed sys-
tem. Remembering that the time reversal operator T acts on
the wave function as Tψ = ψ∗ [44], the system obtained
from Eq. (A.2) with the outgoing boundary condition cor-
responds to the time-reversed system written with Eq. (A.1)
with incoming boundary condition.

The imaginary part of the optical potential causes the sup-
pression or the enhancement of the wave function component
of the referenced channel depending on its sign. In the scat-
tering problem of the coupled-channel system, the asymp-
totic form of the s-wave component of the scattering wave
function of channel 1 is given with the S matrix component
as

ψ1(q; r) → 1

2iqr

(
e−iqr − S11e

iqr
)

. (A.11)
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Table 2 Strength parameters V0 for the DD̄∗ potential and the scattering lengths of D+D∗− channel with different potential assumptions for the
range parameter m and the I = 1 potential VI=1

m mρ mπ mπ mπ

VI=1 0 Re VI=0/3 −Re VI=0/3 0

V0 [MeV] −924.58 − i16.92 −40.088 − i6.998 −43.257 − i5.372 −42.116 − i6.057

a{D+D∗−}
0 [fm] −0.73 + i0.73 0.45 + i4.45 −1.01 + i0.93 −0.39 + i1.49

The case with the original assumption is shown in the fifth column

Due to the coupling to channel 2, the absolute value of the
S matrix component S11 is less than unity, which leads the
reduced outgoing wave (eiqr ) compared to the normalized
incoming wave (e−iqr ). When we use the complex optical
potentialV with negative imaginary part, this reduction of the
wave function is caused by the imaginary part of the potential.
On the other hand, the outgoing boundary condition, which
is used for the correlation study, is given as

ψ1(q; r) → 1

2iqr

(
eiqr − S†

11e
−iqr

)
. (A.12)

In this case, the flux of the outgoing wave (1) is larger than
that of the incoming wave (|S†

11|). This is because the wave
function of channel 2 flows into channel 1 by the coupling
potential to give the normalized outgoing wave. When we
use the hermite conjugated optical potential V † with positive
imaginary part, its imaginary part causes the enhancement of
the channel 1 component.

In summary, when we employ the complex optical poten-
tial constructed for the ordinarily scattering problem, the
wave function for the KPLLL formula (6) can be obtained by
solving Eq. (A.2) with hermite conjugated potential V † with
the outgoing boundary condition. This is because to take the
hermite conjugate of the potential V corresponds to consider
the time reversal of the system, which turns the incoming
boundary condition introduced in the construction process
of the potential to the outgoing boundary condition. We also
note that the resulting wave function can also be obtained
by solving Eq. (A.1) with the (standard) incoming bound-
ary condition and taking the complex conjugate of the wave
function.

Appendix B: Interaction dependence of DD̄∗ correlation
function

In the main text, we studied the DD̄∗ correlation functions
with the assumptions that the range of the interaction is gov-
erned by the pion exchange and that the I = 0 interaction
gives the dominant contribution. In this appendix, we per-
form further calculations with different assumptions on the
DD̄∗ interaction so that how the behavior of the correlation

Fig. 4 The D0 D̄∗0 correlation function calculated with different
potential assumptions. The case where the ρ meson mass is used for
the range parameter is shown by the dotted line. The case where the
attractive (repulsive) I = 1 potential is shown by dashed (dash-dotted)
line. The correlation calculated with the original assumption is shown
by the solid line for the comparison

functions depends on these assumptions. Because we find no
significant change of the D+D∗− correlation, here we only
present the result of the neutral D0 D̄∗0 correlation function.

First we consider the different interaction range of the
potential. Although the natural underlying mechanism of
the DD̄∗ interaction is the pion exchange, as a conserva-
tive estimate, we examine the case where the mass of the
ρ meson mρ is employed as m in Eq. (4), which gives a
much shorter interaction range compared to that of the π

exchange. With this assumption, we fitted the V0 again so
that the calculated scattering length reproduces the empirical

value of a{D0 D̄∗0}
0 = −4.23 + i3.95 fm. The obtained poten-

tial strength and the calculated scattering length of D+D∗−
channel are shown in Table 2. Because the potential repro-
duces the same scattering length, the change of the wave
function emerges mainly in the small r but not in the asymp-
totic region. Thus, we only plot the correlation function with
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R = 1 fm source case (dotted line) in Fig. 4, which is most
affected by the change of the inner part of the wave func-
tion. From this figure, we can see that the CD0 D̄∗0 is more
enhanced at small q region than the case with m = mπ (solid
line), which we call the original case in this appendix. We
also checked that the behavior of the source size dependence
discussed in Sect. 3 is not affected by the change of m. In
short, the difference of the interaction range only appears as
the strength of the enhancement of D0 D̄∗0 channel for the
small source.

Next we consider the case with the finite I = 1 interac-
tion VI=1. Here we examine both cases of attractive VI=1 and
repulsive VI=1. For the strength, we expect the strength of
VI=1 to be 1/3 of that of VI=0 because the π exchange inter-
action gives the factor of I · I ′ with the isospin of D meson I
and that of D̄∗ meson I ′, which leads to VI=0/VI=1 = −3.
Based on this observation, we assume that the VI=1 is given
as VI=1 = Re VI=0/3 (VI=1 = −Re VI=0/3) for the attrac-
tive (repulsive) case. Here we use the real potential for VI=1

for the simplicity. With this assumption, the I = 0 and I = 1
potential is given by the potential strength parameter V0 as

VI=0 = V0 exp(−m2
πr

2), (B.13)

VI=1 = ±1

3
ReV0 exp(−m2

πr
2). (B.14)

As in the same procedure, V0 is determined as shown in
Table 2. Because the quasibound pole corresponding to the
X (3872) state, which is strongly related to the D0 D̄∗0 scat-
tering length, is generated by the I = 0 component, the
change of the strength parameter V0 is small. On the other
hand, we find that the value of the {D+D∗−} scattering length
is sensitive to the assumption of VI=1. This is because the

value of a{D+D∗−}
0 is affected by the pole in the unphysical

Riemann sheet, which would have appeared as a quasibound
state below the D+D∗− threshold if the attractive interac-
tion had been strong enough. The added attractive (repulsive)
VI=1 in Eq. (B.14) bring its position closer to (farther from)

the D+D∗− threshold, which affects the value of a{D+D∗−}
0 .

As shown in Fig. 4, compared with the original case, the
D0 D̄∗0 correlation function in the low momentum region
(q < 100 MeV) is almost unchanged while the D+D∗−
cusp structure is enhanced (suppressed) in the case of attrac-
tive (repulsive) VI=1. This enhancement (suppression) of the
cusp is caused by the strengthened (weakened) imaginary
part of the D+D∗− scattering length, which reflects the cou-
pling strength to the coupled-channels. Thus, by measuring
the cusp structure with the precise experiment, the detailed
isospin dependence of the interaction can be investigated.
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