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Abstract Neutron stars and their mergers provide the
highest-density regime in which Einstein’s equations in full
(with a matter source) can be tested against modified the-
ories of gravity. But doing so requires a priori knowledge
of the Equation of State from nuclear and hadron physics,
where no contamination from computations of astrophysics
observables within General Relativity has been built in. We
extend the nEoS uncertainty bands, useful for this very pur-
pose, to finite (but small) temperatures up to T = 30 MeV,
given that the necessary computations in ChPT and in pQCD
are already available in the literature. The T -dependent band
boundaries will be provided through the COMPOSE reposi-
tory and our own website.

1 Eqn. of State of Neutron Matter at finite T

The Equation of State of neutron star matter is the basic
microscopic input necessary for multiple computations of
interest in astrophysics [1]. At low, nuclear densities it is
well constrained from laboratory data [2], but there is no
universally accepted theory pathway for intermediate energy
densities of order the hadronic scale, typically (100 MeV)4

and above.
Numerous models with various matter contents have been

deployed for this intermediate density region, for exam-
ple including hyperons [3], hybrid approaches [4] includ-
ing quark matter [5], employing the holographic conjecture
linking QCD to a gravity dual [6], and more.

A common approach is to employ astrophysics observ-
ables to constrain the equation of state, that therefore con-
tains information from nuclear and particle physics, but also
of General Relativity (GR), used to eliminate parts of the oth-
erwise allowed parameter space [7–10]. The inconvenience
of this method is that the general relativistic interpretation
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of the astrophysical observables employed to constrain the
equation of state becomes entrained in the EoS; thereafter, it
is not safe to employ such equation to constrain modifications
of GR.

For example, there is great interest in constraining f (R)

theories and variations thereof [11–13], or closely related
scalarizations [14–16], or one could ask about whether the
parameters of GR are sensitive to a large stress-energy-
momentum density [17], or pursue nonlocal gravity with
compact objects [18] among many possibilities.

But the band of allowed equations of state compatible
with these theories is presumably larger (since they have
additional parameter freedom in the gravity sector) than
in General Relativity. Thus, employing reduced uncertainty
EoS-bands incorporating astrophysical observables leads to
improper constraints on the beyond-GR theories.

A separate question, that we do not address, is how to avoid
assuming General Relativity at short scales in the interpreta-
tion of the low-energy nuclear data themselves (for exam-
ple, Fisher and Carlson [19] have looked at constraining
Non-Minimally Coupled Gravity from nuclear properties).
In this work we adopt the line of thought that microscopic
nuclear physics can be read-off an inertial frame with neg-
ligible tidal forces, and thus only the large accumulation of
mass at neutron-star scales can cause separations from Gen-
eral Relativity (in a large region of intense stress-energy Tμν

and intense curvature).
For such application it seems a necessity to provide EoS

that are state of the art from the point of view of nuclear and
particle physics, but that are free of astrophysical bias, if they
are to be used to employ neutron star data for constraining
beyond-GR theories. We have provided precisely such family
of Equations of State, with controlled theoretical uncertainty,
relying only on first principle approaches (causality, thermo-
dynamic stability) and perturbation theory in the appropri-
ate density domains (chiral perturbation theory, perturbative
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QCD) in the nEoS sets [20] (that can be downloaded from
https://teorica.fis.ucm.es/nEoS/). Meanwhile, the detection
of a neutron-star merger and the spur of improved fits to
ejecta [21] and simulations of the matter-remains after the
collision that followed [22,23] have made the need for mod-
ern EoS at finite temperature more poignant. We thus look at
extending those sets to finite-T .

2 Low density ChPT input

Whereas there are numerous equations of state for neutron
stars extracted from chiral perturbation theory (ChPT) at T =
0, full-temperature calculations do not abound.

In this work we have leaned on the computation of the
Idaho group [24] for the low-density, chiral-Lagrangian tail
of the computation. Pure neutron matter is a good approx-
imation in this low-density regime as it is not too far from
equilibrium. As it is close to the nonrelativistic limit, energy
densities are dominated by the neutron mass contribution and
it is essential to keep mn .

Their obtained Helmholtz potential depends on a N 4LO
treatment of the nucleon-nucleon potential; the three-body
NNN potential is only partially treated. Their computation
is for pure neutron matter alone, and this is not a bad approx-
imation for the low to moderate densities where the approach
is valid. The authors provide the Helmholtz free energy per
nucleon,

F

A
= E

A
− T

S

A
(1)

from which P follows directly (e.g. [28] for discussion)

P = − ∂F

∂V

∣
∣
∣
∣
N ,T

. (2)

The convergence of the order by order chiral computations
is very nice, and the effect of the temperature, interestingly,
is seen to be opposite in E/A and F/A.

In fact, Sammarruca, Machleidt and Millerson [24] find
that E/A increases with the temperature at fixed density,
probably reflecting the fact that T softens the step of the
Fermi-Dirac occupation function, upgrading some neutrons
from below to above the Fermi sea level of cold matter. Since
neutrons of higher momentum have larger kinetic energy and
see stronger (repulsive) chiral interactions, it is natural to
expect higher energy. However, this is compensated by the
second term of Eq. (1), so that the free energy is actually
decreasing with temperature. Its derivative, however, which
is the relevant quantity to compute the pressure, is not as
sensitive to small T except at very low densities.

Fig. 1 Equation of State of pure neutron matter for low density, taken
from the ChPT computations of the nuclear potential [24–27], with T
increasing from bottom to top in 10 MeV steps. As the number density
rises, the uncertainty grows and the bands do overlap, so that the effect
of temperatures much smaller than the densities is less visible

The resulting EoS1, that we adopt as our low-density
bands, based on [24] are shown in Fig. 1.

There are many nuclear model-dependent computations,
such as [29] based, for example, on Skyrme-type interactions,
that corroborate the increase in E/A with temperature. Most
computations are reasonably valid in the low-momentum
regime, see Fig. 2, but the chiral perturbation theory bands
that we adopt showcase the necessity of assigning systematic
errors to these other computations. In the future, one might
even be able to dispose of the need for a nuclear potential
altogether and directly compute the equation of state from
low-energy nucleon-nucleon scattering data, further reduc-
ing systematics [30].

3 High density pQCD input

While hadron interactions are strong and complicated at
intermediate momentum, where the coupling is large, for
asymptotically large density the smallness of αs(μ) allows
the deployment of perturbative Quantum Chromodynamics
(pQCD). Thus, all of our EoS terminate inside the high-
density band obtained from pQCD computations and shown
in Fig. 3.

That band is obtained from perturbative computations at
finite density following the Helsinki group work [31–34] and
also [33,35] for the T → 0 limit. At such high chemical
potentials of order 2.5 GeV and above, the quark masses
are negligible: weak equilibrium is adopted consistent with
flavour symmetry and charge neutrality.

Though we have checked our results with the simple
approximate parameterization proposed in [32], our nEoS-T

1 We thank prof. Sammarruca for their computer data.
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Fig. 2 Comparison of the N4LO ChPT computation [24] and the
Skyrme-based computation of [29]. While the comparison is reason-
able, if a bound on a beyond-GR (e.g. post-Newtonian) coefficient is
obtained, what systematic error should be ascribed to the model compu-
tation? For this application it is better to have known uncertainty bands
even if the EoS is less accurate for certain properties within General
Relativity. Also, having a well-defined band can help model-makers
understand the agreement of computed EoS with certain basic princi-
ples

band follows the detailed formulae earlier reported in [33,34]
that we have reprogrammed.

The span of the pQCD uncertainty band is an attempt at
controlling the systematics of the computation by varying
the renormalization scale � ∈ (0.5, 2)�̄ around the value

�̄ = 2π

√

T + (μB/3)2

π2 . The scale variation should be reab-
sorbed in the nonconformal terms of higher, non-considered
orders of perturbation theory without affecting the energy
density or pressure. However, a dependence arises which is
an artifact of truncating the weak-coupling expansion. There
is some arbitrariness in the choice of scale-uncertainty inter-
val that becomes smaller with a higher order of perturbation
theory (the exact series should be independent of the renor-
malization scale). What this band really does is to orient us in
the validity of the perturbative computation: note in the fig-
ure how, for chemical potentials below 2 GeV, the uncertainty
swells and the computation becomes unusable.

Fig. 3 Perturbative QCD computation of the pressure of dense matter
at the baryon chemical potential indicated in the OX axis and for the
temperatures in the legend. In our sets we change the variable μB to an
energy density ε and directly read the equation of state P(ε, T ). The
top plot shows the comparison of the T = 30 MeV EoS band (shaded)
with the T = 0 one (bracketed by the dashed lines). The bottom plot,
additionally, displays T = 10 and 20 MeV lines. The pressure in both

is expressed in units of that of a free-quark gas, given by PSB = 3μ4

4π2

(μ = μB/3 is the quark chemical potential)

In practice, we vertically slice the band at a baryon chemi-
cal potential μB = 2.67 GeV (this is the nearest point of our
grid to the characteristic quark chemical potential that the
Helsinki group has been employing, about μq = 0.87 GeV;
for comparison, another line at 2.5 GeV is given). The inter-
section of that vertical line with the two solid lines (blue
and red online), that provide the scale sensitivity in the inter-
val (0.5�, 2�) act as “goalposts” through which any EoS
coming from lower density has to pass; those that do not,
are automatically discarded. It marks the border between the
high-density region (computed in pQCD) and the intermedi-
ate density region (interpolated). This particular point of our
grid is chosen as a compromise between the necessity of the
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uncertainty being small enough but the density being as low
as possible to reduce its difference to that of actual neutron
stars.

These pQCD EoS entail a three-loop computation of the
energy per quark. Recently, attempts have been made at
narrowing the uncertainty band by means of the renormal-
ization group [36] but we have been conservative and not
incorporated these results yet to avoid introducing some
bias or model dependence, at least until further research and
independent confirmation reassures us that the procedure is
safe. The same can be said of Dyson-Schwinger [37] related
approaches, that may be insightful but not yet optimized to
provide uncertainty bands for beyond-GR searches.

It is clear to us that physical neutron stars in General Rel-
ativity will not reach such high baryon chemical potentials
as described in this section. But there are two reasons to
anchor the computation of the EoS in the pQCD one. The
first is that modified-gravity theories might actually reach
such densities, so we need to provide them with input there.
The second, broader and also applicable to GR, is that the
EoS of hadron matter at attainable densities is constrained by
its necessary behaviour at higher ones, due to causality and
stability ( dPdε

∈ [0, 1)).

4 The nEoS sets at finite Temperature

We are now ready to mount the interpolation. We take the
low-density ChPT band and start sampling it from lower to
higher values of n; after its maximum density is reached, we
continue sampling a broadening band sandwiched between
the extreme lines allowed by the conditions of causality
dP/dε ≤ 1 and thermodynamic stability dP/dε ≥ 0
between the ChPT and the pQCD bands.

This is accomplished by Von Neumann’s rejection, with
the program described in [20]. If at any step in the numeric
advance from (εi , Pi ) → (εi+1, Pi+1) any of those two con-
ditions is even locally violated, the EoS is rejected and we
start anew.

Thousands of such equations, exploring all the systematics
of the ChPT cutoff, the pQCD renormalization scale, and the
different computations of the low-density limit, are provided
for zero temperature in our website http://teorica.fis.ucm.es/
nEoS.

In this work, the extension to (small) finite temperature,
we adopt a different strategy. Instead of providing multi-
ple samples of the band (all workable EoS compatible with
hadron constraints), we distribute the extreme boundary lines
of the nEoS bands formed from (a) the N 4LO chiral pertur-
bation theory computation at 0, 10, 20, 30 MeV in section 2;
(b) the pQCD computation described in Sect. 3; and (c), the
interpolation between both limits for the corresponding tem-
peratures, satisfying stability and causality.

Fig. 4 Comparison of the nEoS-T bands for different temperatures
from 0 to 30 MeV. While the low-density equation of state is quite sen-
sitive to even such small temperatures, the intermediate-density bands
do not vary much (barely visible in this logarithmic scale)

Figure 4 shows the band up to the end of the intermediate
interpolated zone (the higher density pQCD part is not show
to avoid reducing the scale too much; it is the same as in
Fig. 3).

In addition to our computer server just mentioned, we
will be making these band extremes available through the
COMPOSE website https://compose.obspm.fr/ where many
other EoS sets for neutron stars can be found. We also provide
the geometric mean of the band extremes at largest and lowest
pressures, as an example of a typical EoS through the middle
of the allowed band.

Additionally, in this article we show a few examples of
allowed EoS that pass through the band in Fig. 5. These
examples illustrate a feature of linearly interpolated and step-
wise generated EoS: the possibility of having flat sections of
zero derivative that can represent first order phase transitions.
The longer these flat segments are in the graph, the larger the
latent heat of the transition, with the nEoS band introducing
an upper bound to the latent heat that is possible in hadron
physics [39].

5 Comparison to the additive approach

Often used is the additive (or hybrid) approach [38] that
approximates pressure and energy density at finite tempera-
ture by the T = 0 counterpart for cold nuclear matter and an
additive thermal correction

ε = εcold + ε(T )

P = Pcold + P(T )

P(T ) = (	 − 1)ε(T ) (3)
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Fig. 5 The nEoS-T band of allowed equations of state in the interme-
diate density region at finite temperature T = 30 MeV. The top plot
corresponds to μB = 2.5 GeV, the lower plot to 2.67 GeV. A few
allowed equations of state within the band are also shown

in terms of a simple adiabatic proportionality factor 	, which
is a constant of the approach, as is the following ratio:

P − Pcold

ε − εcold
= 	 − 1 = constant . (4)

This constancy is an assumption that we here briefly examine;
it has been recently employed in [23], together with a more
sophisticated so-called M∗ parametrization of the relation
between P(T ) and ε(T ). The authors find that the thermal
pressure at T = 20 MeV is of the same size of the cold-matter
pressure at saturation density, but the ratio falls rapidly so that
by ε = 10εsat, the thermal pressure is a 10% correction at
most.

We have plotted Eq. (4) for T = 30 MeV in Fig. 6 follow-
ing the top of the band (that is the most relevant for maximum
mass neutron stars). The plot is quite bumpy, as one can iden-
tify the matching points between density regimes around 0.27

Fig. 6 Test of the additive approach to thermal effects on the neutron
star EoS, evaluating Eq. (4) for T = 30 MeV

and 15 GeV/fm3 as well as the transition between causality-
dominated (maximum slope of 1) and stability-dominated
(minimum slope of 0) around 5 GeV/fm3 as the pQCD phase
is approached. Once these non-analytic features have been
discounted (that can presumably also appear for the one true
equation of state if it presents phase transitions between dif-
ferent states of nuclear matter), we can focuse on the “safe”
regions.

They have very substantial values of the derivative of |	−
1|. In the low-density regime, the variation of the function
plotted, and thus the uncertainty of the additive approach, is
of order 20%, which is reasonable for many applications.

The change is however of order 100% along the top line of
Fig. 4 for energy densities in the few hundreds and thousands
of MeV/fm3. This is the density region where the core of
neutron stars should be in General Relativity and slightly
modified theories thereof.

For the flat stretch of pressure (akin to a first order phase
transition) around 10,000 MeV/fm3, the ratio |	 − 1| falls
by about a factor 3, so assuming that it is constant is a poor
approximation. This is a density regime, however, that will
only be relevant for actual neutron star physics in theories that
significantly separate from General Relativity (on the weaker
side, as reaching such large densities requires to slow stellar
collapse down).

So we conclude that the additive approach is reasonable
for practical applications at relatively low-densities (still,
large compared to T ) within GR and becomes more dubi-
ous in other circumstances.

6 Discussion

We have presented an extension of the nEoS sets [20] to
(small) finite temperature. For this we use as input the finite-
T chiral computation of [24] that determines the low-density
EoS of pure neutron matter. At the high-density limit, in
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contrast, we have used the pQCD computation of [34] with
μu = μs , i.e, employing SU (3) flavor symmetry; that is,
we interpolate between two apparently different regimes as
the weak interactions are concerned. This is a theoretical
choice based on the information at hand at the low-density
limit, where pure neutron matter is a good approximation,
and trying to stay close to β-equilibrium at high densities,
where the strange quark mass is a correction. In any case,
through the central zone of intermediate densities, the range
of pressures allowed at a given density due to the stability-
causality band is very large, and this makes the choice of
flavor-breaking chemical potential a correction. This can be
seen, for example, from the expression valid for cold quark
matter

P(μ) = a4μ
4 − a2μ

2m2
s + b2μ

2�2 + B . . . (5)

that shows the large μ expansion, with subleading terms car-
rying the strange quark mass, the CFL gap � if such asymp-
totic phase is formed, the ground-state bag constant B or
equivalent, etc. It is the first term that dominates the expan-
sion, and it is flavor-blind. Future work might address β–
equilibrium through the entire range of densities.

Perhaps useful to orient the reader as to what hadron
physics currently allows at zero temperature is the traditional
M(R) plot that we sketch in Fig. 7 for the usual General Rel-
ativity case.

The top, black line corresponds to the stiffest possible EoS
allowed by hadronic and theoretical constraints at T = 0, the
lower one (red online) to the softest (its bend is out of the
plot due to the scale used). They are respectively above and
below the astrophysical constraints on masses and radii for
neutron stars in this (R, M) plane, within General Relativity
(but perhaps not its extensions) but this is no place to describe
such data and we refer to the extensive literature.

One could argue that this plot alone would exclude, within
General Relativity, the two extreme lines of the nEoS band.
The stiffest line reaches masses above 3 M�, in contrast to
even optimistic approaches that do not foresee neutron star
masses above 2.6 M� from statistical analysis of stellar pop-
ulations [40]. The softest line on the other hand does not even
reach one solar mass (!). Thus, hadron physics has much room
to improve by itself. Of course, if GR is taken for granted,
a large swath of the nEoS band must disappear to make the
stiffest EoS softer and the softest one, stiffer, as marked in
the figure.

Stronger constraints from the high-density pQCD side (for
example, through extending perturbation theory with a func-
tional approach as has recently been reported) would affect
the former, while extending the ChPT band to higher densi-
ties would much affect the second. The reason is that pQCD
is quite soft itself, with c2

s ∼ 1/3, while ChPT is rather stiff,
and there is no reason to expect a dramatic change of slope

Fig. 7 Mass/radius diagram from numerically solving the Tolman-
Oppenheimer-Volkov equations, for the nEoS extreme lines at T = 0.
Basically, both extremes seem excluded in the framework of General
Relativity, meaning that hadron physics computations are less compet-
itive than astrophysical ones for now. However, modifications of GR
could bring one or both of these curves back to agree with data, so they
should be included in studying modified gravity

with incremental improvements that do not seem far-fetched
and can be expected in the next few years. Eventually there
should be an intermediate-density ceiling that ChPT cannot
break. But even small increases in its density reach, due to the
control of higher order corrections (particularly their three-
and more body parts) will have a noticeable impact.

Perhaps there will also be applicable constraints from the
Relativistic Heavy Ion Collisions programme. For example,
there is a constraint based on proton flow [41] that is directly
relevant to symmetric matter 2. However, extrapolation to
neutron-star matter is required, channelled by a band between
two parametrizations of the nuclear symmetry energy that are
not obviously based on first-principles physics. We have not
incorporated it following the principle of being very cautious
about imposing constraints on the EoS that eventually gravity
investigators can use to constrain beyond-GR theories, to
avoid an unwarranted overconstraining. We may include it
in the future if we become convinced that the procedure is
safe.

In turn, the finite-T EoS is of importance to extract infor-
mation from the neutron-star like object formed in mergers
of two ordinary neutron-stars such as GW170817, that can be
hot (due to friction) neutron-matter ephemeral systems sup-
ported by fast rotation. They can be used, for example [42],
to bracket the maximum neutron star mass with gravitational
wave data.

We have examined temperatures T = 0 through T =
30 MeV, following the existing [24] ChPT computations.
The temperature dependence here is appreciable (Fig. 1):
every 10 MeV, the central value of the N 4LO chiral com-
putation is outside the uncertainty band of the neighbour-

2 We thank M. Cierniak and D. Blaschke for this comment.
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ing temperatures. Therefore, T does have to be taken into
account into computations involving densities at the nuclear
scale. The high-density computations, on the other hand, are
not too sensitive to T , as corresponds to the scale hierar-
chy T 	 μB (30 MeV versus 2.6 GeV and above, Fig. 3).
The T -dependence becomes remarkable at lower chemical
potentials where the perturbative expansion is less reliable
anyway and should rather not be used. Finally, in the inter-
mediate region (Fig. 5), the effect of the temperature is also
small when compared with the large swath of parameter space
allowed between the low-pressure limit of stability and the
high-pressure limit of causality.

Should the user believe that that small temperature depen-
dence can make a difference in her calculation, our work pro-
vides it through the entire density range. It is common among
researchers working on modified gravity models to employ
ad-hoc polytrope lines from estimates in the sixties; one can
surely do better and we hope to at least provide a stepping
stone.
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Appendix

After this work was first released, a new preprint [43] by
Komoltsev and Kurkela has shown how constraining causal-

Fig. 8 Effect of bringing into the (ε, P) plane the constraint from
causality in the (n, μ) plane, at T = 0. We plan to explore this constraint
in upcoming work

ity in the (n, μ) plane, together with the high-density pQCD
band, further restricts (and significantly so) the band of
allowed EoS. While we defer a detailed study of this wel-
come new information to a future investigation, we did not
want to pass this opportunity to explore the effect, even if
cursorily.

The new constraint, called “integral constraint” in that
publication, stems from the inequality

c−2
s = μ

n

∂n

∂μ
≥ 1. (6)

The difficulty to visualize it is that now a second thermody-
namic variable, μ, in addition to P , needs to be taken into
account when constructing the ε energy density. The nEoS
band in the (ε, P) plane, which is the useful one for Tμν and
the Einstein equations, becomes a more complicated tube
with an additional dimension.

In effect, the area under the EoS curve in the (n, μ)

plane [43] has to equal the increase in the pressure,

∫ μH

μL

n(μ)dμ = PH − PL = �P . (7)

The constraint is then mapped to the (ε, P) plane by means
of ε = −P + μn at fixed number density n.

We have made an attempt at a meaningful representation
in Fig. 8.

The dotted lines in the figure represent the nEoS band
with available information from the (ε, P) plane only. The
tree shaded bands are further restricted, in a very significant
way, especially at low pressures, by (n, μ)–plane causality,
and differ from each other by the different μH chosen upon
matching at the pQCD band (blue, orange and red dots on
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the right upper corner, respectively). The effect is important
and will be incorporated in future issuances of the sets.
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