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Abstract We study static magnetic susceptibility χ(T, μ)

in SU (2) lattice gauge theory with N f = 2 light flavours of
dynamical fermions at finite chemical potential μ. Using lin-
ear response theory we find that SU (2) gauge theory exhibits
paramagnetic behavior in both the high-temperature decon-
fined regime and the low-temperature confining regime. Para-
magnetic response becomes stronger at higher temperatures
and larger values of the chemical potential. For our range
of temperatures 0.727 ≤ T/Tc ≤ 2.67, the first coefficient
of the expansion of χ (T, μ) in even powers of μ/T around
μ = 0 is close to that of free quarks and lies in the range
(2, . . . , 5) · 10−3. The strongest paramagnetic response is
found in the diquark condensation phase at μ > mπ/2.

1 Introduction

One of the fundamental quantities that characterize the
response of some medium to the applied external mag-
netic field H is the magnetic susceptibility χ . It character-
izes the magnetic field Hint created by spin polarization
and electric currents that are induced in the medium by the
external field H. The magnetic field within the medium is
B = H + Hint = (1 + χ)H, thus χ characterizes whether
the external magnetic field is screened or enhanced within
the medium. Medium with χ > 0 is paramagnetic and is
attracted by magnetic field. Characteristic examples of para-
magnetic media are metals like iron. Medium with χ < 0 is
diamagnetic and is repelled by the magnetic field. Extreme
examples of diamagnetic media are superconductors, for
which χ = −1 and hence the external magnetic field is com-
pletely screened.
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Magnetic susceptibility of dense and hot QCD matter
plays an important role in the dynamics of magnetar stars
[1,2]. Paramagnetism of QCD matter is also conjectured to
lead to the magnetic “squeezing” of a fireball produced in
off-central heavy-ion collisions [3], which should modify the
observable elliptic flow upon hadronization.

The question of whether the QCD medium is param-
agnetic or diamagnetic appears to be nontrivial, and the
answer might depend on its temperature and density. At high
temperatures, when quarks effectively behave as free Dirac
fermions, the quark-gluon plasma is expected to be paramag-
netic. This conclusion is also confirmed by lattice simulations
in the high-temperature phase of QCD [4–6].

Calculations within the non-interacting hadron resonance
gas model [7] indicated that QCD matter is also paramagnetic
in the hadronic phase below the deconfinement transition.
However, first-principle lattice calculations also revealed sig-
natures of weak diamagnetism at low temperatures [2,8,9].
Diamagnetic response in the regime of weak magnetic fields
was also found within the chiral perturbation theory [10].
A change from diamagnetism for low-temperature QCD to
paramagnetism at higher temperatures is predicted by the
parton-hadron string dynamics (PHSD) model [11], the func-
tional renormalization group [12] and holographic QCD [13].

In ongoing heavy-ion collision experiments both finite
temperature and finite density play prominent roles. How-
ever, so far magnetic susceptibility of dense QCD matter
has received somewhat less attention than its zero-density
counterpart. A textbook knowledge is that for free fermions
the magnetic susceptibility grows with density, and we can
expect to observe a similar growth in QCD matter in the
deconfined regime at sufficiently high temperatures, or at
sufficiently large densities, where quarks are weakly inter-
acting due to asymptotic freedom. A calculation within the
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hard thermal loop approximation confirms this expectation
[14]. Likewise, calculations within the holographic Sakai-
Sugimoto model [15] (where pion-like degrees of freedom
are present at low temperatures) suggest that magnetic sus-
ceptibility grows with density and therefore remains positive
(paramagnetic) also at finite density. On the other hand, a
zero-temperature, finite-density calculation within the Fermi
liquid model [16] shows a nontrivial density dependence
of magnetic susceptibility, with change of sign and singu-
lar behavior at some critical density. This behavior however
appears to be quickly washed out due to thermal effects in
favor of purely paramagnetic response.

An obvious obstacle for first-principle lattice studies of the
magnetic susceptibility of QCD at finite chemical potential
is the infamous fermionic sign problem. In this paper we
study the effect of finite chemical potential on the magnetic
susceptibility in SU (2) lattice gauge theory with N f = 2
mass-degenerate light dynamical quarks, which is free of the
fermionic sign problem at all values of the chemical potential
[17,18]. The Euclidean path integral of this gauge theory in
the presence of an external electromagnetic field Aμ (x) and
a finite chemical potential μ reads

Z =
∫

DAa
μDψ̄ fDψ f

exp

⎛
⎝−

∑
f =u,d

ψ̄ f /D
[
Aa

μ, Aμ

]
ψ f − SYM

[
Aa

μ

]
⎞
⎠ , (1)

where ψ f are quark fields with flavour f = u, d in the
fundamental representation of SU (2) gauge group, Aa

μ,
a = 1, 2, 3 are SU (2) gauge fields in the adjoint repre-
sentation of SU (2) and SYM

[
Aa

μ

]
is the Yang-Mills action.

External electromagnetic field and chemical potential enter
the action via the Dirac operator

/D
[
Aa

μ, Aμ

] = γμ

(
∂μ − i Aa

μσa − i Aμ

) + m + μγ0, (2)

where γμ are the Dirac γ -matrices, σa are the Pauli matrices
in SU (2) color space, m is the bare quark mass (assumed to
be the same for both quark flavors), and μ is the chemical
potential.

SU (2) gauge theory is expected to be qualitatively simi-
lar to QCD at sufficiently small values of chemical potential
μ < mπ/2. Similarly to QCD, in this regime SU (2) theory
undergoes a crossover between the low-temperature confin-
ing regime with spontaneously broken chiral symmetry and
the high-temperature deconfinement regime with restored
chiral symmetry. On the other hand, a theory with SU (2)

gauge group and N f = 2 quark flavors has five distinct
pion states, in contrast to three pions in real QCD [18]. As
the chemical potential becomes larger than half of the pion
mass, μ > mπ/2, SU (2) gauge theory enters the diquark
condensation phase which is absent in real QCD. Therefore
qualitative similarity to QCD is lost at μ > mπ/2. However,

very deep in the diquark condensation phase and at low tem-
peratures, the physics of SU (2) gauge theory is expected to
resemble that of the conjectured quarkyonic phase [19,20].

Another conceptually similar approach to avoid the sign
problem is to study SU (3) gauge theory, but at finite isospin
chemical potential μI [21]. The dependence of magnetic sus-
ceptibility on finite isospin chemical potential was studied in
first-principle lattice simulations in [2]. It was found that pion
condensation leads to relatively strong diamagnetic response
at μI > mπ/2 and low temperatures. It is expected that at
very large μI and/or sufficiently high temperatures the para-
magnetic behavior should reappear again due to asymptotic
freedom [2].

In agreement with previous studies for SU (3) gauge the-
ory [4–6,9], in our study we find that SU (2) gauge theory is
paramagnetic in the high-temperature regime. We also find a
weak paramagnetic response in the low-temperature confin-
ing regime. At all temperatures the finite chemical potential
appears to make the paramagnetic response stronger.

2 Numerical measurements of magnetic susceptibility
within the linear response approximation

The QCD magnetic susceptibility is often calculated in terms
of the response of a free energy to an external magnetic field,
which is quantized in a finite volume [4–6]. However, finite
magnetic field breaks time-reversal invariance and therefore
leads to the appearance of the fermionic sign problem even
for finite-density SU (2) gauge theory. We therefore base our
measurements on gauge field configurations generated with-
out external magnetic field, and use linear response theory
with respect to slowly varying weak magnetic field (with
zero total flux across the lattice) to find the magnetic suscep-
tibility. For similar reason, same approach was used also in
the lattice study of magnetic susceptibility at finite isospin
density [2].

Within the linear response theory, magnetic susceptibility
is related to static transverse correlator of space-like electric
currents in Euclidean (imaginary time) space [2,9,22]. For
isotropic space this correlator can be written in the spatial
momentum space as

�kl (q) =
∫

dx0

∫
d3x 〈 jk (x0, x) jl (0, 0) 〉 eiq·x

=
(
q2δkl − qk ql

)
�

(
q2

)
, (3)

where the electric current includes the contributions from all
N f quark fields ψ f with appropriate charge factors qu =
+2/3, qd = −1/3 for each flavor f :

jk (x) =
N f∑
f =1

q f ψ̄ f γkψ f . (4)
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To represent the raw lattice data, we also consider the spatial
current–current correlators that are summed over all coordi-
nates except for one of the spatial coordinates, say, x3:

G11 (x3) =
∫

dq3

2π
e−iq3x3�11

(
q2

3

)

=
∫

dx0dx1dx2 〈 j1 (x0, x) j1 (0, 0) 〉 . (5)

The magnetic susceptibility with respect to static magnetic
fields in the long-wavelength limit is defined as [9,22]

χ0 = lim
q→0

�
(
q2

)
. (6)

To extract �
(
q2

)
from current–current correlators (3) we

take the momentum q = (0, 0, q3) in the direction of x3

coordinate axis, and consider the momentum-space correla-
tor �11 (q3) = q2

3�
(
q2

3

)
. In this case we can find the mag-

netic susceptibility as

χ0 = lim
q3→0

q−2
3 �11

(
q2

3

)
. (7)

The susceptibility χ0 in (8) is the bare susceptibility that
has to be renormalized to ensure that the magnetic suscep-
tibility of QCD vacuum at zero temperature and density has
its physical zero value. To this end one subtracts the value of
χ0 (T = 0, μ = 0) from χ0 (T, μ) to obtain the physical sus-
ceptibility χ (T, μ) at temperature T and chemical potential
μ:

χ (T, μ) = χ0 (T, μ) − χ0 (T = 0, μ = 0) . (8)

In practice, lattice QCD simulations cannot reach zero tem-
perature, and we subtract the value of χ0 at the lowest tem-
perature T = 1

Lt a
with Lt = 22 used in our simulations.

The most important contribution to the current–current
correlator (3) comes from connected fermionic diagrams.
For conserved electromagnetic currents on the lattice, this
contribution can be represented as
〈
jx,k jy,l

〉
conn

=
∑
f

q2
f Tr

(
∂D

∂θx,k

1

D

∂D

∂θy,l

1

D

)∣∣∣∣
θ=0

+
∑
f

q2
f δxyδkl Tr

(
∂2D

∂θ2
x,k

D−1

)∣∣∣∣∣
θ=0

, (9)

where x , y are now the sites of the four-dimensional lattice,
and D is the Dirac operator with both non-Abelian gauge
fields and an U (1) lattice field θx,μ, with link factors eiθx,μ .
Since we work with conserved lattice currents, our results
for magnetic susceptibility should not be renormalized, apart
from the subtraction of the vacuum susceptibility in (8).

The last term in (9) is the contact term that just adds
a q-independent constant to the current–current correlator
(3). We have found that this constant exactly cancels the

finite value of the Fourier transform of the first summand
in (9) at q = 0 for each gauge field configuration, so that
the limit limq→0 q−2 �11 (q) in (7) becomes well-defined.
This cancellation is not accidental and ensures the finite-
ness of the magnetic susceptibility in the long-wavelength
limit. For this reason we do not measure the contact term
in our simulations. Instead, we measure only the first sum-
mand in (9) and obtain its Fourier transform �̄11

(
q2

3

)
.

The corresponding space-averaged current–current correla-
tor, obtained by replacing �11

(
q2

3

)
with �̄11

(
q2

3

)
in (5) is

denoted as Ḡ11 (x3). �̄11
(
q2

3

)
is finite at q3 = 0 and is sym-

metric around this point. It can therefore be expanded around
q3 = 0 as

�̄11

(
q2

3

)
= A − q2

3 B + O
(
q4

3

)
. (10)

The constant A is cancelled by the contribution of the
contact term, and inserting the above decomposition into (8)
we conclude that the bare magnetic susceptibility χ0 is given
by −B, and we can rewrite (10) as

�̄11

(
q2

3

)
= A + χ0 q

2
3 + O

(
q4

3

)
. (11)

We can therefore also express the magnetic susceptibility χ0

in terms of the second derivative of �̄11
(
q2

3

)
with respect to

q3:

χ0 = 1

2

d2

dq2
3

�̄11

(
q2

3

)
. (12)

In practice we construct the interpolating polynomial using
the discrete values of �̄11

(
q2

3

)
at five lowest momenta q3 =

2π k
Ls

for k = ±2, ±1, 0, and find the second derivative in
(12) as the second derivative of this interpolating polynomial.
Statistical errors of χ0 are estimated using bootstrapping.

The current–current correlators in (3) also contain the con-
tribution of disconnected fermionic diagrams, see Section
IV of [23] for an explicit expression. This contribution is
however typically very small and difficult to measure. For
this reason with only consider the connected contribution
(9) in this work. Let us also note that if the diquark source
λ is nonzero, the expressions for current–current correlators
become somewhat more complicated than (9). We again refer
the reader to Appendix C of [23] for explicit expressions.

3 Lattice setup

For the measurements reported in this work we use the same
set of lattice configurations with spatial lattice size Ls =
30 that was used in our recent papers [23,24]. To make the
paper self-contained, let us briefly summarize here the most
important details of our lattice action.

We use the standard Hybrid Monte-Carlo algorithm with
N f = 2 mass-degenerate rooted staggered fermions and a
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Fig. 1 Phase diagram of finite-density SU (2) lattice gauge theory with
N f = 2 light quark flavors (plot taken from [23]). Ensembles of gauge
field configurations used in this work are shown as double empty circles

tree-level improved Symanzik gauge action to generate gauge
field configurations. The bare mass of staggered fermions is
amstag = 0.005, which corresponds to the pion mass amπ =
0.158 ± 0.002 and the ratio of pion and ρ-meson masses
mπ/mρ ≈ 0.4. We work at a fixed gauge coupling β = 1.7,
hence at fixed lattice spacing.

To improve momentum resolution in the measurements of
�̄11

(
q2

3

)
, we use lattices with spatial size Ls = 30. Tempera-

ture is varied by changing the temporal lattice size Lt between
Lt = 6 and Lt = 22 in steps of two. We consider three dis-
tinct values of the chemical potential aμ = 0.0, 0.05, 0.20,
of which the first two are below the pion condensation thresh-
old. For Lt > 12 we generate gauge configurations with a
small diquark source aλ = 5 · 10−4 that serves as a seed
for diquark condensation in a finite volume. To measure the
magnetic susceptibility, at each value of T and μ we use
between 600 (high T , small μ) and 100 (low T , large μ)
lattice configurations.

The phase diagram of SU (2) gauge theory within this
lattice setup was studied in detail in [23]. Ensembles of gauge
configurations with aμ = 0.0 and aμ = 0.05 are in the
QCD-like regime, in which the crossover towards the phase
with spontaneously broken chiral symmetry occurs around
Lt = 16. Ensembles with aμ = 0.2 already have μ > mπ/2,
and are in the diquark condensation phase at sufficiently low
temperatures with Lt < 20.

Current–current correlators in (3) are measured using
the Wilson–Dirac valence quarks with HYP-smeared gauge
fields [25]. Bare mass mWD = −0.21 in the Wilson–Dirac
operator is tuned in such a way that the pion mass measured
with Wilson–Dirac quarks coincides with the pion mass for
staggered quarks. While it is certainly also possible to calcu-
late current–current correlators for staggered quarks, in this

work we re-use the Wilson–Dirac current–current correlators
used in our papers [23,24]. The use of Wilson–Dirac valence
quarks in these papers was motivated by the need to have a
reasonably good definition of axial current in addition to the
vector current.

4 Numerical results

In the left column on Fig. 2 we present the raw lattice data
for the space-averaged current–current correlators Ḡ11 (x3).
At high temperatures we observe a characteristic exponen-
tial decay of Ḡ11 (x3), which becomes somewhat less pro-
nounced at lower temperatures. Deviations from free fermion
results (shown with solid lines) become clearly larger towards
lower temperatures. Interestingly, at aμ = 0.2 both free
fermion correlators and gauge theory correlators become
negative at large x3. On our logarithmic-scale plot on Fig. 2
we show the absolute value of these negative correlators using
empty symbols (for lattice gauge theory data) and dashed
lines (for free fermion results).

Fourier transforms �̄11
(
q2

3

)
of Ḡ11 (x3) all have bell-

shaped form, with apparently small differences between the
results at different temperatures and chemical potentials.
However, these small differences become very essential once
we subtract the contact term contribution (last term in (9)) and
the vacuum value of the bare susceptibility χ0 (see equation
(8)).

As discussed in Sect. 2, we construct an interpolating poly-
nomial for the correlator �̄11

(
q2

3

)
using five data points that

correspond to the smallest lattice momenta and calculate the
bare magnetic susceptibility as half the second derivative
of this polynomial, see (12). We obtain the renormalized
magnetic susceptibility χ (T, μ) by subtracting the value
of χ0 = −0.07050 ± 0.00027 at μ = 0 and T = 1

22 a
(Lt = 22), the lowest temperature that we have.

While this temperature is not very small in comparison
with the deconfinement temperature Tc ≈ 1

16 a , previous lat-
tice simulations [9] indicate very weak temperature depen-
dence of χ0 in the low-temperature regime. To check this
independently, we have also measured χ0 at a very low
temperature T = 1

56 a on the 283 × 56 lattice, obtaining
χ0 = −0.0702 ± 0.0007. This result coincides with the one
on 303 × 22 lattice within statistical errors. We still use χ0

calculated on 303 × 22 lattice for subtraction, because it has
smaller statistical uncertainty and refers to the same lattice
size as other data points

The resulting dependence of the magnetic susceptibility
χ (T, μ) on temperature and chemical potential is illustrated
on Fig. 3. We plot the susceptibility as a function of the ratio
T/Tc, where Tc ≈ 1

16a is the crossover temperature in our
lattice setup.
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Fig. 2 Static correlators Ḡ11 (x3) and �̄11
(
q2

3

)
of spatial vector cur-

rents as functions of the spatial coordinate x3 (Eq. (5)) and the spatial
momentum q3 (Eq. (3)) at three different temporal lattice sizes: L0 = 6
(T > Tc), L0 = 16 (T ≈ Tc) and L0 = 22 (T < Tc). Solid lines show
the free-fermion results obtained with the same lattice setup. All quan-

tities are given in units of lattice spacing a. Interpolating polynomials
used to obtain the magnetic susceptibility from the relation (12) are
shown with dotted lines on the plots of �̄11

(
q2

3

)
. For plots of Ḡ11 (x3),

dotted lines represent the absolute value of Ḡ11 (x3) if Ḡ11 (x3) < 0

We observe that below the diquark condensation thresh-
old, at μ < mπ/2, the magnetic susceptibility is positive
and monotonically grows with temperature both at T < Tc
and T > Tc, approaching the magnetic susceptibility of free
quarks at high temperatures. We observe no direct signatures
of weak diamagnetism at low temperatures. However, for
the second-lowest temperature T = 1

20 a (Lt = 20) χ (T, μ)

appears to be zero within error bars. It was stressed in [9] that
extrapolation to the continuum limit a → 0 is essential to
observe the diamagnetic behavior at low temperatures. Since
we work in the fixed-scale approach, we cannot exclude that
once the data is extrapolated to a → 0, SU (2) gauge theory
might also exhibit a weak diamagnetic response. On the other

hand, in the paramagnetic regime the susceptibility tends to
slightly decrease towards the continuum limit [2,9,26]. We
therefore expect that our result at finite lattice spacing might
be slightly larger than the corresponding continuum limit.

Overall, our results for the magnetic susceptibility at zero
density and sufficiently high temperatures are in good agree-
ment with lattice QCD results [8,9], and are noticeably larger
than the estimates obtained within the PHSD model [11].

Small but finite chemical potential μ < mπ/2 appears
to increase the magnetic susceptibility at all temperatures
and thus make the paramagnetic response stronger. At low
temperatures, the dependence of χ (T, μ) on μ is weaker
than for free quarks.
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Fig. 3 Magnetic susceptibility χ as a function of temperature at the
chemical potential a μ = 0.0, a μ = 0.05 and a μ = 0.2. The diquark
condensation threshold is a μ = amπ/2 = 0.079

c

Fig. 4 First nontrivial coefficient in the expansion of magnetic suscep-
tibility χ (T, μ) in even powers of μ/T around μ/T = 0, calculated
from the difference of the data at μ = 0 and aμ = 0.05 according to
(14). Solid line shows the corresponding free fermion result calculated
in the same way for the same lattice setup

At small values of μ we can also expand χ (T, μ) in pow-
ers of μ/T around μ/T = 0:

χ (T, μ) = χ (T, 0) + cχ (T )
(μ

T

)2
. (13)

Due the charge conjugation symmetry of SU (2) gauge the-
ory, this expansion only contains even powers of μ. We esti-
mate the coefficient cχ (T ) from the data points at μ = 0 and
at our lowest nonzero value μ1 = 0.05 a−1 as

cχ (T ) ≈ T 2

μ2
1

(χ (T, μ1) − χ (T, 0)) . (14)

We show the temperature dependence of cχ (T ) on Fig. 4
together with the corresponding free fermion result.

For large values of the chemical potential μ > mπ/2, the
paramagnetic response becomes particularly strong. Inter-
estingly, in this regime χ (T, μ) has rather weak temperature
dependence, except for the data point at lowest temperatures.
As one can see from Fig. 1, this data point is in the diquark
condensation phase. This observation suggests that diquark
condensation phase is strongly paramagnetic.

Since in SU (2) gauge theory the quark chemical potential
and the isospin chemical potential are equivalent [18], it is
instructive to compare our results with the lattice study [2]
of magnetic susceptibility at finite isospin chemical poten-
tial μI and at low temperatures. This study found that as
μI reaches the pion condensation threshold, diamagnetic
response becomes much stronger than at μI � mπ/2, as
can be expected for charged scalar bosons. However, at even
larger μI one approaches the asymptotic freedom regime and
the paramagnetic response was conjectured to set in again
[2]. We can also expect that diquark condensate, being a
condensate of charged bosons, will exhibit a diamagnetic
response at least at low temperatures and for some range of
μ values with μ > mπ/2. While we observe only a param-
agnetic response, we cannot exclude diamagnetism immedi-
ately above the threshold. It might be that with our only value
of chemical potential a μ = 0.2 exceeding a mπ/2 = 0.079
we are already missing the diamagnetic regime.

5 Conclusions

We have used linear response theory to study the magnetic
susceptibility χ (T, μ) of SU (2) gauge theory with N f = 2
light quark flavours at finite temperature and density. In
agreement with lattice QCD results [4–6,8,9] and analytic
predictions [11–13] we found paramagnetic behavior at large
temperatures T > Tc. At low temperatures the SU (2) gauge
theory also appears to be paramagnetic, although for the
second-lowest temperature (Lt = 20) the magnetic suscep-
tibility is zero within statistical error. We cannot therefore
exclude the weak diamagnetism scenario [9,10] at low tem-
peratures. As stressed in [9], careful extrapolation to the con-
tinuum limit is required to obtain the diamagnetic response,
which we leave for future work. With our discrete set of μ

values we might also miss the diamagnetic regime immedi-
ately above the diquark condensation threshold. This regime
was found in SU (3) gauge theory at finite isospin chemi-
cal potential [2], and might also exist in SU (2) gauge the-
ory because the conventional chemical potential and isospin
chemical potential are equivalent for SU (2) gauge group
[18].

More simulations are required to study these regimes. At
higher temperatures our results for χ (T, μ) are close to the
lattice QCD results [8,9].

We find that at all temperatures finite chemical potential
tends to make the paramagnetic response stronger. Our esti-
mates for the first coefficient of the expansion of the magnetic
susceptibility χ (T, μ) in even powers of μ/T are close to the
free fermion results and lie in the range 3 · 10−3 . . . 5 · 10−3.

The paramagnetic response turns out to be particularly
strong at μ > mπ/2, and is practically temperature-
independent in the deconfined regime. As we enter the
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diquark condensation phase (the lowest temperature on
Fig. 3), the magnetic susceptibility significantly increases.
This suggests that the diquark condensation phase in SU (2)

gauge theory might exhibit quite strong paramagnetism at
least in some range of T and μ values.
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