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Abstract We review the dispersion-theoretical analysis of
the electromagnetic form factors of the nucleon. We empha-
size in particular the role of unitarity and analyticity in the
construction of the isoscalar and isovector spectral functions.
We present new results on the extraction of the nucleon radii,
the electric and magnetic form factors and the extraction of
ω-meson couplings. All this is supplemented by a detailed
calculation of the theoretical uncertainties, using bootstrap
and Bayesian methods to pin down the statistical errors, while
systematic errors are determined from variations of the spec-
tral functions. We also discuss the physics of the time-like
form factors and point out further issues to be addressed in
this framework.

1 Introduction

Nucleons and electrons are the constituents of everyday mat-
ter with nucleons accounting for essentially all of its mass.
The mass of the nucleon as a bound state of quarks and glu-
ons, on the other hand, arises from the complicated strong
interaction dynamics of quarks and gluons in Quantum Chro-
modynamics (QCD) [1]. The electromagnetic (em) form fac-
tors of the nucleon describe the structure of the nucleon as
seen by an electromagnetic probe. As such, they provide a
window on strong interaction dynamics over a large range of
momentum, for recent reviews see, e.g. Refs. [2,3]. More-
over, they are an important ingredient in the description of
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a wide range of observables ranging from the Lamb shift
in atomic physics to the strangeness content of the nucleon
[4,5]. At small momentum transfers, they are sensitive to the
gross properties of the nucleon like the charge and magnetic
moment as well as the radii. At large momentum transfer, in
contrast, they probe the quark substructure of the nucleon as
described by QCD.

A new twist was recently added to this picture by mea-
surements of the proton charge radius in muonic hydrogen.
The proton charge radius was first indirectly measured in the
Nobel prize winning electron scattering experiments by Hof-
stadter et al. [6,7]. While electron scattering was the method
of choice to refine the proton radius in the decades following
these pioneering experiments, the Lamb shift in electronic
hydrogen and muonic hydrogen is also sensitive to the pro-
ton radius [8]. The electronic Lamb shift measurements as
well as most electron scattering experiments gave the so-
called large radius, r PE � 0.88 fm, which was also the value
given by CODATA [9].1 It then came as a true surprise to
most researchers when the first measurement of the muonic
hydrogen Lamb shift, which has a larger sensitivity to r PE
because of the much larger muon mass, led to the so-called
small radius, r PE = 0.84184(67) fm, differing by 5σ from
the CODATA value [10]. At about the same time, a high-
precision electron-proton scattering experiment performed
at the Mainz Microtron (MAMI) reinforced the large radius
[11]. This glaring discrepancy in such a fundamental quan-
tity, which was believed to be understood since long, became
known as the “proton radius puzzle”. It led to much experi-

1 Note, however, that dispersion-theoretical analyses of the same data
always gave a smaller radius as will be discussed in detail below.
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mental and theoretical activity dedicated to uncover its cause,
either physics beyond the Standard Model, or more mun-
dane reasons, such as an underestimation of the experimen-
tal uncertainties. Recent experiments on the electronic Lamb
shift [12–14] and a novel measurement of electron-proton
scattering at unprecedented small momentum transfer [15]
now point to the latter reason. With the exception of Ref. [13],
all of these new determinations of rp consistently give a small
proton radius. Consequently, the newest edition of CODATA
lists the proton charge radius as r pE = 0.8414(19) fm [16]. A
short review of the current status is given in Ref. [17]. The
important role of dispersion theory in solving this “puzzle”
will be discussed below.

This paper is structured as follows: In Sect. 2, we briefly
review earlier dispersion-theoretical analyses of the electro-
magnetic nucleon from factors. The complete formalism to
perform such type of analysis is spelled out in Sect. 3, where
all basic definitions are given and the various contributions
to the spectral functions, the central objects of the disper-
sive method, are discussed in detail. Furthermore, constraints
on the nucleon form factors and two-photon corrections to
the electron-proton scattering cross section are presented.
Finally, we discuss in detail methods to determine the theo-
retical uncertainties, both the statistical and the systematical
ones. In Sect. 4, we display the results of our new dispersion-
theoretical analysis of the electromagnetic form factors in the
space-like region, including novel determinations of the var-
ious radii, form factors as well as the ω-meson couplings.
Then, we consider the extension of the form factors in the
time-like region and discuss the physics encoded in these.
We end with a brief summary and an outlook in Sect. 5.
In the appendices, we give further details on the extraction
of neutron form factors from light nuclei as well as on the
construction of the continuum contributions to the spectral
functions. We also collect the various parameters of our best
fit discussed in the main text.

2 Short history of dispersive analyses of the nucleon
form factors

Here, we briefly review earlier work using dispersion theory
to analyze the electromagnetic structure of the nucleon. To
be more precise, we only consider investigations that include
explicitly the two-pion continuum, which generates the ρ-
meson in the isovector part of the spectral function in addition
to a very important uncorrelated two-pion contribution as first
discussed by Frazer and Fulco [18–20]. For other work on
dispersion relations applied to the nucleon electromagnetic
from factors, we refer the reader to the review [21].

The first groundbreaking work was done by the Karls-
ruhe group in 1976 [22]. Here, electron-proton (ep) cross
section data supplemented by neutron form factor data from

elastic and quasi-elastic electron-deuteron scattering were
fitted. Besides the two-pion continuum, the spectral func-
tions contained the ω-meson plus additional isoscalar and
isovector poles and normalization constants for the data sets.
It should be noted that the ep data base was pruned in the
sense that in case of inconsistencies between data sets, only
one was retained. A dozen of fits with varying number of vec-
tor mesons poles and excluding various subsets of data were
performed. The best fit (fit 8.2) featured 8 resonance param-
eters. Theoretical errors were estimated from the variations
in the different fits. The resulting proton radii are tabulated
in Table 1 and the neutron radii in Table 2. The neutron mag-
netic radius could not be determined very precisely at that
time. Also notable were the sizable φNN couplings, where
N denotes the nucleon, at odd with expectations from the
OZI rule [23–25].

In 1995, the Bonn-Mainz group (MMD) rejuvenated the
dispersion-theoretical approach to the nucleon electromag-
netic form factors, as many new form factor results had
become available and perturbative QCD had firmly estab-
lished the behavior of the form factors at large momentum
transfer [26]. Fits were performed to the existing form factor
data basis of the Bochum group (updated from Refs. [27,28]).
The two-pion continuum was still based on the Karlsruhe-
Helsinki pion-nucleon (πN ) partial wave amplitudes f 1±(t),
but the ρ-ω mixing visible in the pion vector form factor was
included for the first time. The best fits where obtained with
three additional isovector poles and one additional isoscalar
one (besides the ω and the φ). It was found that the onset
of perturbative QCD was not seen in these data and the
radii and vector meson couplings were consistent with the
findings of the Karlsruhe group, see Table 1 and Table 2.
Remarkably, these dispersive fits could not be made consis-
tent with the then existing best value for r pE from ep scatter-
ing, r pE = (0.862 ± 0.012) fm [29]. Further, the large devia-
tion in the OZI rule of the φ couplings was confirmed. One
year later, the sparse and not very precise existing data on
the proton and neutron form factors in the time-like region
were included, which revealed some inconsistencies in the
time-like data basis for the neutron [30].

In view of new data on the proton and neutron form factors,
in particular the first polarization transfer measurements at
Jefferson Lab at few GeV2 squared momentum transfer [31,
32], the MMD work was updated, with a particular emphasis
on the magnetic radius of the proton and the neutron in [33].
In this work, no error analysis was performed.

A significant improvement of the dispersion relation (DR)
analysis was performed in Ref. [34] (BHM). Not only was the
data basis enlarged, but also the description of the isoscalar
spectral function was improved by including the K K̄ [35,36]
and the πρ [37] continua. Furthermore, the 2π continuum
was updated in view of new data for the pion vector form fac-
tor [38]. All data from the space-like and the time-like regions
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Table 1 Proton electromagnetic radii from various dispersion-
theoretical analysis. The * marks a quantity, where no error was given

Ref. r pE [fm] r pM [fm]

[22] 0.836 ± 0.025 0.843 ± 0.025

[26] 0.847 ± 0.008 0.836 ± 0.008

[33] 0.848* 0.857*

[34] 0.844+0.008
−0.004 0.854 ± 0.005

[45] 0.84 ± 0.01 0.86+0.02
−0.03

[46] 0.840+0.015
−0.012 0.848+0.06

−0.05

[53] 0.838+0.005
−0.004

+0.004
−0.003 0.847 ± 0.004 ± 0.004

were included in the fit. In these fits, besides the mentioned
continua, the isoscalar spectral function featured the ω(782),
the φ(1020)2 and two poles, where as the 2π continuum was
supplemented by 5 effective poles. The uncertainties were
calculated by large scale Monte Carlo samplings of all solu-
tion with a χ2/dof in the range [χ2

min, χ
2
min + 1.04], where

χ2
min refers to the best fit, corresponding to the 1σ coincidence

in the p-value. Different to all earlier fits, the neutron charge
radius squared was not included as a constraint. Nonethe-
less, the extracted value of (rnE )2 came out consistent with
determinations from low energy atom-neutron scattering, see
Table 2. In that paper, it was stated that the then accepted
proton charge radius determined from the Lamb shift in elec-
tronic hydrogen, r pE = 0.88 . . . 0.90 fm, see Ref. [39] (and
references therein), was inconsistent with the dispersion anal-
ysis of the electron scattering data, thus previewing what was
later called the “proton radius puzzle”. The various radii came
out consistent with earlier DR determinations, see Table 1
and Table 2. The same spectral functions were also used to
extract the strength of two-photon corrections from the dif-
ference of data obtained by Rosenbluth separation and direct
polarization transfer measurements [40]. In more detail, the
form factors were extracted from the polarization transfer
data and the difference in the description of the cross section
data was entirely attributed to two-photon exchange. The so
determined two-photon corrections came out comparable to
direct calculations available in the literature, such as Refs.
[41–43].

The high-precision data with Q2 ≤ 1 GeV2 that emerged
from MAMI-C in 2010 [11,44] called for a further update
of the DR analysis. A first DR analysis in Ref. [45] utilized
the same continua as BHM with the ω, the φ and three/five
effective isoscalar/isovector poles. The fit was done to the
reconstructed MAMI cross section data in the one-photon
approximation and simultaneously to the neutron form fac-
tor data. The uncertainties were obtained by varying the con-
tinua within reasonable ranges, namely the 2π continuum by

2 As discussed later, this is indeed a residual φ.

Table 2 Neutron electromagnetic radius squared and magnetic radius
from various dispersion-theoretical analysis. The † denotes an input
quantity. The * marks a quantity, where no error was given

Ref. 〈(rnE )2〉 [fm2] rnM [fm]

[22] −0.117 ± 0.004† 0.873 ± 0.087

[26] −0.113 ± 0.004† 0.889 ± 0.009

[33] −0.113 ± 0.004† 0.879*

[34] −0.117+0.007
−0.011 0.862+0.009

−0.008

[45] −0.127* 0.88 ± 0.05

5% and the K K̄ and πρ continua by 20%. Again, a small
proton charge radius, r pE = 0.84 fm, emerged and the other
radii were also agreeing with early DR determinations, very
different to the values quoted in [11].

This work was further improved in various aspects in
Ref. [46]. Here, only proton data were investigated, but two-
photon exchange corrections to the cross section were cal-
culated and systematically included to the MAMI-C data,
overcoming some inconsistencies in older approaches to this
problem. Furthermore, to extract the statistical error due to
the fitting procedure, a bootstrap approach was implemented.
The spectral function was the same as in [45], but in addi-
tion, normalization constants for the various data sets were
included (in total 31 new parameters) and the χ2 definition
was augmented by the correlation matrix. This method con-
stituted an improvement over earlier error determinations.
The uncertainties in the radii were somewhat increased com-
pared to earlier determinations, see Tables 1 and 2. The mea-
sured proton form factor ratio data for Q2 < 1 GeV2 [47,48]
were not included in the fits but well described.

The work of Ref. [46] was extended by including neutron
space-like form factor data as well as then existing data for the
proton and the neutron form factors in the time-like region
in [49]. The emphasis of this work was to understand the
structures seen by the BaBar collaboration [50] in the region
between threshold up to highest measured center-of-mass
energies. These structures (and similar but less pronounced
ones in e+e− → nn̄) could be explained by including a
φ(2170) meson as well as the NΔ̄ and ΔΔ̄ thresholds.

A significant improvement of the isovector spectral func-
tions was reported in Ref. [51], based on the high-precision
analysis of pion-nucleon scattering in the framework of the
so-called Roy-Steiner equations [52]. This work also fea-
tured a detailed investigations of the corresponding isospin
breaking effects in the pion form factor and the pion-nucleon
P-wave amplitudes. The spectral functions given there serve
as input for any DR analysis.

The most recent DR analysis in [53] was triggered by
the PRad data [15], that measured ep cross sections at
extreme forward angles corresponding to unprecedented
small momentum transfers. In Ref. [53], fits to the PRad
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as well as the PRad and MAMI-C data were performed.
The best fit to the combined data featured 5 isoscalar and 5
isovector poles, while the PRad data could be well described
with 2+2 poles only. Again, the low-Q2 data for μpG

p
E/Gp

M
were not included in the fit but could be well described. The
error analysis was improved compared to earlier DR work,
the bootstrap method was used to determine the “statisti-
cal” error, while the “systematic” error was obtained from
varying the number of effective poles, e.g. in the combined
analysis the range from (2+2) to (7+7) isoscalar + isovector
poles was covered. This led to the very precise proton radii
given in Table 1. It was pointed out that the statistical error
in the PRad analysis is underestimated, consistent with the
earlier findings of Ref. [54]. In Ref. [53], no uncertainties
on the proton form factors were given and no neutron data
were analyzed. In this review, we will fill this gap and present
detailed results on these topics. Also, a Bayesian approach to
calculate the statistical errors will be presented and compared
to the bootstrap method.

It is remarkable how little fluctuations in the extracted
values of the nucleon em radii based on dispersion relations
have appeared with time, despite a dramatic improvement
in the data base and a number of theoretical improvements,
related in particular to the isoscalar and the isovector spectral
functions and the calculation of the theoretical uncertainties.

There has also been some related work in the so-called
dispersively improved chiral perturbation theory, see [55–
58]. The extracted proton charge radius is consistent with
our result, but as noted in Ref. [59], this approach is sub-
ject to uncertainties in the ρ-region, different from the exact
representation used in the papers discussed above.

We end this section by noting that the so-called strange-
ness form factors of the nucleon can also be calculated (under
certain assumptions) using the DR results for the isoscalar
vector mesons, see e.g. Refs. [36,60–62]. For more details
on this interesting topic, see the reviews [4,5].

3 Formalism

3.1 Definitions

The electromagnetic (em) structure of the nucleon is deter-
mined by the matrix element of the vector current operator

jem
μ = q̄Qγ μq , (1)

for the light quarks q = (u, d, s)T with the charges Q =
diag(2,−1,−1)/3 (in terms of the elementary charge), sand-
wiched between nucleon states as depicted in Fig. 1.

Denoting a nucleon state with four-momentum p as |p〉
(for ease of notation, we do not display the corresponding
spin or helicity index), with the help of Lorentz and gauge

Fig. 1 The nucleon matrix element of the electromagnetic current jem
μ

invariance and assuming CP invariance, this matrix element
can be expressed in terms of two form factors,

〈p′| jem
μ |p〉 = ū(p′)

[
F1(t)γμ + i

F2(t)

2m
σμνq

ν

]
u(p) ,

= ū(p′) Γ μ(t) u(p) , (2)

wherem is the nucleon mass (which can be either the neutron,
the proton or the isospin averaged mass) and t = (p′−p)2 the
four-momentum transfer squared. For the analysis of data in
the space-like region, it is convenient to use the variable Q2 =
−t > 0. The scalar functions F1(t) and F2(t) are the Dirac
and Pauli form factors, respectively. They are normalized at
t = 0 as

F p
1 (0) = 1 , Fn

1 (0) = 0 ,

F p
2 (0) = κp , Fn

2 (0) = κn , (3)

with κp = 1.793 and κn = −1.913 the anomalous magnetic
moment of the proton and the neutron, respectively, in units
of the nuclear magneton, μN = e/(2mp). The magnetic
moment of the proton and the neutron is thus given by μp =
1 + κp and μn = κn , respectively.

For the theoretical analysis, it is often convenient to work
in the isospin basis and to decompose the form factors into
isoscalar (s) and isovector (v) parts,

Fs
i = 1

2
(F p

i + Fn
i ) , Fv

i = 1

2
(F p

i − Fn
i ) , (4)

where i = 1, 2 . The experimental data are usually given in
terms of the Sachs form factors

GE (t) = F1(t) − τ F2(t) ,

GM (t) = F1(t) + F2(t) , (5)

where τ = −t/(4m2). In the Breit frame, GE and GM may
be interpreted as the Fourier transforms of the charge and
magnetization distributions, respectively.

The nucleon root mean square radii (loosely called radii)

r ≡
√

〈r2〉 (6)

are defined via the low-t expansion of the form factors,

F(t) = F(0)

[
1 + t

〈r2〉
6

+ . . .

]
, (7)
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Fig. 2 The form factor modulus |Gp
M (t)| for all possible momentum

transfers based on a fit of space-like and time-like data around 1996 [30].
The colored area between the two dashed lines at t = 0 and t = 4m2 is
the unphysical region where the form factor cannot be observed

where F(t) is a generic form factor. In the case of the elec-
tric and Dirac form factors of the neutron, Gn

E and Fn
1 , the

expansion starts with the term linear in t and the normaliza-
tion factor F(0) is dropped. Note that the slopes of Gn

E and
Fn

1 are related via

dGn
E (Q2)

dQ2

∣∣∣∣
Q2=0

= dFn
1 (Q2)

dQ2

∣∣∣∣
Q2=0

− Fn
2 (0)

4m2
n

, (8)

with mn the neutron mass. We remark that alternative infor-
mation on the proton charge radius can be obtained from
Lamb shift measurements in electronic as well as muonic
hydrogen, see e.g. the reviews [63,64].

In the space-like region with t < 0, the form factors
are real valued quantities. This is different in the time-like
region with t > 0. By their very definition, at the nucleon-
antinucleon threshold, tthr = 4m2, they fulfill the relation

GE (4m2) = GM (4m2) , (9)

for both the proton and the neutron. In the physical region
t > 4m2 of e+e− → N̄ N , the FFs are complex valued
quantities.

In Fig. 2, we sketch an exemplary form factor (here:
Gp

M (t)) for all values of t . More precisely, the modulus of the
form factor is depicted. For the space-like region, the thresh-
old is located at t = 0, whereas the corresponding threshold
in the time-like region is t = 4m2. In between these two
thresholds, the various vector meson poles (plus continua)
build up the spectral function to be discussed in detail below.
This region cannot be observed. We note that for the form
factors in the time-like region, an additional complication
arises due to the strong near-threshold nucleon-antinucleon
interactions, which will be considered in Sect. 4.4.

3.2 Elementary cross section and polarization transfer

The form factors (FFs) can not be measured directly but are
encoded in observables related to electron scattering. Con-
sider for definiteness electron-proton (ep) scattering,

e (p1) + p (p2) → e (p3) + p (p4) , (10)

where the four-momenta pi are subject to the constraint p1 +
p2 = p3 + p4. At first order in the electromagnetic fine-
structure constant α, the Born-approximation, the differential
cross section can be expressed through the Sachs FFs as

dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

ε(1 + τ)

[
τG2

M (Q2) + εG2
E (Q2)

]
︸ ︷︷ ︸

=σR

,

(11)

where

ε = [1 + 2(1 + τ) tan2(θ/2)]−1 , 0 ≤ ε ≤ 1 , (12)

is the virtual photon polarization, θ is the electron scattering
angle in the laboratory frame, and (dσ/dΩ)Mott is the Mott
cross section, which corresponds to scattering off a point-like
particle,
(
dσ

dΩ

)
Mott

= α2 cos2(θ/2)

4E2
1 sin4(θ/2)

E3

E1
, (13)

where E1 (E3) is the energy of the incoming (outgoing)
electron, related via 1/E3 = 1/E1 + (2/m) sin2(θ/2). Two
quantities out of the energies, momenta and angles suffice
to determine this cross section and are related for such an
elastic process. Specifically, in the laboratory frame with the
initial nucleon at rest and neglecting the electron mass, we
can write

Q2 ≈ 4E1E3 sin2 (θ/2) . (14)

In experiment, the differential cross section is usually given
for a fixed total energy as a function of the scattering angle, so
that a small scattering angle corresponds to a small momen-
tum transfer. This is exactly the reason why a precise deter-
mination of the em radii is so difficult. At large momentum
transfer, the contribution from the magnetic FF dominates
the cross section. The contribution from the electric and the
magnetic form factor can be read off form the reduced cross
section σR defined in Eq. (11). The reduced cross section σR

depends linearly on ε for a given Q2, with slope GE (Q2)

and intercept τG2
M (Q2). This is called the Rosenbluth sep-

aration [65]. Two-photon corrections to this cross section
will be discussed in Sect. 3.11. Also, to investigate the neu-
tron FFs, one measures electron scattering of a light nucleus
like deuterium or 3He. This requires, however, some accu-
rate few-body technique to disentangle the neutron contribu-
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tion from the scattering cross section, as discussed briefly in
App. A.

In early ep scattering experiments, it was found that the
form factors could be well approximated by the dipole form,
Gdip(Q2),

Gp
E (Q2) � Gp

M (Q2)

μp
� Gn

M (Q2)

μn
� Gdip(Q

2) ,

Gdip(Q
2) =

(
1 + Q2

0.71 GeV2

)−2

, (15)

with Gn
E (Q2) = 0 in this approximation. Employing these

dipole FFs in the integrated cross section Eq. (11) defines the
so-called dipole cross section, σdip. Often, the form factors
or the measured cross sections are given relative to Gdip(Q2)

and σdip, respectively.
A method to directly measure the form factor ratio

GE/GM in polarized electron scattering off the proton,−→e p → −→e p (or similarly for scattering off the deuteron
or 3He), has been proposed in Refs. [66,67]. A simultaneous
measurement of the two recoil polarizations (longitudinal,
Pl , and transverse, Pt ) allows one to measure directly the
ratio

Rp ≡ μp
G p

E

G p
M

= −μp

√
τ(1 + ε)

2ε

Pt
Pl

. (16)

While this only determines the form factor ratio (and not the
individual FFs), many systematic uncertainties cancel out
and make this observable an important benchmark for any
theoretical form factor calculation.

Let us briefly discuss the determination of the form factors
in the time-like region. They can be extracted from the cross
section data e+e− ↔ p̄ p and e+e− → n̄n for the proton
and the neutron, respectively. As only very few differential
cross section data exist in the time-like region, a separation
of GE and GM is often not possible and one either makes an
assumption like e.g. GE = GM in the analysis of the data or
one extracts the effective form factor |Geff |, discussed below.
For a review on the nucleon em form factors in the time-like
region, see Ref. [2].

We now consider the process,

e+ (p1) + e− (p2) → p (p3) + p̄ (p4) , (17)

in more detail. It is convenient to choose the center-of-mass
(CM) frame, i.e., p1,2 = (E,±ke) and p3,4 = (E,±kp).
The photon momentum q then determines the center-of-mass
energy by q2 = (p1 + p2)

2 = t = E2
CM = (2E)2. In the

metric used here, time-like q implies positive q2. The three-
momenta ke, kp appear in the phase-space factor β = kp/ke,
which in the limit of neglecting the electron mass yields

β ≈ kp/E =
√

1 − 4m2
p/q

2 , (18)

the velocity of the proton, and mp is the proton mass. We
denote the emission angle of the proton by θ . The differen-
tial cross section in the one-photon-exchange approximation
then is

dσ

dΩ
= α2β

4q2 C(q2)

[
(1 + cos2 θ)|GM (q2)|2

+4m2
p

q2 sin2 θ |GE (q2)|2
]

, (19)

in terms of the electric and magnetic Sachs form factors and
C(q2) is the Sommerfeld-Gamow factor that accounts for the
Coulomb interaction between the final-state particles

C(q2) = y

1 − e−y
, y = παmp

kp
. (20)

Integrating over the full angular distribution gives the total
cross section

σe+e−→p p̄(q
2) = 4πα2β

3q2 C(q2)

[
|GM (q2)|2 + 2m2

p

q2 |GE (q2)|2
]

≡ 4πα2β

3q2 C(q2)

(
1 + 2m2

p

q2

)
|Gp

eff (q
2)|2. (21)

This defines the effective form factor Geff

|Geff | ≡

√√√√√√
|GE |2 + q2

2m2
p
|GM |2

1 + q2

2m2
p

. (22)

For neutrons, the formulas are equivalent except for the
Sommerfeld-Gamow factor which is not present in that case.
Beyond the Coulomb final-state interactions, higher order
QED corrections are usually neglected. For the time-reversed
process, the phase space factor is inverted, yielding

σ(e+e− → p p̄) = β2 σ(p p̄ → e+e−) . (23)

Taking into account the angular dependence of p p̄ produc-
tion, one can express the differential cross section via the
angular asymmetry A, see Ref. [68],

dσ

dΩ
= dσ

dΩ

∣∣∣∣
θ=90◦

[1 + A cos2 θ ], (24)

with

A = q2/(4m2
p) − R2

q2/(4m2
p) + R2 . (25)

This can be determined from the FF ratio R = |GE/GM |.
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Fig. 3 Analytic structure of a generic form factor in the complex-t
plane. Shown are the lowest continuum cut at t0 and a number of vector
meson poles at positive t (crosses). The dispersion integral is calculated
for the space-like value of t also shown by a cross

3.3 Dispersion relations and spectral decomposition

Dispersion relations (DRs) are based on unitarity and ana-
lyticity. Here, DRs relate the real and imaginary parts of the
electromagnetic nucleon form factors. Let F(t) be a generic
symbol for any one of the four independent nucleon form
factors. We write down an unsubtracted dispersion relation
of the form

F(t) = 1

π

∫ ∞

t0

Im F(t ′)
t ′ − t − iε

dt ′ , (26)

where t0 is the threshold of the lowest cut of F(t) (see below)
and the iε defines the integral for values of t on the cut. The
convergence of an unsubtracted dispersion relation for the
form factors has been assumed. For proofs of such a repre-
sentation in perturbation theory, see Ref. [69] (and references
therein). One could also use a once-subtracted dispersion
relation, since the normalization of the form factors at t = 0
is known. However, in what follows, we will only employ
the unsubtracted form give in Eq. (26). Most importantly,
by Eq. (26) the electromagnetic structure of the nucleon can
be related to its absorptive behavior. In Fig. 3 we display
the analytic structure underlying the dispersion integral in
Eq. (26). The various ingredients (continuum cuts, vector
meson poles) will be discussed in detail below.

The imaginary part Im F entering Eq. (26) can be obtained
from a spectral decomposition [70,71]. For this purpose, con-
sider the electromagnetic current matrix element in the time-
like region (t > 0), which is related to the space-like region
(t < 0) via crossing symmetry. This matrix element is given
by

Fig. 4 The spectral decomposition of the nucleon matrix element of
the electromagnetic current jem

μ . |n〉 denotes an hadronic intermediate
state

Jμ = 〈N (p3)N (p4)| jem
μ (0)|0〉

= ū(p3)

[
F1(t)γμ + i

F2(t)

2m
σμν(p3 + p4)

ν

]
v(p4) ,

(27)

where p3 and p4 are the momenta of the nucleon and anti-
nucleon created by the current jem

μ , respectively. The four-
momentum transfer squared in the time-like region is t =
(p3 + p4)

2.
Using the LSZ reduction formalism, the imaginary part

of the form factors is obtained by inserting a complete set of
intermediate states as [70,71]

Im Jμ = π

Z
(2π)3/2N

∑
n

〈p3| J̄N (0)|n〉

×〈n| jem
μ (0)|0〉 v(p4) δ4(p3 + p4 − pn) , (28)

where N is a nucleon spinor normalization factor, Z is
the nucleon wave function renormalization, and J̄N (x) =
J †
N (x)γ0 with JN (x) a nucleon source. This decomposition

is illustrated in Fig. 4. It relates the spectral function to on-
shell matrix elements of other processes, as detailed below.

The states |n〉 are asymptotic (observable) states of
momentum pn . They carry the same quantum numbers as
the current jem

μ :

I G(J PC ) = 0−(1−−) for the isoscalar component ,

I G(J PC ) = 1+(1−−) for the isovector component (29)

of the current jem
μ . Here, I and J denote the isospin I = 0, 1

and the angular momentum J = 1 of the photon, whereas
G, P and C give the G-parity, parity and charge conjuga-
tion quantum number, respectively. Furthermore, these cur-
rents have zero net baryon number. Because of G-parity,
states with an odd number of pions only contribute to the
isoscalar part, while states with an even number contribute
to the isovector part. For the isoscalar part the lowest mass
states are:

3π, 5π, . . . , K K̄ , K K̄π, . . . , (30)
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Fig. 5 Two-pion cut contribution to the isovector form factors, given
in terms of the pion vector form factor FV

π (represented by A) and the
ππ → N̄ N P-waves f 1± (represented by B). Solid, dashed, and wig-
gly lines denote nucleons, pions, and the external photon, respectively,
while the dash-dotted line indicates the cutting of particle propagators

and for the isovector part they are:

2π, 4π, . . . K K̄ , . . . . (31)

Associated with each intermediate state is a cut starting at
the corresponding threshold in t and running to infinity. As a
consequence, the spectral function Im F(t) is different from
zero along the cut from t0 to ∞, with t0 = 4 (9) M2

π for the
isovector (isoscalar) case.

The spectral functions are the central quantities in the
dispersion-theoretical approach. Using Eqs. (27,28), they can
in principle be obtained from experimental data. In practice,
this program can only be carried out for the lightest two-
particle intermediate states.

The longest-range, and therefore at low momentum trans-
fer most important continuum contribution comes from the
2π intermediate state which contributes to the isovector form
factors [72]. A novel and very precise calculation of this con-
tribution has recently been performed in Ref. [51] including
the state-of-the-art pion-nucleon scattering amplitudes from
dispersion theory, as detailed below. In the isoscalar channel,
the inclusion of the K K̄ [35,36] and ρπ continua [37] was
first introduced in Ref. [34] in the dispersive analysis of the
em form factors. For recent work on the isoscalar spectral
functions in baryon chiral perturbation theory with explicit
vector mesons, that strengthens the findings of these ear-
lier works, see Ref. [73]. These important ingredients are
discussed in more detail below. Apart from the continua,
there are also single vector-meson pole contributions. As will
become clear in the following, the contributions from the
continua and the poles are sometimes strongly intertwined,
e.g. the ρ-meson pole is indeed generated as part of the 2π -
continuum, as known since long [18–20].

3.4 Two-pion continuum

In the isovector channel, the lowest continuum contribu-
tion is given by the two-pion exchange as depicted in Fig. 5.
Therefore, the unitarity relations for the nucleon form factors
reads [20]

Im Gv
E (t) = q3

t

m
√
t
FV

π (t)∗ f 1+(t) θ
(
t − 4M2

π

)
,

Im Gv
M (t) = q3

t√
2t

FV
π (t)∗ f 1−(t) θ

(
t − 4M2

π

)
, (32)

with qt = √
t/4 − M2

π , FV
π (t) is the vector form factor of

the pion and the f 1±(t) are the P-wave ππ → N̄ N partial
waves in the t-channel. Watson’s theorem ensures that the
left-hand side of the equations stays real, as long as the same
ππ phase shift is used in the calculation of the pion form fac-
tor and the ππ → N̄ N partial waves. Therefore, in the most
recent determination of the two-pion continuum, the same
three variants of the phase shift δ1

1 in the data fits for FV
π (t)

were used as in the Roy-Steiner analysis of pion-nucleon
scattering [52]. The full consistency among all ingredients
entering the unitarity relation that was achieved in Ref. [51]
was a key improvement over earlier calculations, and thus the
representation of the two-pion continuum given there will be
discussed in what follows.

It is important to discuss the range of validity of the 2π

approximation to the unitarity relation. Strictly speaking, the
4π threshold opens at

√
t = 4Mπ = 0.56 GeV, but it is

well known from phenomenology that the 4π contribution
is completely negligible below the ωπ threshold at

√
t =

0.92 GeV, see e.g. [74], and only becomes sizable once the
ρ′, ρ′′ resonances are excited. This can also be understood
from chiral perturbation theory, where the 4π contribution
appears first at three loop order [75]. For this reason, the
two-pion cut contribution to the isovector form factors is
considered up to

√
t � √

50Mπ � 1 GeV.
Let us now discuss in more detail the various ingredients

entering the Eqs. (32). We start with the vector (em) form
factor of the pion. It is given by

〈π+(p′)| jμem|π+(p)〉 = (p + p′)μFV
π (t). (33)

The ππ intermediate states produce the unitarity relation

Im FV
π (t) = sin δ1

1(t)e−iδ1
1(t)FV

π (t)θ
(
t − 4M2

π

)
, (34)

with the ππ P-wave phase shift δ1
1. Eq. (34) reflects Watson’s

final-state theorem [76], which states that the phase of FV
π has

to coincide with the ππ scattering phase shift (up to multiple
integers of π ). Neglecting higher intermediate states unitarity
determines FV

π (t) up to a polynomial P(t) in terms of the
Omnès factor Ω1

1 (t) [77]

FV
π (t) = P(t)Ω1

1 (t) = P(t) exp

{
t

π

∞∫

4M2
π

dt ′
δ1

1(t ′)
t ′(t ′ − t)

}
.

(35)

In fact, the representation (35) provides a very efficient and
accurate parameterization of the experimental data, up to the

123



Eur. Phys. J. A (2021) 57 :255 Page 9 of 33 255

distortions due to ρ–ω mixing. This isospin-violating effect
can be included via a modification of FV

π (t),

FV
π (t) =

(
1 + αt + ε t

M2
ω − iMωΓω − t

)
Ω1

1 (t), (36)

with the ω mass Mω and width Γω. The parameters α and
ε, where ε parameterizes the strength of the ω-ρ mixing,
are fit to recent form factor data, see Refs. [78–80], below√
t = 1 GeV using the same ππ phase shifts as in the RS

analysis [52]. The latter has been determined from Roy and
Roy-like equations by the Bern [81] and the Madrid-Cracow
group [82]. To get a better handle on the uncertainty estimate
for the final spectral functions from the pion vector FF, in
Ref. [51] a variant of the Bernese phase shift was also con-
sidered. It includes effects from the ρ′ and the ρ′′ in an elastic
approximation [83].

Next, we discuss the t-channel partial waves f 1±(t), given
by [19]

f J+ (t) = − 1

4π

1∫
0

dzt PJ (zt )

{
p2
t

(ptqt )J
AI − m zt

(ptqt )J−1 B
I
}
,

f J− (t) = 1

4π

√
J (J + 1)

2J + 1

1

(ptqt )J−1

×
1∫

0

dzt
[
PJ−1(zt ) − PJ+1(zt )

]
BI , (37)

with the t-channel scattering angle zt = (s−u)/(4ptqt ), the
PJ are the Legendre polynomials, and the momenta areqt and
pt = √

t/4 − m2. Further, the standard decomposition of
the πN scattering amplitude T (πa(q) + N (p) → πb(q ′) +
N (p′)) in the isospin limit has been used,

T ba(s, t) = δbaT+(s, t) + 1

2
[τ b, τ a]T−(s, t),

T I (s, t) = ū(p′)
{
AI (s, t) + 1

2
(/q + /q ′)BI (s, t)

}
u(p), (38)

where a, b are isospin indices, the τ a are isospin Pauli matri-
ces, I = ± refers to isoscalar/isovector amplitudes and s =
(p + q)2, t = (p′ − p)2, u = (p − q ′)2 are the Mandelstam
variables subject to the constraint s + t + u = 2(m2 + M2

π ).
The best way to determine the pion-nucleon scattering ampli-
tudes are undoubtedly dispersion relations, as they allow for
a systematic continuation from the physical region into the
unphysical ones and further make best use of the existing
scattering data. The most modern and accurate investigations
are based on the Roy-Steiner (RS) equation analysis of the
Bonn group, developed and performed in Refs. [84–87] (for
earlier work by the Karlsruhe-Helsinki group, see e.g. Refs.
[88,89]). The RS equations, originally developed in [90,91]
(and references therein), are hyperbolic DR integrating along
a hyperbola in the Mandelstam plane,

(s − a)(u − a) = b , b = b(s, t, a) , a, b ∈ R , (39)

which have a number of advantages compared to other for-
mulations (like e.g. fixed-t DR). They combine all physi-
cal regions, display an explicit s ↔ u crossing, require
the absorptive parts only in regions where the corresponding
partial wave expansions converge, and, further, a judicious
choice of the parameter a allows to increase the range of con-
vergence. The RS equations have a limited range of validity,√
s ≤ √

sm = 1.38 GeV and
√
t ≤ √

tm = 2.00 GeV, where√
sm,

√
tm denotes the so-called matching point for the s- and

t-channel partial waves, respectively. The required inputs to
solve the RS equations are the S- and P-waves above the
matching point, the higher partial waves (D-, F-, . . .) and the
inelasticities. An important constraint are the pion-nucleon
scattering lengths deduced from pionic hydrogen and pionic
deuterium [92] (for a recent update, see [93]). The output
of the RS equations are the so-called subthreshold parame-
ters, which allow one to reconstruct the scattering amplitude
in the unphysical region, such as the f 1±(t) in the pseudo-
physical region required for the isovector spectral functions.
Some basic definitions of the πN scattering amplitude in
the unphysical region are given in App. B. It should also
be mentioned that the results of the RS analysis were given
with theoretical uncertainties, which to our knowledge has
been the first time that a dispersive analysis of pion-nucleon
scattering provided these, for details see [52].

In Ref. [51], the isospin-violating effects beyond the ρ-ω
mixing in the pion form factor where also worked out, lead-
ing to an improved representation of the unitarity relations,
Eq. (32), namely

Im Gv
E (t) = q3

t

m
√
t
|Ω1

1 (t)|| f 1+(t)|θ(
t − 4M2

π

)

×
(

1 + αt + ε t

M2
ω + iMωΓω − t

)

+ ε Im

(
t

M2
ω − iMωΓω − t

)

× 1

π

∞∫

4M2
π

dt ′
q ′3
t

m
√
t ′ |Ω1

1 (t ′)|| f 1+(t ′)|
t ′ − t − iε

,

Im Gv
M (t) = q3

t√
2t

|Ω1
1 (t)|| f 1−(t)|θ(

t − 4M2
π

)

×
(

1 + αt + ε t

M2
ω + iMωΓω − t

)

+ ε Im

(
t

M2
ω − iMωΓω − t

)

× 1

π

∞∫

4M2
π

dt ′
q ′3
t√
2t ′ |Ω1

1 (t ′)|| f 1−(t ′)|
t ′ − t − iε

. (40)
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Fig. 6 Weighted isovector spectral functions for Gv
E (t)/t2 and

Gv
M (t)/t2. The black dashed line gives our central solution, the gray

band the uncertainty estimate, and the red dashed line the result if ρ–ω

mixing is turned off. The insets magnify the region around the ρ peak

For a more detailed discussion of this representation, the
reader is referred to Ref. [51].

Putting pieces together, the isovector spectral functions
divided by t2 based on Eq. (40) are shown in Fig. 6. These
nicely exhibit the ρ-resonance at

√
t = 0.77 GeV as well as

a remarkable enhancement on the left shoulder of the reso-
nance. This shows that the ρ is indeed generated by unitarity
[18] and thus no explicit ρ-meson is required in the isovec-
tor spectral function. The visible enhancement on the left
shoulder of the ρ can be traced back to the fact that the par-
tial wave amplitudes f 1±(t) have a singularity on the second
Riemann sheet [89] (originating from the projection of the
nucleon pole terms in the invariant pion-nucleon scattering
amplitudes) located at

tc = 4M2
π − M4

π

m2 = 3.98 M2
π , (41)

very close to the physical threshold at t0 = 4M2
π . The isovec-

tor form factors inherit this singularity (on the second sheet)

and the closeness to the physical threshold leads to the pro-
nounced enhancement between

√
t = 0.3 − 0.6 GeV shown

in Fig. 6. This issue will be taken up below. The uncertainties
displayed in Fig. 6 originate from three different sources: 1)
the subthreshold parameters b−

00, b−
01, a−

00 and a−
01 (as defined

in App. B), 2) the pion-pion phase shift δ1
1(t) and 3) the data

for the pion form factor FV
π (t). In fact, the uncertainty of the

subthreshold parameters from the RS analysis is in fact the
dominating effect below 1 GeV. We note that the effect of
the ρ-ω mixing is small, as the comparison of the black and
red dashed lines in Fig. 6 shows. Note also that this consis-
tent inclusion of isospin-breaking effects in the pion em form
factor and the πN partial waves constitutes a major achieve-
ment compared to earlier analyses. The two-pion continuum
contribution to the isovector form factors is displayed below
in Fig. 8 .

Based on the DR, Eq. (26), it is straightforward to derive
sum rules for the normalizations and radii of the isovector
form factors. These were first considered in Ref. [72] for the
various nucleon radii, see also [51],

1

2
(rv

E )2 = 6

π

∞∫

4M2
π

dt
Im Gv

E (t)

t2 = 1

2

[
(r pE )2 − (rnE )2

]
,

μv(rv
M )2 = 6

π

∞∫

4M2
π

dt
Im Gv

M (t)

t2

= 1

2

[
(1 + κp)(r

p
M )2 − κn(r

n
M )2

]
, (42)

where μv = (1 + κp − κn)/2 � 2.353 is the isovector
magnetic moment of the nucleon. Note that the sum rules for
the radii remain unchanged if a once-subtracted dispersion
relation is used instead of the unsubtracted one. Cutting the
integrals at Λ = 2m, one finds

1

2
(rv

E )2 = 0.405(36) fm2 ,

μv(rv
M )2 = 1.81(11) fm2 . (43)

It is remarkable that just using a simple ρ-exchange using e.g.
a Breit-Wigner or a Gounaris-Sakurai form [94], the corre-
sponding isovector radii would be sizeably underestimated
(by about 40%), as inspection of Fig. 6 reveals. Thus, any
dispersive analysis that does not include the full two-pion
continuum but only the ρ-resonance in the isovector spectral
function below 1 GeV will simply miss important physics.
We will come back later to these sum rules.

3.5 Three-pion continuum

The lowest isoscalar continuum is given by three-pion
exchange as depicted in Fig. 7. There, A refers to the γ → 3π
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Fig. 7 Three-pion cut contribution to the isoscalar form factors, given
in terms of the γ → 3π (represented by A) and the 3π → N̄ N (rep-
resented by B) transition amplitudes. Solid, dashed, and wiggly lines
denote nucleons, pions, and the external photon, respectively, while the
dash-dotted line indicates the cutting of particle propagators

transition amplitude, that is given at low energies by the
anomalous Wess-Zumino-Witten Lagrangian [95,96] and B
corresponds to the 3π → N̄ N amplitude. An analysis based
on unitarity alone of this contribution does not exist, but it
has been shown in chiral perturbation theory at leading [97]
and subleading [98] orders, that there is no enhancement on
the left wing of the ω resonance. This argument is outlined in
App. C. Thus, the usual inclusion of the ω as a vector meson
pole is justified. In case of the φ, the situation is, however,
more complicated as discussed next.

3.6 K K̄ continuum

The first important continuum contribution to the isoscalar
spectral function is the one from K K̄ states, as evaluated in
Refs. [35,36] from an analytic continuation of K N scatter-
ing data. The K K̄ contribution to the imaginary part of the
isocalar form factors is given by [35,36]

Im F (s,K K̄ )
1 (t)

= θ(t − 4M2
K )Re

{(
mqt
4p2

t

)

×
[ √

t

2
√

2m
b1/2,−1/2

1 (t) − b1/2, 1/2
1 (t)

]
FV
K (t)∗

}
, (44)

Im F (s,K K̄ )
2 (t) = θ(t − 4M2

K )Re

{(
mqt
4p2

t

)

×
[
b1/2, 1/2

1 (t) −
√

2m√
t
b1/2,−1/2

1 (t)

]
FV
K (t)∗

}
, (45)

where pt = √
t/4 − m2 and qt =

√
t/4 − M2

K , with MK the

charged kaon mass. Further, FV
K (t) is the kaon form factor,

defined via

〈K+(p′)| jμem|K+(p)〉 = (p + p′)μFV
K (t) , (46)

whereas the b1/2,±1/2
1 (t) are the J = 1 partial wave ampli-

tudes for K K̄ → N N̄ [35,36]. Having determined these
imaginary parts, the contribution of the K K̄ -continuum to the
form factors is obtained from the dispersion relation Eq. (26).

Theb1/2, 1/2
1 (t) andb1/2,−1/2

1 (t) in the above equations are
the kaon-nucleon partial wave amplitudes with total angular
momentum J = 1 (for definitions, see App. D). For t ≥ 4m2

the partial waves are bounded by unitarity,√
pt/qt |b1/2,±1/2

1 (t)| ≤ 1 . (47)

In the unphysical region 4M2
K ≤ t ≤ 4m2, however, they

are not constrained by unitarity. In Ref. [35], the amplitudes
b1/2,±1/2

1 (t) in the unphysical region have been determined
from an analytic continuation of K N -scattering amplitudes.
The contribution of the physical region t ≥ 4m2 in the disper-
sion integral (26) is suppressed for small momentum trans-
fers and bounded because of Eq. (47). Using the analytically
continued amplitudes in the unphysical region and the unitar-
ity bound in the physical region, the contribution of the K K̄
continuum can therefore be calculated. Strictly speaking this
calculation provides an upper bound on the spectral func-
tion since one replaces the amplitudes and the form factor in
Eqs. (44,45) by their absolute values.

The striking feature in the spectral function is a clear φ

resonance structure just above the K K̄ threshold. The reso-
nance emerges in the partial wave amplitude b1/2, 1/2

1 as well
as in the kaon form factor FK . In contrast to the 2π contin-
uum, there is no strong enhancement on the left wing of the
φ resonance which sits directly at the K K̄ threshold. This
can be understood from the fact that the pole on the second
Riemann sheet at tc = 3.7 M2

K is too far from the threshold
to induce such an enhancement.

The resulting contribution to the nucleon form factors can
be parameterized by a pole term at the φ mass [34]:

F (s,K K̄ )
i (t) = 1

π

∫ ∞

4M2
K

Im F (s,K K̄ )
i (t ′)
t ′ − t

dt ′

� aK K̄
i

M2
φ − t

, i = 1, 2 , (48)

with aK K̄
1 = 0.1054 GeV2 and aK K̄

2 = 0.2284 GeV2. As
a consequence, the contribution of the K K̄ continuum to
the electromagnetic nucleon form factors can conveniently
be included in the analysis via Eq. (48). The form factor
contributions from Eq. (48) are also shown in Fig. 8.

3.7 ρπ continuum

Another important contribution to the isoscalar spectral func-
tion is the correlated ρπ exchange, that was investigated in
the Bonn-Jülich nucleon-nucleon interaction model in Ref.
[99]. Since in that work cancellations between φ-exchange
contribution and this correlated πρ-exchange was found, the
ρπ contribution to the isoscalar spectral function was worked
out in Ref. [37]. This continuum contribution was evaluated
in terms of a dispersion integral which in turn can be rep-
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Fig. 8 The continuum contributions to the nucleon form factors F1 (left
panel) and F2 (right panel) in the space-like region. The contribution
of the 2π continuum to the isovector form factors is given by the solid
line, while the contribution of the K K̄ and ρπ continua to the isoscalar
form factors are given by the dash-dotted and dashed lines, respectively

resented by an effective pole term for a fictitious ω′ meson
with a mass Mω′ = 1.12 GeV [37]:

F (s,ρπ)
i (t) = 1

π

∫ ∞

(Mπ+Mρ)2

Im F (s,ρπ)
i (t ′)
t ′ − t

dt ′

� aρπ
i

M2
ω′ − t

, i = 1, 2 (49)

with aρπ
1 = −1.01 GeV2 and aρπ

2 = −0.04 GeV2. In the
form factor analysis, one uses this effective pole instead of
the full spectral function.

There is very little sensitivity in the dispersive fits to aρπ
2 ,

which can vary between −0.04 and −0.4 without affect-
ing the outcome of the fit. If the ω′ pole is treated as a real
resonance, the latter value is consistent with fω′ ∼ 10 for
aρπ

1 = −1.01 if the coupling constants gi
ω′NN (i = 1, 2)

from Ref. [37] are used as input (for a precise definition of
these couplings, see Sect. 3.8).

In Fig. 8, we show the contribution of the 2π , K K̄ , and ρπ

continua to the electromagnetic nucleon form factors F1 and
F2. The 2π contributes to the isovector form factors while
the K K̄ and ρπ continua contribute to the isoscalar form
factors. The K K̄ and ρπ contributions have opposite sign
and partially cancel each other. The dominant contribution
to Fs

1 comes from the ρπ continuum while for Fs
2 the K K̄

contribution is larger. While the K K̄ and ρπ contributions
can be represented by simple pole terms, the expressions
for the 2π continuum Eq. (40) are more complicated. This is
related to the strong enhancement close to the 2π threshold on
the left wing of the ρ resonance discussed above. Finally, note
that these continuum contributions enter as an independent
input in the dispersive analysis. They are not fitted to cross
section or form factor data.

Fig. 9 Vector meson dominance: The photon only couples through
vector mesons, V = ρ, ω, φ, . . ., to the nucleon

3.8 Vector meson poles

In the most simple picture, the photon couples to the nucleon
through vector mesons only (i.e. there is no direct photon-
nucleon coupling), the so-called vector meson dominance
(VMD) picture, see e.g. [100–103], as depicted in Fig. 9.

In this picture, the form factors take the simple form

Fs
i =

∑
V=s1,s2,...

aVi
M2

V − t
,

Fv
i =

∑
V=v1,v2,...

aVi
M2

V − t
, (50)

with

aVi = M2
V

fV
gV NN
i , V = ρ, ω, φ, . . . , (51)

and the couplings fV can be deduced from the leptonic decay
widths V → e+e−,

f 2
V

4π
= α2

3

MV

Γ (V → e+e−)
. (52)

Also, we have identified s1, s2 with the ω, φ and v1 with the
ρ. Each such vector meson comes with two couplings, the
vector coupling aV1 and the tensor coupling aV2 . One also
employs the ratio of the tensor to the vector coupling, κV ,
defined via

κV = gV NN
2

gV NN
1

. (53)

While for some resonances these couplings can be deduced
from nucleon-nucleon scattering data, in the dispersive anal-
ysis, they are considered as fit parameters (with the exception
of the ρ, which is completely determined from the 2π con-
tinuum). In the pure VMD picture with only ρ and ω vector
mesons contributing, one can relate the tensor-to-vector cou-
pling ratio to the isovector and isoscalar anomalous magnetic
moments of the nucleon, such that

κVMD
ρ = κp − κn � 3.71 ,

κVMD
ω = κp + κn � −0.12 . (54)

However, extracting κρ from the two-pion continuum leads
to a larger value, κρ � 6, consistent with extractions
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from nucleon-nucleon scattering, see e.g. the discussion in
[26].

The corresponding imaginary part, i.e. the contribution to
the spectral function for any vector meson reads:

Im FV (t) = π aVi δ(t − M2
V ) . (55)

As already discussed in Sect. 3.4, the ρ-meson is entirely
generated by the two-pion continuum, so that an explicit ρ

will never appear in the spectral function. Different to that,
the lowest isoscalar mesons are the ω and the φ, which are
explicitly taken into account. As noted before, the related
3π continuum has a very small nonresonant contribution,
that can be safely neglected [97], see also App. C. Also,
in the isoscalar region around 1 GeV, we consider the K K̄
and ρπ continua, which tend to cancel, and an additional
residual φ pole. Because of the complicated structure of the
isoscalar spectral function around 1 GeV, it is no longer possi-
ble to extract useful φNN couplings, as it was done in earlier
works, where one just had the φ-pole in this region. The large
φ-couplings found in these earlier studies are clearly an arti-
fact of the simplified isoscalar spectral function assumed in
this region.

3.9 Structure of the spectral functions

As discussed above, the spectral function can at present only
be obtained from unitarity arguments and experimental data
for the lightest two-particle intermediate states (2π and K K̄ ).
Furthermore, the ρπ continuum contribution has been cal-
culated in the Bonn-Jülich NN model.

The remaining contributions to the spectral function can
be parameterized by vector meson poles. On the one hand,
the lower mass poles can be identified with physical vec-
tor mesons such as the ω and the φ. The higher mass poles
on the other hand, are simply an effective way to parame-
terize higher mass strength in the spectral function. These
effective poles at higher momentum transfers appear in the
isoscalar (s1, s2, . . .) and isovector channels (v1, v2, . . .) It
should be noted that we are dealing with an ill-posed prob-
lem here [104,105], that means increasing the number of
poles will from some point on not improve the description
of the data. Therefore, the strategy has always been to use
as few poles as possible. We come back to this issue in
Sect. 3.12.

Putting all pieces together, the spectral function has the
general structure

Im Fs
i (t) = Im F (s,K K̄ )

i (t) + Im F (s,ρπ)
i (t)

+
∑

V=ω,φ,s1,...

πaVi δ(M2
V − t) , i=1, 2 , (56)

Fig. 10 Cartoon of the isoscalar (left) and isovector (right) spectral
function in terms of continua and (effective) vector meson poles. The
vertical dashed line separates the well-constrained low-mass region
from the high-mass region which is parameterized by effective poles

Im Fv
i (t) = Im F (v,2π)

i (t)

+
∑

V=v1,...

πaVi δ(M2
V − t) , i = 1, 2 . (57)

For the light isoscalar vector mesons, the residua in the pole
terms can be related to their couplings. Only rough estimates
exist for these: 0.5 GeV2 < aω

1 < 1 GeV2, |aω
2 | < 0.5 GeV2

[106] and |aφ
1 | < 2 GeV2, |aφ

2 | < 1 GeV2 [37]. Note that
the dominant vector ωNN coupling is taken to be positive,
consistent with one-boson-exchange in the nucleon-nucleon
interaction. These ranges are used as constraints in the fits.
The masses of the effective poles (s1, s2, . . . , v1, v2, . . .) are
fitted to the data. We remark that to ensure the stability of
the fit [105], we demand that the residua of the vector meson
poles are bounded, |aVi | < 5 GeV2 (this can also be con-
sidered a naturalness argument for the couplings), and that
no effective poles with masses below 1 GeV appear. Fur-
thermore, the masses of these effective poles should also be
smaller than 5 GeV. We generally do not include widths for
the effective poles. However, if one wants to mimic the imag-
inary part of the form factors in the time-like region, one can
e.g. allow for a large width for the highest mass effective pole
(see, e.g., Ref. [34]). A cartoon of the resulting (isoscalar
and isovector) spectral functions is shown in Fig. 10. The
vertical dashed line separates the phenomonologically well-
constrained low-mass region from the effective vector meson
poles at higher masses.

3.10 Constraints

The number of parameters in the spectral function (i.e. the
various meson couplings aVi (i = 1, 2) and the masses
of the effective poles) is reduced by enforcing various
constraints.

The first set of constraints concerns the low-t behavior
of the form factors. We enforce the correct normalization of
the form factors as given in Eq. (3). The nucleon radii, how-
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ever, are not included as a constraint. The exception to this
is the squared neutron charge radius, which in some disper-
sive fits has been constrained to the value from low-energy
neutron-atom scattering experiments [107,108]. In the new
fits discussed later, we implement this constraint using the
high-precision determination of the neutron charge radius
squared based on a chiral effective field theory analysis of
electron-deuteron scattering [109,110],

〈r2
n 〉 = −0.105+0.005

−0.006 fm2 . (58)

Another set of constraints arises at large momentum trans-
fers. Perturbative QCD (pQCD) constrains the behavior of
the nucleon electromagnetic form factors for large momen-
tum transfer. Brodsky and Lepage [111] worked out the
behavior for Q2 → ∞,

Fi (t) → 1

Q2(i+1)

[
ln

(
Q2

Λ2
QCD

)]−γ

, i = 1, 2 , (59)

with

γ = 2 + 4

3β
, β = 11 − 2

3
N f , (60)

in terms of the leading order QCD β-function. The anoma-
lous dimension γ ≈ 2 depends weakly on the number of
flavors, N f [111]. The power behavior of the form factors at
large Q2 can be easily understood from perturbative gluon
exchange. In order to distribute the momentum transfer from
the virtual photon to all three quarks in the nucleon, at least
two massless gluons have to be exchanged. Since each of
the gluons has a propagator ∼ 1/Q2, the form factor has to
fall off as 1/Q4. In the case of F2, there is additional sup-
pression by 1/Q2 since a quark spin has to be flipped. The
analytic continuation of the logarithm in Eq. (59) to time-
like momentum transfers −Q2 ≡ t > 0 yields an additional
term, ln(−t/Λ2) = ln(t/Λ2) − iπ for t > Λ2. Employ-
ing the Phragmen-Lindeloef theorem [89], it follows that the
imaginary part has to vanish in the asymptotic limit. Tak-
ing these facts into account, the proton effective FF can be
described for large time-like momentum transfer t by [112]

|Gp
eff(t)| = A

t2(ln2(t/Λ2) + π2)
, (61)

with the parameters from a fit to data prior to the 2013 mea-
surement by the BaBar collaboration [50], given as A = 72
GeV−4 and Λ = 0.52 GeV.

The power behavior of the form factors leads to supercon-
vergence relations of the form

∫ ∞

t0
Im Fi (t) t

ndt = 0 , i = 1, 2 , (62)

with n = 0 for F1 and n = 0, 1 for F2. These will be
employed in the current analysis. In earlier DR analyses,
modifications of the superconvergence relations were used
including e.g. some higher order corrections. These should
be, however, abandoned as the data are simply not sensitive
to such corrections. We note that these superconvergence
relations have already been used in Ref. [22], i.e. before the
pQCD analysis.

Consequently, the number of effective poles in Eqs. (56,
57) is determined by the stability criterion mentioned before,
that is, we take the minimum number of poles necessary to
fit the data. The number of free parameters is then strongly
reduced by the various constraints (unitarity, normalizations,
superconvergence relations). These constraints can be imple-
mented as what is called “hard constraints” or “soft con-
straints”, respectively. In the former case, one solves a system
of algebraic equations relating the various parameters (cou-
plings, masses), thus reducing the number of free parameters
in the fit (for an explicit representation, see e.g. [26]). In
the latter case, the χ2 is augmented by a Lagrange multiplier
enforcing the corresponding constraints, see Sect. 3.12. Both
options are viable and have been used.

It is straightforward to enumerate the number of fit param-
eters, which is given by the couplings and masses of the vector
meson, NV = 4+3Ns+3Nv , with Ns(Nv) the number of the
effective isoscalar (isovector) poles and the 4 represents the
ω and φ couplings, minus the number of constraints, given
by NC = 4 + 6 + 1, referring to the low-t , the high-t con-
straints and the neutron charge radius squared, respectively. If
the latter in not included, NC = 10. Putting pieces together,
we have in total NF = NV − NC = 3(Ns + Nv) − 7 or
NF = 3(Ns +Nv)−6 fit parameters (including or excluding
the (rnE )2-constraint).

3.11 Two-photon effects

The interest in two-photon corrections was triggered by
the high precision measurements of the form factor ratio
GE/GM using the polarization transfer method reported in
Refs. [31,32]. These results were found to be in striking dis-
agreement with the world data based on the Rosenbluth sepa-
ration. Even after removing inconsistencies from the Rosen-
bluth data base [113], this discrepancy remained, triggering a
flurry of works on two-photon corrections beyond the work of
Refs. [114–116], which neglected, however, the effects of the
structure of the nucleon in the calculation of the two-photon
box and crossed-box diagrams, see Fig. 11. These diagrams
were calculated in various approaches, like in hadronic mod-
els, using generalized parton distributions or using disper-
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Fig. 11 The two-photon exchange box and crossed box graphs. The
thin solid line denotes electron, the wiggly line photons, the soild line
represents nucleons in the incoming and outgoing states and the fat grey
line denotes the nucleon or the Δ-resonance in the intermediate state

sive methods, see e.g. Refs. [117,118] for reviews and very
recent work in Ref. [119]. Here, we concentrate on the work
presented in [46], because the two-photon corrections given
there are applied in the DR analyses since then.

The corrections to the electron-proton cross sections at
order α3 are given by the interference of the one-photon-
exchange amplitude M1γ and the amplitudes from vac-
uum polarization, vertex corrections, self-energy corrections
and the two-photon-exchange amplitude M2γ and addition-
ally the contribution from Bremsstrahlung. The main data
set that are considered in the DR analyses already con-
tains a set of calculations of such corrections by Maxi-
mon and Tjon [116]. This calculation contains improvements
towards earlier works by Mo and Tsai [115] but still uses a
soft-photon approximation, particularly relevant for the two-
photon exchange (TPE) contribution. This contribution to the
corrected cross section can be expressed through a factor of
(1 + δ2γ ) as

dσcorr

dΩ
= (M†

1γ + M†
2γ + . . .)(M1γ + M2γ + . . .)

= dσ1γ

dΩ
(1 + δ2γ + . . .) , (63)

so that

δ2γ ≈︸︷︷︸
O(α)

2Re(M†
1γM2γ )

|M1γ |2 . (64)

We briefly discuss the soft-photon approximation by Max-
imon and Tjon since only the difference between any new
evaluation of the 2γ corrections and this approximation is
required for the purification of the ep scattering data. Ref.
[116] separates the IR-divergent part of the TPE-amplitude
by considering the poles in the photon propagators, i.e. one
vanishing photon momentum. The resulting factor is

δMT
2γ,IR = −2α

π
ln

E1

E3
ln

Q2

λ2 (65)

where λ is an infinitesimal photon mass and E1 (E3)

the incoming (outgoing) electron energy. The logarithmic
infrared singularity in λ is canceled by a term in the

Bremsstrahlung correction, so that the complete cross sec-
tion is λ-independent. The same cancellation takes place, if
both δ2γ,IR and the Bremsstrahlung correction are calculated
in the older approximation scheme by Mo and Tsai.

In Ref. [46], the interference between the 1γ -amplitude

M1γ = − e2

q2 ūe(p3)γμue(p1)ūN (p4)Γ
νuN (p2) (66)

and the 2γ -amplitude

Mbox
2γ = −ie4

∫
d4k

(2π)4 L
box
μν (Hμν

N + Hμν
Δ )D(k)D(q − k).

(67)

was calculated. In this notation, the metric tensor from the
photon propagator has already been contracted. Then, M1γ

is given in terms of the conventional lepton spinors u(p)
and the elastic nucleon-vertex Γ ν(q) from Eq. (2). The 2γ -
amplitude contains the lepton tensor

Lbox
μν = ūe(p3)γμSF (p1 − k,me)γνue(p1) , (68)

whereas the hadronic tensor for nucleon or Δ intermediate
states are

Hμν
N = ūN (p4)Γ

μ(q − k)SF (p2 + k,mN )Γ ν(k)uN (p2)

Hμν
Δ = ūN (p4)(p4)Γ

μα
γΔ→N (p2 + k, q − k)Sαβ

× (p2 + k)Γ βν
γ N→Δ(p2 + k, k)uN (p2), (69)

respectively. Here, Γ
μα
γΔ→N (p, k) is the transition vertex

〈Δ(p′)|J ν
em |N (p)〉 = Ψμ(p′)Γ μν

γ N→Δ(p′, q)u(p) (70)

in terms of the Raita-Schwinger spinor field Ψ
(a)
μ (p) [120].

Various parameterizations of this transition matrix element
exist, see e.g. Refs. [121,122]. The corresponding electric
GE , magnetic GM and Coulomb GC transition form fac-
tors can be related to the helicity amplitudes measured in
pion electroproduction off the nucleon, see e.g. Ref. [123].
Accounting for this momentum dependence also in the ΔNγ

vertices in the box and crossed box diagrams was the main
improvement in Ref. [46] compared to some earlier calcula-
tions. Further, in the denominator of the photon propagator
for the pure nucleon graph, one includes an infinitesimal pho-
ton mass λ

D(k) = 1

k2 − λ2 + iε
, (71)
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Fig. 12 Dependence of the TPE with nucleon intermediate state on the
nucleon form factors at Q2 = 3 GeV2. The correction factor δ2γ,N is
calculated once with dipole Sachs FFs (green dashed line) and once with
the simplified pole fit from Ref. [42] (red solid line). Displayed is the
difference of the calculation in [46] to the soft-photon approximation
by Maximon and Tjon [116]

to regulate the infrared divergences. The loop containing the
Δ is not IR divergent because of the larger mass of the Δ.
The SF and Sαβ in Eqs. (68,69) are the conventional spin-1/2
and spin-3/2 propagators, respectively. The calculation of the
crossed box graph proceeds accordingly.

In Fig. 12, the ε-dependence at Q2 = 3 GeV2 is shown,
which allows for a comparison to previous calculations such
as [42]. In this case, the dependence on the nucleon FF param-
eterization largely cancels out. The use of the pole fit parame-
terization from Ref. [42] indeed reproduces their result. Low-
ering the Q2-value in the calculation decreases the nucleon-
TPE correction.

For the intermediate Δ, the situation is different, one finds
a stronger dependence on the FF parameterizations. In Fig. 13
the results of the calculation that employs the helicity ampli-
tudes obtained from data on electroproduction of nucleon res-
onances [124] are displayed. These corrections can be param-
eterized conveniently by a set of FFs, determined in Ref.
[123] and used in Ref. [125] for a similar calculation albeit
without realistic NFFs. This form of the γ NΔ-vertex does
not deviate significantly from recent data and is numerically
well-treatable. These results are similar to the ones of Ref.
[126], where different transition form factors are employed.

As stated before, the sum of δ2γ,N and δ2γ,Δ from Ref.
[46] constitute the two-photon corrections employed in the
DR analysis of the Bonn-Darmstadt group. Their effect on the
high-precision data from Mainz [11] is displayed in Fig. 14.
Note that the original data contain the McKinley-Feshbach
approximation of the two-photon correction given by [127].

δF = Zαπ
sin(θ/2) − sin2(θ/2)

cos2(θ/2)
, (72)

Fig. 13 Dependence of the TPE with Δ intermediate state on the
nucleon form factors at Q2 = 3 GeV2 with the NΔγ -vertex directly
matched to helicity amplitudes from electroproduction of nucleon res-
onances. The red solid, green dashed and blue dotted lines refer to the
calculation with the FFs from the dispersive approach, Sachs dipole
FFs and Sachs monopole FFs, respectively. Note that the result based
on monopole FFs is only shown because they have been used in some
earlier analyses. For more details, see Ref. [46]

where Z is the nuclear charge (here, Z = 1). As pointed out
in Ref. [128], this approximation is only valid as Q2 → 0
and has the wrong sign for some kinematical regions. Thus,
this contribution is subtracted from the data and the two-
photon corrections from Ref. [46] are added. The differ-
ences are quite visible. The corrections from Ref. [46] will
be also employed in the calculations presented in the next
section. Nevertheless, an updated calculation of these cor-
rections would be welcome.

3.12 Fit strategies and error analysis

In this section, we briefly describe how the fits of the spectral
functions to data are performed and how the statistical and
systematic errors can be determined.

First, we discuss the quality of the fits, which is measured
in terms of the total (traditional) χ2,

χ2
1 =

∑
i

∑
k

(nkCi − C(Q2
i , θi , p ))2

(σi + νi )2 , (73)

where Ci are the cross section data at the points Q2
i , θi and

C(Q2
i , θi , p ) are the cross sections for a given FF parame-

terization for the parameter values contained in p. Moreover,
the nk are normalization coefficients for the various data sets
(labeled by the integer k), while σi and νi are their statistical
and systematical errors, respectively. A more refined defini-
tion of the χ2 is given by [46]
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Fig. 14 The impact of TPE-corrections on the electron-proton scatter-
ing cross sections from Ref. [11]. From the original data, the McKinely-
Feshbach approximation is subtracted and the corrections from Ref. [46]
are added. Shown are the cross section data divided by that one calcu-
lated by dipole Sachs FFs to make the deviations clearer. Blue lines:
McKinley-Feshbach–approximation, red crosses: TPE with intermedi-
ate nucleon states only, black crosses: TPE with intermediate nucleons
and Δ resonances

χ2
2 =

∑
i, j

∑
k

(nkCi − C(Q2
i , θi , p ))[V−1]i j

×(nkC j − C(Q2
j , θ j , p )) , (74)

in terms of the covariance matrix Vi j = σiσ jδi j + νiν j .
This latter definition accounts for the correlation between
the various fit parameters. A fit to form factor data uses the
same definitions, except for the absence of the normalization
factors.

One also considers the reduced χ2, which is given by:

χ2
red = χ2

i

ND − NF
, i = 1, 2 , (75)

Fig. 15 The bootstrap procedure exemplified on the example of the
proton charge radius extraction from the PRad data. See text for more
details

with ND the number of fitted data points and NF the number
of independent fit parameters, see Sect. 3.10.

As noted in Sect. 3.10 the various constraints on the form
factors can be implemented algebraically (hard constraints)
or by modifying the χ2 (soft constraints). The latter type of
constraints are implemented as additive terms to the total χ2

in the following form

χ2
add. = p [x − 〈x〉]2 exp

(
p [x − 〈x〉]2

)
, (76)

where 〈x〉 is the desired value and p is a strength parameter,
which regulates the steepness of the exponential well and
helps to stabilize the fits [34,129].

One method to estimate the fit (statistical) errors is the
bootstrap procedure, see e.g. Ref. [130]. One simulates a
large number of data sets compared to the number of data
points by randomly varying the points in the original set
within the given errors assuming their normal distribution.
Let us consider the radius extraction. In that case, one fits to
each of these data sets separately, extracts the radius from
each fit and consider the distribution of these radius values,
which is sometimes denoted as bootstrap distribution. The
artificial data sets represent many real samples. Therefore,
this radius distribution represents the probability distribution
that one would get from fits to data from a high number of
measurements. The precondition for using this method are
independent and identically distributed data points which is
fulfilled when the χ2 sum does not depend on the sequential
order of the contributing points. For n simulated data sets, the
errors thus scale with 1/

√
n. However, to get a more realistic

uncertainty, we exclude one percent of the data points from
the sample and can so determine the lowest and highest value
of the extracted radius. The same procedure can, of course,
also be applied to the full form factors. In Fig. 15, we again
use the 71 PRad data points to show the bootstrap extrac-
tion of the proton charge radius and its statistical uncertainty
based on 1000 samples. The extracted error thus reads (a

123



255 Page 18 of 33 Eur. Phys. J. A (2021) 57 :255

Fig. 16 Prior distributions used for the various couplings and masses in the analysis of the PRad data. Upper/lower panel: Normal/uniform
distribution

similar plot is obtained for the magnetic radius) [53]

δ(r pE )stat. = ±0.012 fm , δ(r pM )stat. = ±0.005 fm . (77)

We note that the bootstrap error for r pM for the PRad data
given in [53] is corrected here.

Another statistical tool to estimate the error intervals of
our model parameters is the Bayesian approach, see e.g. Ref.
[131] (and references therein). In contrast to the interpre-
tation of probabilities in the classical (also called frequen-
tist) approach, where the probability is the frequency of an
event to occur over a large number of repeated trials, the
Bayesian method uses probabilities to express the current
state of knowledge about the unknown parameters, which
allows one to estimate the uncertainty as a statement about
the parameters. The key ingredients to a Bayesian analysis are
the prior distribution, which quantifies what is known about
the model parameters prior to data being observed, and the
likelihood function, which describes information about the
parameters contained in the data. The prior distribution and
likelihood can be combined to derive the posterior distribu-
tion by means of Bayes’ theorem:

P(paras|data) = P(paras)P(data|paras)

P(data)
, (78)

where “paras” denotes the parameters and P(a|b) is the con-
ditional probability that a happens given b.

It is the main goal of a Bayesian statistical analysis to
obtain the posterior distribution of the model parameters. The
posterior distribution contains the total knowledge about the
model parameters after the data have been observed. From a
Bayesian perspective, any statistical inference of interest can
be obtained through an appropriate analysis of the posterior
distribution. For example, point estimates of parameters are
commonly computed as the mean of the posterior distribu-
tion and interval estimates can be calculated by producing the
end points of an interval that correspond with specified per-
centiles of the posterior distribution. A powerful and easy-to-
implement method to access posterior distribution is Markov
Chain Monte Carlo (MCMC) algorithm. A systematic illus-

tration of Bayesian analysis applications can be found in Ref.
[132].

As an example, we implement a Bayesian analysis for
the fit to PRad data where the 2s + 2v configuration of the
spectral function is used. The likelihood function is given by

L(D|p) = 1

N
e−χ2/2, (79)

with the χ2 objective function defined in Eq. (74). Here, p
contains the model parameters and D = {di } denotes the
PRad data points, and N is a normalization constant. Two
different prior distributions shown in Fig. 16 are considered
to test the stability of the obtained statistical outputs from our
Bayesian analysis. We apply a particular MCMC sampling
algorithm called ParaMonte [133] to acquire a Monte Carlo
sample from the posterior distribution. The obtained posteri-
ors of the parameters mV

1 and aω
1 are taken as an example to

show the equivalence of normal and uniform priors we used
as shown in Fig. 17. The statistical estimates of form factor
and radius errors from our Bayesian analysis are discussed
in next section.

Next, we discuss the extraction of the systematic uncer-
tainties, which is always the most difficult task. Our strategy
is similar to what was already done in Ref. [22], namely to
vary the number of isoscalar and isovector poles around the
values corresponding to the best solution, where the total χ2

does not change by more than 1%. An example of this is given
in Table 3 taken from Ref. [53]. Here, only the PRad data [15]
are considered. The best fit corresponds to 2 isoscalar and 2
isovector poles, so we can read off the systematic errors in
this case as [53]

δ(r pE )syst. = ±0.001 fm , δ(r pM ) = +0.018
−0.012 fm . (80)

We note that while the absolute χ2 does not change, the
reduced one worsens as the number of fit parameter increases.
As expected, the systematic error is larger for the magnetic
radius as at low Q2, the electric FF dominates. More detailed
results will be given below.
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Fig. 17 Posterior distributions of mV
1 (upper panel) and aω

1 (lower
panel) from the Bayesian analysis of the fits to the PRad data. Blue/Red
lines: Normal/uniform prior

4 Physics results

In this section, we display a number of physics results, in par-
ticular we discuss fits including proton polarization transfer
and neutron form factor data, and present new uncertainty
analyses, thus extending and deepening the work of Ref. [53].
We also discuss the inclusion of data for the time-like form
factors and the related physics. First, however, we want to
sharpen and validate our toolbox to pin down the errors on
the example of the PRad data.

Table 4 Statistical uncertainty in the proton electromagnetic radii from
the PRad data using two different Bayesian distributions and the boot-
strap approach

Method r pE [fm] r pM [fm]

Bayesian normal 0.828 ± 0.011 0.843 ± 0.004

Bayesian uniform 0.828 ± 0.011 0.843 ± 0.004

Bootstrap 0.828 ± 0.012 0.843 ± 0.005

4.1 Detailed analysis of the PRad data

The PRad data [15] are given at two beam energies, E =
1.1, 2.2 GeV, covering squared momentum transfers in the
range Q2 = 2 ·10−4 −6 ·10−2 GeV2, in total 71 differential
cross section data points. Using this data set, we will make a
detailed comparison of the bootstrap and the Bayesian meth-
ods to extract the statistical uncertainty. The extraction of the
systematic uncertainty for these data was already discussed
in Sect. 3.12.

Before continuing, it is worth noting that from the proton
data alone, the isospin of a given pole is not determined. One
can, however, simply assign a given number of isoscalar and
isovector poles besides the continuum contributions, which
have a given isospin, as well as the ω and φ mesons. This
ambiguity will be resolved once neutron data are also fitted,
see Sect. 4.2.

We consider first the Bayesian analysis described in
Sect. 3.12. We assume two sets of priors, the normal and
the uniform distributions depicted in Fig. 16. In both cases,
the constraints on the various couplings and masses discussed
in Sect. 3.10 are already included. Note further that in case
of the uniform distribution, the prior for the unknown mass
mv

1 is biased towards smaller values. The resulting proton em
radii are equal within 3 significant digits for these two differ-
ent prior distributions, see Table 4. Note that the systematic
errors of these data have already been discussed in Sect. 3.12.

Next, we compare the radius extraction from the Bayesian
and the bootstrap method, which are shown in Fig. 18 for the
proton charge radius.

Table 3 Fit to the PRad data with varying numbers of isoscalar (s) and isovector (v) effective poles. Given are the total and the reduced χ2 and the
resulting values for the proton radii. The * marks the best solution which defines the central values for the radii

eff. poles tot. χ2 red. χ2 r pE [fm] rnM [fm]

2s + 2v* 88.5 1.321 0.829 0.843

3s + 2v 88.5 1.383 0.829 0.860

3s + 3v 88.5 1.451 0.828 0.848

4s + 3v 88.5 1.526 0.829 0.843

4s + 4v 88.5 1.609 0.829 0.845

5s + 4v 88.5 1.702 0.829 0.837

5s + 5v 88.5 1.806 0.828 0.861
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Fig. 18 Distributions of r pE from the PRad data using the bootstrap
approach (left, orange points) and from the Bayesian method (right,
blue points)

Fig. 19 Electric (open panel) and magnetic (lower panel) form factor
extracted from the PRad data with the uncertainties determined from
the Bayesian method (normal prior distribution) (red area) and from the
bootstrap approach (blue area). Both form factors are normalized to the
dipole FF and systematic uncertainties are not shown

As can be read off from this figure and also seen in Table 4,
the results are very similar, with the bootstrap having slightly
larger errors, which is due to our conservative choice con-
sidering the 99% quantile. The resulting normalized form
factors GE (Q2)/Gdip(Q2) and GM (Q2)/(μpGdip(Q2)) as
well as their uncertainties for the two methods are shown in

Table 5 Data base used in the fits

Data type range of Q2 [GeV2] # of data

σ(E, θ), PRad 0.000215 − 0.058 71

σ(E, θ), MAMI 0.00384 − 0.977 1422

μPG
p
E/Gp

M , JLab 1.18 − 8.49 16

Gn
E , world 0.14 − 1.47 25

Gn
M , world 0.071 − 10.0 23

Fig. 19. The differences are negligible. The form factor ratio
μpG

p
E/Gp

M measured below Q2 = 1 GeV [47,48] is also
well described, as already displayed in Fig. 2 of Ref. [53].
Note also that the magnetic form factor does not display any
bump-dip structure below Q2 < 1 GeV2 as found in the
MAMI analysis [44].

Having shown the equivalence of both methods here, in
what follows we will stick to the bootstrap procedure, which
is easier to implement in case of large data sets with a larger
number of fit parameters.

4.2 Fits to proton and neutron data

We are now in the position to analyze the full data set. To
be more precise, for the proton we fit to the cross section
data from PRad [15] and from MAMI-C [44] as well as to
the polarization transfer data from Jefferson Lab [134–137]
above Q2 = 1 GeV2 (note that the data from Refs. [31,32]
are updated in Refs. [134,137], respectively, and thus do not
appear in the data base) together with the neutron form factor
world data base already used in [45]. The size of the data base
and the Q2-ranges we are fitting is provided in Table 5.

We also include the constraint on the neutron charge radius
squared, updated to the latest value given in Eq. (58) from
Ref. [109]. Ultimately, we need to reassess the neutron data
base by performing chiral EFT analyses of electron scattering
of the deuteron and (polarized) 3He. This, however, goes
beyond the scope of the present work.

Before showing the results of the best fit and the corre-
sponding statistical and systematic uncertainties, it is worth
pointing out that we made extensive searches for solutions
with altogther 36 combinations of isoscalar (is) and isovector
(iv) poles, ranging from 3 + 3 to 8 + 8 is+iv poles, with the
reduced χ2 varying by less than 5%, in most cases even by
less than 1%. We notice that the fits with a larger number of
is than iv poles turned out to be slightly better.

The best solution has 6 + 4 is+iv poles, and the fits to the
ep cross section data with Q2 < 1 GeV2, the proton form
factor ratio with Q2 > 1 GeV2, the electric form factor of
the neutron and the magnetic form factor of the neutron are
shown in Figs. 20, 21, 22, 23, respectively.
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Fig. 20 Best fit (solid red line ) to the ep cross section data from
PRad (upper panel) and MAMI (lower panel) including the two-photon
corrections discussed in Sect. 3.11. The red bands give the uncertainty
due to the bootstrap procedure. Systematical uncertainties are not shown

Fig. 21 Best fit to the proton form factor ratio data from JLab. Note
that the blue data (also shown for Q2 < 0.7 GeV2 in the inset) are not
fitted. For notations, see Fig. 20

Fig. 22 Best fit to the neutron electric form factor data. For notations,
see Fig. 20

Fig. 23 Best fit to the neutron magnetic form factor data. For notations,
see Fig. 20

The corresponding central values for the various vector
mesons masses, vector meson couplings and the normaliza-
tion constants of the MAMI and PRad data are collected in
Table 6 in App. E. It is remarkable that while the isoscalar
spectral functions requires a number of high mass effective
poles, the effective isovector poles all have masses below
2.3 GeV. We note that the vector coupling of the residual φ

comes out small, consistent with expectations from the OZI
rule. The tensor coupling is, however, quite large, but the next
effective isoscalar pole has a comparable tensor coupling of
opposite sign, see also the discussion in Sect. 4.3. We also
note that the various normalization factors are deviating from
one by less than 1%.

Let us now discuss the predictions of and physics related
to these fits. First, we extract the various radii from these fits,

r pE = 0.839 ± 0.002+0.002
−0.003fm,

r pM = 0.846 ± 0.001+0.001
−0.005 fm,

rnM = 0.866 ± 0.002+0.010
−0.005 fm, (81)
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where the first error is statistical (based on the bootstrap pro-
cedure explained in Sect. 3.12) and the second one is sys-
tematic, based on the variations in the spectral functions dis-
cussed before. The values for the radii are completely con-
sistent with earlier determination, cf. Tables 1,2, but with
a much improved uncertainty estimation. Clearly, given the
data set we fitted, the systematic uncertainty is largest for the
neutron magnetic radius. The statistical uncertainty is small
for all three radii.

It is also interesting to give the radii of the Dirac and Pauli
from factors in the isospin basis, in particular for the compar-
ison with lattice QCD results. The reason for this is that the
contribution of the so-called disconnected diagrams to the
isoscalar FFs, which are notoriously difficult to calculate.
These radii are given by:

rs1 = 0.778+0.002
−0.001

+0.002
−0.003fm,

rs2 = 0.585+0.071
−0.087

+0.306
−0.123 fm,

rv
1 = 0.751+0.002

−0.001
+0.002
−0.003 fm,

rv
2 = 0.880 ± 0.001 ± 0.003 fm . (82)

Similarly, the electric and magnetic radii in the isospin basis
are (using the conventions given in Eqs. (6,7))

rsE = 0.773 ± 0.002+0.002
−0.003fm,

rv
E = 0.900 ± 0.002 ± 0.002 fm,

rsM = 0.801 ± 0.008+0.010
−0.038 fm,

rv
M = 0.854 ± 0.001+0.003

−0.002 fm . (83)

We note that the central values in Eq. (83) lead to the
squared isovector radii, of (1/2)(rv

E )2 = 0.405 fm2 and
μv(rv

M )2 = 1.72 fm2, which are perfectly consistent with
the sum rule estimates in Eq. (43) but have, of course, much
smaller uncertainties. It is also interesting to compare the
values for the squared isovector radii with a recent state-of-
the-art lattice QCD calculation at physical pion masses [138].
These are given by,

(rv
E )lat = 0.894(14)stat(12)sys fm ,

(rv
M )lat = 0.813(18)stat(7)sys fm . (84)

While the value of the isovector charge radius is consistent
with ours, the lattice value for the isovector magnetic radius
is smaller than ours, that is there is some tension. It remains
to be seen what future lattice calculations will give.

As in earlier fits [46,53], the data for the proton form
factor ratio μPG

p
E/Gp

M for Q2 < 1 GeV2, which do not
participate in the fit, are well described, see the inset in
Fig. 21. This points towards consistency between the two-
photon corrected cross section data and the ratio data, that
are not affected by such corrections. The situation is, how-
ever, different for larger momentum transfers. In Figs. 24,25
we display Gp

E (Q2) and Gp
M (Q2), that did not participate in
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Fig. 24 Proton electric form factor divided by the dipole FF from the
best fit (red solid line) with the bootstrap uncertainties displayed by the
light red band

0.001 0.010 0.100 100 101
0.0

0.5

1.0

1.5

2.0

Q 2 [GeV 2]

G
Mp
/(
μ p
G
di
p
)

Fig. 25 Proton magnetic form factor divided by the dipole FF from
the best fit (red solid line) with the bootstrap uncertainties displayed by
the light red band

the fits. Because the proton form factor ratio tends to zero at
Q2 � 8 GeV2, marked deviations from the dipole form are
observed. Only at very large momentum transfer, the fall-off
required by pQCD is observed. More precisely, we find that
Q4F p,n

1 (Q2) starts to level off beyond 30 GeV2, whereas
that is not the case yet for Q6F p,n

2 (Q2). Clearly, in this region
of momentum transfer, more data are needed to pin down the
form factors more precisely and to eventually see the onset
of perturbative QCD. This is entirely consistent with earlier
findings, see e.g. Refs. [26,34].

Note that the long-range part of the Breit-frame charge
and magnetization distributions that follows from the Sachs
form factors can be interpreted in terms of a “pion cloud”
and some additional short-range contributions from the ρ and
other short-ranged physics. However, we emphasize that this
separation is scale-dependent and thus not unique. A general
discussion of the pion cloud can be found in Refs. [139,140].
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4.3 Vector meson couplings

As noted before, in the earlier DR analyses, in the isoscalar
spectral function below 1 GeV, only the ω and the φ mesons
were retained and thus using Eq. (51), one was able to extract
the vector and the tensor couplings of these mesons. How-
ever, we have shown that in the region of the φ, the isoscalar
spectral function is much more complicated, preventing one
from extracting φ-meson couplings. In what follows, we will
thus only consider the ω-meson. In this case, we have

gωNN
i = fω

M2
ω

aω
i , i = 1, 2 , (85)

with

fω = 16.7 . (86)

The earlier fits, which had no restrictions on the residua led
to a large vector and a small tensor coupling,

gωNN
1 = 19.4 ± 1.0 , κω = −0.17 ,

gωNN
1 = 20.9 ± 0.3 , κω = −0.16 ± 0.01 , (87)

from Ref. [22] and Ref. [26], respectively. This vector cou-
pling is sizeably larger than from the determination using
forward dispersion relations in nucleon-nucleon scattering,
gωNN

1 = 10.1 ± 0.9 [106]. This smaller value is, how-
ever, inconsistent with the approximate dipole behavior of
Fs

1 (Q2) [141]. Note further that in one-boson-exchange
models of the NN interaction, one typically finds values of
gωNN

1 (M2
ω) � 20 which for typical strong form factors trans-

lates to gωNN
1 (0) � 10 [142].

Starting with the work of BHM [34], the isoscalar spectral
function was considerably improved. In that work, the vector
coupling was still large, but the tensor coupling could not be
pinned down so precisely,

gωNN
1 = 16.7 . . . 23.1 , gωNN

2 = −3.6 . . . 10.3 . (88)

Values within this range where also found in the analysis of
the MAMI-C data combined with the proton form factor data
for Q2 > 1 GeV2 and the neutron FF data base [45]

gωNN
1 = 20.4 , gωNN

2 = 0.1 , (89)

where only central values were given. Finally, the analyses
that concentrated mostly on the high-precision ep data from
MAMI-C and PRad, the ω couplings took the values

gωNN
1 = 13.6 , gωNN

2 = −5.2 ,

gωNN
1 = 23.4 , gωNN

2 = 0.3 , (90)

from Ref. [46] and Ref. [53], respectively. Finally, we present
the results of our new fits, including the statistical and the
systematical uncertainty:

gωNN
1 = 18.81+0.44

−0.48
+1.35
−3.16 ,
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Fig. 26 Upper panel: Cross section for e+e− → p p̄ in the thresh-
old region. The data are from BESIII [143] (blue circles), BaBar [50]
(black square), CMD-3 [144] (green diamonds), DM1 [145] (maroon
crosses) and FENICE [146] (violet triangles). The dashed black line
denote the phase space, normalized to the data at 50 MeV excess energy.
Lower panel: Cross section for e+e− → p p̄ for invariant masses below
3 GeV. The blue circles/black squares represent the data from BESIII
[143]/BaBar [50]. In both panels, the vertical red dashed line marks the
p p̄ threshold

gωNN
2 = 1.18+1.41

−0.92
+0.79
−5.74 . (91)

For the central values, the tensor-to-vector coupling ratio is
small, κω = 0.06. We note that the uncertainties on the vector
coupling are modest, they are much larger for the suppressed
tensor coupling. Similar to the findings in BHM, the sign
of the tensor coupling is not determined and the range of
allowed values is sizeable.

4.4 Time-like form factors and final-state interactions

Before discussing the DR fits including the data from the
time-like region, it is worth noting two very intriguing exper-
imental findings related to the cross section σ(e+e− → p p̄)
(and the reversed reaction) and the corresponding effec-
tive form factor |Gp

eff |. First, as shown in the upper panel
of Fig. 26, there is a strong enhancement in the close-to-
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threshold region, as comparison with the phase space behav-
ior (normalized to the data at about 50 MeV excess energy)
clearly reveals. Note also that due to the Coulomb interaction
between the proton and the antiproton, the cross section does
not start at zero. No such effects are seen in σ(e+e− → nn̄).
We note that such threshold enhancements are also observed
in other processes like e.g. J/Ψ → xp p̄, Ψ ′(3686) → xp p̄
with (x = γ, ω, ρ, π, η) and B+ → K+ p p̄, see e.g.
Refs. [147–149]. Second, extending further out in momen-
tum transfer, the BaBar data [50] and also the BESIII data
[143] exhibit some oscillating structures, most pronounced
for invariant masses Mpp̄ below 2.5 GeV, see the lower panel
in Fig. 26. The corresponding neutron data from FENICE
[146] and SND [150] are less precise than the proton data,
but show a similar behavior for q2 � 4 GeV2. For recent
fits to the time-like proton effective FF accounting for these
structures, see [151].

DR fits including space- and time-like data were per-
formed in Refs. [30,34,49]. Here, we focus on the work done
in the latest paper. Though that work investigated some issues
related to FSI in an exploratory way, it provides the most
detailed information on the physics contained in the time-
like FFs. In this work, the spectral functions was enlarged to
account for the coupling to the newly established φ(2170)

vector meson, as well as baryonic triangle graphs with vir-
tual NNπ , NΔπ and ΔΔπ particles, the first of these giving
a simple representation of the strong final-state interactions
(FSI), see the discussion below.

Simultaneous fits to proton and neutron FFs for space- and
time-like momenta including the φ(2170) were performed in
Ref. [49]. More precisely, the differential cross sections and
the ratio GE/GM from polarization observables on the scat-
tering side in addition to the effective FF and |GE/GM |on the
production side were included for the proton. In case of the
neutron,GE andGM from scattering data and again the effec-
tive FF on the production side were considered. The spec-
tral function included the the 2π , K K̄ and ρπ -continuum,
the ω- and φ-contribution and three/five isoscalar/isovector
poles restricted in the mass range MV = 1 . . . 1.8 GeV. In
addition, the new vector resonance was taken at a mass of
2.125 GeV and its width was determined in the fit, which
turned out to be Γ = 0.088 GeV. Good agreement with the
existing data, as shown in Fig. 27 for the proton and neu-
tron effective form factors and in Fig. 28 for the proton form
factor ratio in the space-like and the time-like region, was
obtained. In particular, the SND data for the neutron effec-
tive FF show a very similar behavior to the proton effective
FF over a large range, which can be well described in this
approach. However, the range around the φ(2170) calls for
further neutron measurements to allow for a determination
of the isospin of the structures in Gp

eff .
Let us now discuss the various threshold effects in the

time-like data, in particular the strong enhancement at the

Fig. 27 The effective FF of the proton (upper panel) and the neutron
(lower panel). Data for Gp

eff are from BaBar [50,152]. The neutron data
are from SND [150] (crosses) and from FENICE [146] (circles)

p p̄ threshold. This was first observed at LEAR in the inverse
reaction p p̄ → e+e− [153] and substantiated by the BaBar
collaboration [154], which provided data for e+e− → p p̄
down to the threshold region. As noted before, this threshold
enhancement was also observed in a number of other produc-
tion reactions such as J/ψ and B decays. Several explana-
tions involving unobserved meson resonances or scenarios
that involve N N̄ bound states (baryonium) have been put
forward, see e.g. Ref. [147]. More conventional but plausi-
ble interpretations of this phenomenon were given in terms
of the FSI between the proton and the antiproton, employing
either a Migdal-Watson approximation or meson-exchange
models of various levels of sophistication to describe the
p p̄ interaction, see e.g. the earlier works Refs. [155–160].
The latest and arguably most sophisticated approach to this
phenomenon employs simple point-like form factors, whose
energy dependence is entirely given by the proton-antiproton
FSI (or the p p̄ initial state interactions in the annihilation pro-
cess) [161]. The nucleon-antinucleon interaction is based on
chiral effective field theory at NLO [162] and NNLO [163].
In this approach, the steep rise of the effective FF for energies
close to the p p̄ threshold is explained solely in terms of the
p p̄ interactions, cf. Fig. 29, consistent with the findings in
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Fig. 28 The form factor ratio of the proton for space- (upper panel)
and time-like (lower panel) momenta from the combined fit to space-
and time-like data. The data are from BaBar [152] (time-like region)
and from the compilation in Ref. [3] (space-like region)

Refs. [160,164–172]. Also existing experimental informa-
tion (differential cross sections, form factor ratio) is quanti-
tatively described in this approach. In addition, predictions
for various spin-dependent observables, that can be tested
in the future with PANDA at FAIR, are also given in that
work. Note, however, that this framework is only applicable
to the threshold region, that is up excess energies of about
100 MeV.

Triangle graphs with virtual NΔ̄π and ΔΔ̄π states were
also considered in Ref. [49], picking up an idea of Rosner
[173], in order to approximate possible cusp effects. How-
ever, the vertices are not well known for these kinematics, so
the calculation was reduced to the scalar loop integral param-
eterized in terms of fitted strength parameter fNΔ/ΔΔ ∼
O(1) multiplying each loop structure. The explicit momen-
tum dependence of the vertices was accounted for in terms
of overall form factors,

F(q2) = 1

1 + q2/Λ2
NΔ/ΔΔ

, (92)

with ΛNΔ/ΔΔ the respective fitted cut-off parameter. Inter-
estingly, performing fits with these structures instead of the
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Fig. 29 Effective proton form factor as a function of the excess energy.
The data are from the DM1 [145] (triangles), FENICE [146] (squares),
and BaBar [154] (empty circles), [50] (filled squares) collaborations.
The green/red band refers to the calculation of the p p̄ interaction within
chiral EFT at NLO/NNLO. Figure courtesy of Johann Haidenbauer

explicit poles discussed before leads to an equally good
description of the proton effective FF, very similar to what is
shown in Fig. 27 (upper panel).

Furthermore, in Ref. [49] the nucleon FFs were also dis-
cussed in region of t0 = 4M2

π < t < tthr = 4m2
p which is

not accessible by direct measurements, but by analytic con-
tinuation in t = q2 = −Q2. In fact, an additional particle
emission from the initial state proton can lower the energy
of the (virtual proton) to reach below the threshold, as dis-
cussed in Ref. [174] for the process p p̄ → e+e−π0. To get
insight into the unphysical region, it is instructive to use a
DR for the logarithm, see e.g. Refs. [175–179]. In principle,
this also allows for a separation of the FF phase δ(t) and
modulus in the representation G(t) = |G(t)|eiδ(t). A once-
subtracted DR for the function ln[G(t)/G(0)]/(t√t0 − t)
takes the form (t < 0)

ln G(t) = ln G(0) + t
√
t0 − t

π

∫ ∞

t0

ln |G(t ′)/G(0)|
t ′(t ′ − t)

√
t ′ − t0

dt ′

≡
∫ ∞

t0
I (t, t0, t

′)dt ′, (93)

where the first term vanishes due to the normalization
GE (0) = GM (0)/μp = 1. Experimental information on this
integral equation (93) is available in the space-like region
t < 0 on G(t) and in the time-like region for t > tthr on
the modulus |G(t)|. The solution of this integral equation
is not straightforward, it requires additional information to
be included (as the problem is ill-conditioned). One possible
solution was proposed in Refs. [177,178], namely to con-
sider the integral contributions to the logarithm ln |G(t)| in
the space-like region, using definite values for the known part
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Fig. 30 An exemplary result for the modulus of electric form factor
obtained from the logarithmic integral Eq. (93). The form factors for
t < 0 are considered via the differential cross sections, therefore they
are not displayed here

above tthr

ln G(t) −
∫ ∞

tthr

I (t, t0, t
′)dt ′ =

∫ tthr

t0
I (t, t0, t

′)dt ′ , t < 0.

(94)

In Ref. [49], as input for the left-hand-side of Eq. (94), the
discretized result of a simultaneous fit to data in all acces-
sible regions were used. A typical result for the modulus of
Gp

E (t) is shown in Fig. 30. The enhancement just below the
production threshold could signal the appearance of a broad
baryonium state, but clearly more precise data on the time-
like nucleon FFs are required to come to a definite conclusion
here.

5 Summary and outlook

This paper served two purposes. First, we have reviewed
the dispersion-theoretical approach to the electromagnetic
form factors of the nucleon, with particular emphasis on the
constraints posed by unitarity and analyticity on the spec-
tral functions. Second, we have performed new fits including
recent high-precision data on electron-proton scattering for
squared momentum transfers Q2 < 1 GeV2, the proton form
factor ratio in the range Q2 � 1 · · · 8.5 GeV2 and the world
data basis on the neutron electric and magnetic form factors,
including the recent accurate extraction of the neutron charge
radius squared from chiral nuclear EFT. We also have sharp-
ened the toolbox to determine the statistical and systematical
uncertainties. This led to a number of new results concern-
ing the various nucleon electromagnetic radii, the form fac-
tors and the ωNN couplings. We would like to stress again
that DRs have always found a small proton charge radius,
r pE � 0.84 fm, with a slightly larger proton magnetic radius,

r pM � 0.85 fm. As before, we find that the neutron magnetic
radius is the largest, rnM � 0.87 fm. Consistent with earlier
analyses, the onset of pQCD is not seen in the existing form
factor data. We have also discussed our present understand-
ing of the physics in the time-like region, where a strong
enhancement of the cross section for e+e− → p p̄ (and in
its reversed process p p̄ → e+e−) is observed, that can be
understood in terms of proton-antiproton final-state interac-
tions (or initial-state interactions for the reserved process).
Furthermore, there are interesting oscillating structures in the
cross section that require additional poles and/or thresholds.

Clearly, there are a number of issues that require more
data and/or further investigations:

– For the neutron data basis, a thorough analysis of the
existing electron-deuteron and electron-3He scattering
data based on chiral effective field theory and including
two-photon corrections should be performed. This would
allow to consistently analyze the proton and neutron form
factors based on the dispersive approach applied directly
to cross section data.

– A new combined analysis of the space-like data (as done
here) with the time-like data should be performed, includ-
ing the improved knowledge of the p p̄ final-state interac-
tions obtained in the last decade. This would also sharpen
the predictions for future measurements with PANDA at
the FAIR facility.

– Data on ep scattering or the polarization transfer at Q2 �
10 GeV2 are urgently needed to investigate the onset of
perturbative QCD. It will also be interesting to find out
whether the form factor ratio really crosses zero as the
present data seem to indicate.

– It would also be useful to improve our understanding of
the spectral functions in the unphysical region, see Figs. 2
and 30. This requires more work based on logarithmic
dispersion relations such as Eq. (93).

Finally, let us point out that the dispersion-theoretical
approach to the nucleons electromagnetic form factors has
matured and become a precision tool to analyze electron scat-
tering and form factor ratio data. In the future, it will also be
extended to analyze the upcoming muon-proton scattering
data from the MUSE [180] and AMBER [181] experiments.
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A Neutron form factors from light nuclei

As there are no free neutron targets, the neutron form factors
must be extracted from electron scattering off light nuclei. In
this appendix, we briefly outline how this can be achieved in
case of the simplest nucleus, the deuteron. The extension to
systems with 3 or 4 nucleons is similar but more complicated.

The deuteron is a spin-1 particle. Using Lorentz invari-
ance, time-reversal invariance as well as parity and current
conservation, the matrix element of the deuteron em currents
takes the form, see e.g. [67,182] (as usual, in units of the
elementary charge e)

〈p′, λ′| jem
μ |p, λ〉 = −G1(Q

2) ξ∗
ν ξν (p′ + p)μ

−G2(Q
2) (ξμξ∗,νkν − ξ∗

μξνkν)

+G3(Q
2)

ξνkν ξ∗,ν′
kν′ (p′ + p)μ
2m2

d

,

(95)

where p′, p are the deuteron four-momenta, λ′, λ the corre-
sponding helicities, md = 1.8756 GeV is the deuteron mass
and Q2 ≡ −kμkμ = −(p′ − p)2 ≥ 0. Furthermore, the
polarization four-vectors ξμ are subject to the constraints
ξμ(p, λ)pμ = 0 and ξ∗

μ(p′, λ′)p′μ = 0. Instead of the scalar
functions Gi (Q2) (i = 1, 2, 3), one often uses the deuteron
charge (GC ), magnetic (GM ) and quadrupole (GQ) form fac-

(a) (b)

Fig. 31 Electromagnetic response of the deuteron. Diagram a depicts
the IA, that is sensitive to the nucleon em FFs (black circle) whereas
diagram b denotes the so-called two-body corrections (depicted by the
shaded box) as explained in the text. The hatched triangles denote a
deuteron wave function and solid (wiggly) lines represent nucleons
(photons)

tors given by

GC (Q2) = G1(Q
2) + 2

3
ηGQ(Q2) ,

GM (Q2) = G2(Q
2) ,

GQ(Q2) = G1(Q
2) − G2(Q

2) + (1 + η)G3(Q
2) , (96)

with η = Q2/(4m2
d). These form factors are subject to the

normalizations:

GC (0) = 1 , GM (0) = md

mp
μd , GQ(0) = m2

d Qd , (97)

in terms of the deuteron magnetic moment, μd = 0.857 μN ,
and the deuteron quadrupole moment, Qd = 0.286 fm2.

In the one-photon exchange approximation, the unpolar-
ized elastic electron-deuteron (ed) scattering cross section in
the laboratory (lab) frame is given by

dσ

dΩ
= α2

4E2

cos2(θ/2)

sin4(θ/2)

(
1 + 2E

md
sin2(θ/2)

)−1

×
[
A(Q2) + B(Q2) tan2(θ/2)

]
, (98)

with E the energy of the incoming electron, θ the elec-
tron scattering angle in the lab frame and Q2 ≥ 0 is the
squared momentum transfer. The structure functions A(Q2)

and B(Q2) are related to the three form factors of the deuteron
via

A(Q2) = G2
C (Q2) + 2

3
ηG2

M (Q2) + 8

9
η2G2

Q(Q2) ,

B(Q2) = 4

3
η(1 + η)G2

M (Q2) . (99)

As can be seen, from the unpolarized cross section one can not
disentangle the charge and the quadrupole form factors. This
can be achieved by considering polarization data, e.g. the
tensor analyzing power T20(Q2, θ) is sensitive to a different
combination of the three deuteron FFs.

Using a chiral expansion (or a meson-exchange model in
older times), these deuteron FFs can now be related to the
single nucleon form factors as depicted in Fig. 31. The so-
called impulse approximation (IA), where the photon couples
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to one nucleon, is depicted in graph a). This contribution
is evidently sensitive to the single nucleon em FFs. To be
precise, one takes the proton FFs as given and is then entirely
sensitive to Gn

E and Gn
M , see below. There are, however, a

number of corrections as displayed by graph b) in Fig. 31.
This include one- and two-pion exchange currents as well as
photon–four-nucleon vertices (or heavy meson exchanges in
the older language). The status of the nuclear currents based
on a systematic evaluation of the few-body wave functions
and the current operators is given in Ref. [183]. Consider for
example the charge density that generates the charge form
factor. As the deuteron is an isoscalar, its em response is
entirely sensitive to the isoscalar form factors. Modulo higher
order corrections, at leading order in the chiral expansion, the
charge density gives rise to the form factors:

GLO
C (k2) = Gs

E (k2)

∫ ∞

0
(u2(r) + w2(r)) j0

(
kr

2

)
dr ,

GLO
Q (k2) = Gs

E (k2)
6
√

2m2
d

k2

×
∫ ∞

0

(
u(r)w(r) − w2(r)√

8

)
j2

(
kr

2

)
dr ,

(100)

where one works in the Breit frame with k2 = Q2, the direc-
tion of the photon momentum is taken along the positive
z-axis and k = |k|. Also, u(r) and w(r) are the deuteron
S- and D-wave wave functions, normalized to one, see e.g.
[142], and j0(x), j2(x) are the spherical Bessel functions.
Corrections to this leading order results can be worked out
straightforwardly, these are given for a chiral EFT approach
in Ref. [110] (and references therein).

B Pion-nucleon scattering in the unphysical region

Here, we briefly discuss the subthreshold expansion of the
πN amplitudes, which proceeds in terms of the variables
ν = (s − u)/(4m) and t around ν = t = 0 ,

Ā±(ν, t) =
(

1
ν

) ∞∑
n,m=0

a±
mnν

2mtn,

B̄±(ν, t) =
(

ν

1

) ∞∑
n,m=0

b±
mnν

2mtn, (101)

where the upper/lower entry corresponds to I = ±, and the
a±
mn, b

±
mn are the subthreshold parameters. The Ā, B̄ are the

Born-term-subtracted amplitudes, defined as

X̄±(ν, t) = X±(ν, t) − X±
pv(ν, t), X ∈ {A, B}, (102)

with

B±
pv(ν, t) = g2

(
1

m2 − s
∓ 1

m2 − u

)
− g2

2m2

(
0
1

)
,

A±
pv(ν, t) = g2

m

(
1
0

)
. (103)

Here, the subscript ‘pv’ refers to the pseudovector πN cou-
pling as required from chiral symmetry and g denotes the
πN coupling constant, to be identified later with gc for the
charged-pion vertex. In the RS analysis of πN scattering, the
value g2

c/(4π) = 13.7(0.2) [92] has been used. This value
is in line with the most recent determination from nucleon–
nucleon scattering [184,185]. More details on the subthresh-
old expansion of the πN scattering amplitude is given in
Refs. [52,89].

C Analysis of the three-pion contribution

Here, we briefly review the arguments of Ref. [97] that there
is no strong enhancement on the left shoulder of the ω reso-
nance, the lowest vector meson in the three-pion channel (for
a recent update, see Ref. [98]). The imaginary parts of the
isoscalar electromagnetic form factors open at the three-pion
threshold t0 = 9M2

π . The three-pion cut contribution is given
by

1

2

∫
dΓ3(A B) , (104)

where the symbol ’A’ refers to the γ → 3π and ’B’ to the
3π → N̄ N transition, respectively, and dΓ3 is the measure
on the invariant three-body phase space. This can be explic-
itly worked out in baryon chiral perturbation theory [186],
where to leading order in the small parameter p, namely
at order O(p7), the two-loop diagrams shown in Fig. 32
can contribute to the isoscalar imaginary parts, however,
graph (d) vanishes because of an isospin factor zero.

The isoscalar imaginary parts in the heavy nucleon limit
m → ∞ can be given in compact form (note that this corre-
sponds to switching off all higher order corrections starting
at O(p8))

Im GS
E (t) = 3g3

A t

(4π)5F6
π

∫ ∫
z2<1

dω1dω2 |l1| |l2|

×
√

1 − z2 arccos(−z) , (105)

Im GS
M (t) = gAm

(8π)4F6
π

{
L(t)

[
3t2 − 10tM2

π + 2M4
π

+g2
A
(
3t2 − 2tM2

π − 2M4
π

)]

+W (t)

[
t3 + 2t5/2Mπ − 39t2M2

π − 12t3/2M3
π

+65tM4
π − 50

√
tM5

π − 27M6
π
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Fig. 32 Two-loop diagrams contributing to the imaginary parts of the
isoscalar electromagnetic nucleon form factors. Wiggly, dashed and
solid lines represent photons, pions and nucleons, in order

+g2
A
(
5t3 + 10t5/2Mπ − 147t2M2

π + 36t3/2M3
π

+277tM4
π − 58

√
tM5

π − 135M6
π

)]}
, (106)

with

L(t) = M4
π

2t3/2 ln

√
t − Mπ +

√
t − 2

√
tMπ − 3M2

π

2Mπ

,

W (t) =
√
t − Mπ

96t3/2

√
t − 2

√
tMπ − 3M2

π , (107)

and in terms of the kinematical variables of the two indepen-
dent pions (the third one can be expressed in terms of these
and the nucleon momenta),

|li | =
√

ω2
i − M2

π , i = 1, 2 ,

z = l̂1 · l̂2 = ω1ω2 − √
t(ω1 + ω2) + 1

2 (t + M2
π )

|l1| |l2| . (108)

The behavior near threshold t0 = 9M2
π of the imaginary

parts for finite pion mass, Eqs. (105,106), is given by

Im GS
E (t) ∼ (

√
t − 3Mπ )3 ,

Im GS
M (t) ∼ (

√
t − 3Mπ )5/2 (109)

which corresponds to a stronger growth than pure phase space∫ ∫
z2<1

dω1dω2 |l1 × l2|2 ∼ (
√
t − 3Mπ )4 . (110)

This feature indicates (as in the isovector case) that in the
heavy nucleon mass limit m → ∞ normal and anomalous
thresholds coincide. In order to find these singularities for

5 10 15 20 25 30 35

t [M π
2]

0

1

2

3

4

5

6

7

Im
 G

 E
,M

s (t
)/

t2   [
10

-5
M

 π
−4

]

Fig. 33 Spectral distribution of the isoscalar electric and magnetic
nucleon form factors weighted with 1/t2 in the heavy nucleon limit.
Shown are ImGS

M (t)/t2 (solid line) and ImGS
E (t)/t2 (dashed line)

finite nucleon mass m an investigation of the Landau equa-
tions is necessary [187]. By using standard techniques [187]
one finds one anomalous threshold of diagrams (a) and (b) at

√
tc = Mπ

(√
4 − M2

π/m2 +
√

1 − M2
π/m2

)
,

tc = 8.90 M2
π (111)

which is very near to the (normal) threshold t0 = 9M2
π and

indeed coalesces with t0 in the infinite nucleon mass limit.
Note that diagram (d) does not possess this anomalous thresh-
old, but only the normal one.

The resulting spectral distributions weighted with 1/t2

are shown in Fig. 33. Very different to the isovector spectral
functions discussed in Sect. 3.4, they show a smooth rise and
are two orders of magnitude smaller than the correspond-
ing isovector ones, cf. Fig. 6. There is indeed no enhance-
ment of the isoscalar electromagnetic spectral function near
threshold. We note that the corrections calculated in Ref. [98]
further reduce these spectral functions considerably in mag-
nitude. Even though the isoscalar and isovector electromag-
netic form factors behave formally very similar concerning
the existence of anomalous thresholds tc very close to the
normal thresholds t0, the influence of these on the physical
spectral functions is rather different for the two cases. Only
in the isovector case a strong enhancement is visible. This is
presumably due to the different phase space factors, which
are (t − t0)3/2 and (t − t0)4 for the isovector and isoscalar
case, respectively. In the latter case, the anomalous thresh-
old at tc = 8.9M2

π is thus effectively masked. This justifies
the standard DR approach of only taking the ω-meson as the
lowest pole in isoscalar spectral function.
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Table 6 The parameters corresponding to our best fit described in
Sect. 4.2. Vector meson (upper panel) and normalization (lower panel)
parameters. The normalization constants n1, . . . ,n31 refer to the MAMI

data sets, whereas ñ1, ñ2 normalize the PRad data. MassesmV are given
in GeV and couplings aVi in GeV2

Vs mV aV1 aV2 Vv mV aV1 aV2

ω 0.7830 0.6893 0.0431 v1 1.1222 1.0414 −0.6239

φ 1.0190 −0.0281 −0.4705 v2 1.5147 −4.0062 −3.0365

s1 1.8267 0.3768 0.5590 v3 1.8062 4.8533 2.1897

s2 4.0020 −1.2786 −4.882 v4 2.2543 −2.0208 −0.0438

s3 4.0713 1.8028 4.0681

s4 4.3075 −0.6576 0.4944

n1 0.9965 n2 1.0061 n3 1.0028 n4 1.0010 n5 1.0035 n6 0.9914

n7 0.9982 n8 0.9929 n9 1.0076 n10 1.0000 n11 1.0000 n12 1.0037

n13 1.0030 n14 1.0044 n15 1.0055 n16 1.0027 n17 1.0048 n18 1.0013

n19 0.9995 n20 1.0029 n21 0.9977 n22 0.9905 n23 0.9985 n24 1.0100

n25 1.0080 n26 1.0069 n27 0.9999 n28 1.0100 n29 1.0066 n30 0.9999

n31 1.0100 ñ1 0.9989 ñ2 1.0059

D K K̄ → NN̄ partial wave amplitudes

We seek the partial wave expansion of the K K̄ → N N̄
amplitude. This allows one to impose the constraints of uni-
tarity in a straightforward way. Here, we utilize the helic-
ity amplitude formalism of Jacob and Wick [188]. Denoting
with λ and λ̄ the nucleon and antinucleon helicities, the cor-
responding S-matrix element takes the form

〈N (p, λ)N̄ ( p̄, λ̄)|Ŝ|K (k)K̄ (k̄)〉
= i(2π)4δ4(p + p̄ − k − k̄)

×(2π)2

[
64t

t − 4M2
K

]1/2

〈θ, φ, λ, λ̄|Ŝ(P)|00〉 , (112)

where t = P2 = (p + p̄)2 and MK is the kaon mass.
The partial wave expansion of the pertinent matrix element
〈θ, φ, λ, λ̄|Ŝ(P)|00〉 is given by [188,189]

Sλ,λ̄ ≡ 〈θ, φ, λ, λ̄|Ŝ(P)|00〉
=

∑
J

(
2J + 1

4π

)
bλ,λ̄
J DJ

0μ(φ, θ,−φ)∗ , (113)

where DJ
ν ν′(α, β, γ ) denotes a Wigner rotation matrix with

μ = λ − λ̄. Further, the bλ λ̄
J define partial waves of angu-

lar momentum J . Because of the quantum numbers of the
isoscalar em current, only the J = 1 partial waves contribute
to the spectral functions. Moreover, because of parity invari-
ance only two of the four partial waves are independent. In
Ref. [35], the b1/2, 1/2

1 and b1/2,−1/2
1 were chosen. These ful-

fill the threshold relation [189]

b1/2,−1/2
1 (t)

∣∣∣
t=4m2

= √
2 b1/2, 1/2

1 (t)
∣∣∣
t=4m2

. (114)

Using the above definitions, unitarity of the S-matrix, S†S =
1, requires that

(
t/4 − m2

t/4 − M2
K

)1/4

|bλ,λ̄
J (t)| ≤ 1 , (115)

for t ≥ 4m2. Thus, unitarity gives model-independent
bounds on the contribution of the physical region (t ≥ 4m2)
to the imaginary part. In the unphysical region, that is for
4M2

K ≤ t ≤ 4m2, the partial waves are not bounded by
unitarity. Therefore, one must rely upon an analytic contin-
uation of K N scattering amplitudes, which is not entirely
straightforward. This is discussed in detail in Ref. [35].

E Fit parameters of the best fit

We collect the various vector meson masses and couplings
that appear in the spectral functions and the normalization
constants of the various data sets in Table 6.
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