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Abstract We demonstrate a computational scheme whi-
ch drastically decreases the required time to get theoretical
predictions based on chiral two- and three-nucleon forces for
observables in three-nucleon continuum. For a three-nucleon
force containing N short-range terms all workload is reduced
to solving N+1 Faddeev-type integral equations. That done,
computation of observables for any combination of strengths
of the contact terms is done in a flash. We demonstrate on
example of the elastic nucleon-deuteron scattering observ-
ables the high precision of the proposed emulator and its
capability to reproduce exact results.

1 Introduction

Since the birth of nuclear physics the nuclear force prob-
lem has been at the centre of experimental and theoretical
studies. Extensive efforts based on purely phenomenologi-
cal approaches or incorporating the meson-exchange picture
have led to numerous nucleon-nucleon (NN) potentials, able
to describe a vast amount of available data [1] with high
precision. A major breakthrough occurred with the emer-
gence of the effective field theory (EFT) concept [2], which
paved the way for developing precise nuclear forces [3–
6]. The progress in constructing nuclear forces within the
EFT approach is presently documented by the availability
of numerous high precision NN potentials developed by the
Bochum-Bonn [7,8], Idaho-Salamanca [9], and Bochum [10]
groups. These forces provide a very good description of the
NN data set.

Applications of the EFT approach in the form of chiral
perturbation theory (ChPT) have resulted not only in the the-
oretically well grounded NN potentials but also for the first
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time have given a possibility to apply in practical calculations
NN forces augmented by consistent 3N interactions, derived
within the same formalism. Understanding of nuclear spectra
and reactions based on these consistent chiral two- and many-
body forces has become a hot topic of present day few-body
studies [11].

The first nonvanishing contributions to the 3N force (3NF)
appear at next-to-next-to-leading order of chiral expansion
(N2LO) [3,12] and comprise in addition to the 2π -exchange
term two contact contributions with strength parameters
cD and cE [13]. The chiral 3NF at N3LO was derived in
[14,15]. At that order three components of long-range char-
acter [14] supplemented by the short-range terms [15] con-
tribute to 3NF. The 3NF at N3LO order does not involve
any new unknown low-energy constants and depends only
on two parameters, cD and cE , that parameterize the lead-
ing one-pion-contact term and the 3N contact term present
already at N2LO. The cD and cE values need to be then
fixed at this order, as at N2LO, from a fit to few-nucleon
data. At the higher order, N4LO, in addition to long- and
intermediate-range interactions generated by pion-exchange
diagrams [16,17], the chiral N4LO 3NF involves thirteen
purely short-range operators, which have been worked out in
[18,19].

Since the advent of numerically exact three-nucleon con-
tinuum Faddeev calculations the elastic nucleon-deuteron
(Nd) scattering and the deuteron breakup reaction have been
a powerful tool to test modern models of the nuclear forces
[20–22] and the question about the importance of 3NF has
developed into the main topic of 3N system studies. That
issue has been given a new impetus by the ChPT-based
achievements and the possibility to apply consistent two- and
many-body nuclear forces, derived within this framework, in
3N continuum calculations.
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Using chiral 3NF in 3N continuum requires numerous
time consuming computations with varying strengths of the
contact terms in order to establish their values. They can be
determined for example from the 3H binding energy and the
minimum of the elastic Nd scattering differential cross sec-
tion at the energy (Elab ≈ 70 MeV), where the effects of 3NF
start to emerge in elastic Nd scattering [23,24]. Specifically
at N2LO, after establishing the so-called (cD, cE ) correlation
line, which for a particular chiral NN potential combined with
a N2LO 3NF gives pairs of (cD, cE ) values reproducing the
3H binding energy, a fit to experimental data for the elas-
tic Nd cross section is performed to determine the cD and
cE strengths. Fine-tuning of the 3N Hamiltonian parame-
ters requires an extensive analysis of available 3N elastic Nd
scattering and breakup data. That ambitious goal calls for
a significant reduction of computer time necessary to solve
the 3N Faddeev equations and to calculate the observables.
Thus finding an efficient emulator for exact solutions of the
3N Faddeev equations seems to be essential and of high pri-
ority.

In Ref. [25] we proposed such an emulator which enables
us to reduce significantly the required time of calculations.
We tested its efficiency as well as ability to accurately repro-
duce exact solutions of 3N Faddeev equations. In the present
study we introduce a new computational scheme, based on
the perturbative approach of [25], which even by far more
reduces the computer time required to obtain the observ-
ables in the elastic nucleon-deuteron scattering and deuteron
breakup reactions at any energy, and which is well-suited for
calculations with varying strengths of the contact terms in a
chiral 3NF.

2 The new emulator

Before presenting this new emulator, for the reader’s conve-
nience we shortly outline the main points of the 3N Faddeev
formalism and of the perturbative treatment of Ref. [25]. For
details of the formalism and numerical performance we refer
to [20,26–28].

Neutron-deuteron (nd) scattering with nucleons interact-
ing via NN interactions vNN and a 3NF V123 = V (1)+V (2)+
V (3), is described in terms of a breakup operator T satisfying
the Faddeev-type integral equation [20,26,27]

T |φ〉 = t P|φ〉 + (1 + tG0)V
(1)(1 + P)|φ〉 + t PG0T |φ〉

+(1 + tG0)V
(1)(1 + P)G0T |φ〉 . (1)

The 2N t-matrix t is the solution of the Lippmann-Schwinger
equation with the interaction vNN . V (1) is the part of a
3NF which is symmetric under the interchange of nucleons
2 and 3: V123 = V (1)(1 + P). The permutation operator
P = P12P23 + P13P23 is given in terms of the transposi-

tion operators, Pi j , which interchange nucleons i and j . The
initial state |φ〉 = |q0〉|φd〉 describes the free motion of the
neutron and the deuteron with the relative momentum q0 and
contains the internal deuteron wave function |φd〉. G0 is the
free three-body resolvent. The amplitude for elastic scatter-
ing leading to the final nd state |φ′〉 is then given by [20,27]

〈φ′|U |φ〉 = 〈φ′|PG−1
0 |φ〉 + 〈φ′|V (1)(1 + P)|φ〉

+〈φ′|V (1)(1 + P)G0T |φ〉 + 〈φ′|PT |φ〉 , (2)

while the amplitude for the breakup reaction reads

〈pq|U0|φ〉 = 〈pq|(1 + P)T |φ〉, (3)

where the free breakup channel state |pq〉 is defined in terms
of the Jacobi (relative) momenta p and q.

We solve Eq. (1) in the momentum-space partial-wave
basis |pqα̃〉, determined by the magnitudes of the Jacobi
momenta p and q and a set of discrete quantum numbers α̃

comprising the 2N subsystem spin, orbital and total angular
momenta s, l and j , as well as the spectator nucleon orbital
and total angular momenta with respect to the center of mass
(c.m.) of the 2N subsystem, λ and I :

|pqα̃〉 ≡
∣
∣
∣
∣
pq(ls) j

(

λ
1

2

)

I ( j I )J

(

t
1

2

)

T

〉

. (4)

The total 2N and spectator angular momenta j and I as well
as isospins t and 1

2 , are finally coupled to the total angular
momentum J and isospin T of the 3N system. In practice a
converged solution of Eq. (1) using partial wave decomposi-
tion in momentum space at a given energy E requires taking
all 3N partial wave states up to the 2N angular momentum
jmax = 5 and the 3N angular momentum Jmax = 25

2 , with
the 3N force acting up to the 3N total angular momentum
J = 7/2. The number of resulting partial waves (equal to the
number of coupled integral equations in two continuous vari-
ables p and q) amounts to 142. The required computer time
to get one solution on a personal computer is about ≈ 2 h.
In the case when such calculations have to be performed for
a big number of varying 3NF parameters, time restrictions
become prohibitive. Fortunately, the perturbative approach
of Ref. [25] leads to a significant reduction of the required
computational time.

Let us consider a chiral 3NF at a given order of chiral
expansion with variable strengths of its contact terms. The
3NF at N2LO has one parameter-free term (2π -exchange
contribution) and two short-range terms with strength param-
eters cD and cE . At N3LO there are more contributing
parameter-free parts but again only two contact terms. At
N4LO parameter-free contributions are supplemented by fif-
teen short-range terms with strengths: cD , cE , cE1 , ..., cE13 .
All these contact terms are restricted to small 3N total angu-
lar momenta and to only few partial wave states for a given
total 3N angular momentum J and parity π . For example
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for Jπ = 7/2± all matrix elements < pqα̃|V (1)|p′q ′α̃′ >

proportional to cE1 and cE7 vanish, while the cD and cE
terms are nonzero only for a restricted number of α̃, α̃′ pairs
(mostly these containing 1S0 and 3S1 −3 D1 quantum num-
bers) [12,13]. Bearing that in mind and taking into account
the fact that contact terms yield a small contribution to the
3N potential energy compared to the leading, parameter-free
part, it is possible to apply a perturbative approach in order
to include the contact terms.

We split the V (1) part of a 3NF into a parameter-free term
V (θ0) and a sum of N contact terms ciΔVi with strengths ci :

V (1) = V (θ0) + ΔV (θ) = V (θ0) +
N

∑

i=1

ciΔVi , (5)

with θ0 = (ci = 0, i = 1, . . . , N ) and θ = (ci , i =
1, . . . , N ) being the sets of contact terms strength values,
for which we would like to find solution of Eq. (1).

We divide the 3N partial wave states α̃ into two sets: β and
the remaining one, α. The β set contains states with nonvan-
ishing elements of ΔV (θ) and states most strongly coupled
to them through the permutation operator P. This set of states
is sufficient for the convergence of ΔT (θ) in the second equa-
tion (7), also in the intermediate states. Introducing T (θ0) and
ΔT (θ) such that T ≡ T (θ) = T (θ0)+ΔT (θ), and using the
fact, that ΔV (θ) has nonvanishing elements only for chan-
nels |β〉, one gets from Eq. (1) (omitting the Jacobi momenta
in notation of partial wave states) two separate equations for
〈α|T (θ0)|φ〉 and 〈α|ΔT (θ)|φ〉 [25]:

〈α|T (θ0)|φ〉 = 〈α|t P|φ〉 + 〈α|(1 + tG0)V (θ0)(1 + P)|φ〉
+ 〈α|t PG0T (θ0)|φ〉
+ 〈α|(1 + tG0)V (θ0)(1 + P)G0T (θ0)|φ〉

〈α|ΔT (θ)|φ〉 = 〈α|t PG0ΔT (θ)|φ〉
+ 〈α|(1 + tG0)V (θ0)(1 + P)G0ΔT (θ)|φ〉 ,

(6)

as well as for 〈β|T (θ0)|φ〉 and 〈β|ΔT (θ)|φ〉:

〈β|T (θ0)|φ〉 = 〈β|t P|φ〉 + 〈β|(1 + tG0)V (θ0)(1 + P)|φ〉
+〈β|t PG0T (θ0)|φ〉
+〈β|(1 + tG0)V (θ0)(1 + P)G0T (θ0)|φ〉

〈β|ΔT (θ)|φ〉 = 〈β|(1 + tG0)ΔV (θ)(1 + P)|φ〉
+〈β|(1 + tG0)ΔV (θ)(1 + P)G0T (θ0)|φ〉
+〈β|(1 + tG0)V (θ0)(1 + P)G0ΔT (θ)|φ〉
+〈β|(1 + tG0)ΔV (θ)(1 + P)G0ΔT (θ)|φ〉
+〈β|t PG0ΔT (θ)|φ〉 . (7)

The first equations in (6) and (7) are the Faddeev equa-
tions (1) for T (θ0). The second equation in the set (7) for

〈β|ΔT (θ)|φ〉 can be solved within the set of channels |β〉
only. Using this solution, 〈α|ΔT (θ)|φ〉 is then computed by:

〈α|ΔT (θ)|φ〉 =
〈

α|t PG0

∑

β

∫

p′q ′
|p′q ′β

〉

〈p′q ′β|ΔT (θ)|φ〉

+〈α|(1 + tG0)V (θ0)(1 + P)G0
∑

β

∫

p′q ′
|p′q ′β〉〈p′q ′β|ΔT (θ)|φ〉 , (8)

and finally, 〈α̃|T (θ)|φ〉 is calculated.
The outlined above procedure constitutes the perturba-

tive approach of Ref. [25]. In short, one solves the 3N
Faddeev equation (1) exactly with the NN potential com-
bined with the 3NF restricted to the parameter free term
(set θ0 = (0, . . . , 0)). The solution with the θ0 set forms
a starting point in the perturbative treatment of Eqs. (6–8)
and has to be calculated only once, regardless of how many
variations of strength parameters are required. In the next
step, the proper perturbative treatment is performed, solv-
ing first the second equation in set (7). Having determined
〈α|ΔT (θ)|φ〉 from Eq.(8) the emulator solution 〈α̃|T (θ)|φ〉
is calculated (in the following this emulator will be denoted
by EΔT ). That allows one to reduce the required com-
putation time and to reproduce surprisingly well the exact
predictions for neutron-deuteron (nd) elastic scattering as
well as for nd breakup observables [25]. To be specific, tak-
ing set |β〉 which includes all 2N states with the total 2N
angular momenta j ≤ 2, leads to a reduction of the com-
puting time by a factor of approximately 4 in comparison
to the exact calculations. Note that it takes approximately
30 minutes on a personal computer to solve Eq. (1), provided
that the V (θ0)(1 + P) and V (θi )(1 + P) kernels, acting in
(1 + tG0)V (θ)(1 + P)G0T (θ)|φ〉 term of Eq. (1), are pre-
pared in advance, with the strengths θi = (ci = 1, ck �=i = 0).

In spite of such a large reduction, the computational
time can be even further decreased and calculation of 3N
continuum observables made in a flash. This notion is
based on the observation that among three kernel-terms
in the second equation of set (7), it is possible (because
of the smallness of ΔV (θ)) to neglect the term 〈β|(1 +
tG0)ΔV (θ)(1 + P)G0ΔT (θ)|φ〉. The resulting integral
equation for 〈β|ΔT (θ)|φ〉:
〈β|ΔT (θ)|φ〉 = 〈β|(1 + tG0)ΔV (θ)(1 + P)|φ〉

+〈β|(1 + tG0)ΔV (θ)(1 + P)G0T (θ0)|φ〉
+〈β|(1 + tG0)V (θ0)(1 + P)G0ΔT (θ)|φ〉
+〈β|t PG0ΔT (θ)|φ〉 , (9)

permits one to transfer the linear dependence on the strengths
ci from the ΔV (θ) on the ΔT (θ). Namely, let 〈β|ΔTi |φ〉 be
a solution of Eq. (9) for a set θi = (ci = 1, ck �=i = 0):

〈β|ΔTi |φ〉 ≡ 〈β|(1 + tG0)ΔVi (1 + P)|φ〉
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+〈β|(1 + tG0)ΔVi (1 + P)G0T (θ0)|φ〉
+〈β|(1 + tG0)V (θ0)(1 + P)G0ΔTi |φ〉
+〈β|t PG0ΔTi |φ〉 . (10)

Multiplying (10) by ci and summing over i one gets:

〈β|
∑

i

ciΔTi |φ〉

≡ 〈β|(1 + tG0)
∑

i

ciΔVi (1 + P)|φ〉

+〈β|(1 + tG0)
∑

i

ciΔVi (1 + P)G0T (θ0)|φ〉

+〈β|(1 + tG0)V (θ0)(1 + P)G0

∑

i

ciΔTi |φ〉

+〈β|t PG0

∑

i

ciΔTi |φ〉 , (11)

and the solution of Eq. (9) is given by:

〈β|ΔT (θ)|φ〉 =
N

∑

i=1

ci 〈β|ΔTi |φ〉 . (12)

In this way at a given energy the computation of observ-
ables in the elastic Nd scattering and deuteron breakup reac-
tion for any combination of strengths ci of contact terms
is reduced to solving once N + 1 Faddeev equations: one
equation for T (θ0) and N equations for ΔTi . In the first step,
solution for 〈α(β)|T (θ0)|φ〉 is found. Then Eq. (10) is solved
for 〈β|ΔTi |φ〉, from which the 〈α|ΔTi |φ〉 is calculated using
Eq. (8). The above computations need to be done only once
and then for any combination of the strengths ci the ampli-
tude 〈α̃|T (θ = (ci , i = 1, . . . , N ))|φ〉 is obtained by trivial
summation.

For a calculation of elastic scattering observables the
required sum of the second and the third term in Eq. (2)
is obtained by:

〈β|V (1)(θ)(1 + P)|φ〉 + 〈β|V (1)(θ)(1 + P)G0T (θ)|φ〉
= 〈β|V (θ0)(1 + P)|φ〉 + 〈β|V (θ0)(1 + P)G0T (θ0)|φ〉

+
∑

i

ci [〈β|ΔVi (1 + P)|φ〉

+〈β|ΔVi (1 + P)G0T (θ0)|φ〉
+〈β|V (θ0)(1 + P)G0ΔTi |φ〉]
+

∑

i,k

ci ck〈β|ΔVi (1 + P)G0ΔTk |φ〉 . (13)

It is interesting to note that while the breakup amplitude (3)
is linear in 3N contact strengths, the elastic scattering amp-
litude contains, as a consequence of the third term present in
Eq. (2), also terms quadratic in these strengths.

3 Results and discussion

The above computational scheme forms the new emulator,
which will be denoted in the following by EΔTi . To check
its quality and efficiency as well as to compare it with EΔT
we have chosen, as in Ref. [25], the SMS N4LO+ chiral
potential of the Bochum group [10], with the regularization
cutoff Λ = 450 MeV, and combined it with the chiral N2LO
3NF. We solved the 3N Faddeev equation (1) exactly at two
incoming neutron energies E = 70 and 190 MeV with that
combination as well as with this NN potential supplemented
with the parameter free 2π -exchange term of the N2LO 3NF
(set θ0 = (cD = 0, cE = 0)). The first energy was taken
from a region where 3NF effects start to appear in 3N con-
tinuum observables and the second one from a range with
well-developed 3NF effects [23,24]. The solution with the
θ0 set together with solutions 〈β|ΔTi |φ〉 of N integral equa-
tions (10) with the set of 3N channels |β〉, comprising all
2N states with the total angular momentum j ≤ 2, form
a starting point in the proposed computational scheme and
have to be calculated only once. Also 〈α|ΔTi (θ)|φ〉 is com-
puted only once according to Eq. (8), and, in parallel with
those calculations, all terms in Eq. (13) independent from ci .
Based on these quantities we calculated the emulator solu-
tion 〈α̃|T (θ)|φ〉. Our new scheme performed for N = 2
leads to reduction by a factor of ≈ 50 of the computer time
required by the perturbative approach of Ref. [25]. Computa-
tion of all elastic scattering observables or observables in one
exclusive breakup geometry for a particular set of strengths
θ = (ci , i = 1, . . . , N ), in the perturbative approach requires
≈ 8 minutes of a personal computer time, while the new
scheme requires only ≈ 10 seconds. Since the calculation of
〈α̃|T (θ)|φ〉 from 〈α̃|T (θ0)|φ〉 and 〈α̃|ΔTi (θ)|φ〉 takes practi-
cally no time, the drastic reduction of time in the new scheme
is independent from the number of the contact terms N .

The emulators EΔTi and EΔT are approximations of the
exact results. To estimate the quality of these approxima-
tions we show in Fig. 1 at both energies the distributions of
percentage deviations from exact results Oexact predictions
of both emulators Oappr : Δ = (Oappr − Oexact )/Oexact ×
100.0, for all nonvanishing nd elastic scattering observables
O (cross section, nucleon and deuteron analyzing powers
as well as spin correlation and spin transfer coefficients
between all participating particles, altogether 51 observ-
ables). They were calculated on a uniform grid of 73 c.m.
angles θc.m. ∈ (0o, 180o). These distributions encompass
six sets of strengths values (cD, cE ) = (1, 1), (2, 1), (4, 1),
(6, 1), (8, 1), and (10, 1) (according to the notation of Refs.
[12,13]). The precision of both emulators at both energies is
similar and amounts to ≈ 1 − 2 %, with EΔT being slightly
more precise than EΔTi .

To demonstrate the power of the new emulator we show
in Fig. 2 the color map of χ2 values in the plane of strengths
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Fig. 1 Histograms of percentage deviations from exact results of the
predictions by the emulator EΔT (red lines) or EΔTi (blue lines), for
51 nonvanishing observables of the elastic nd scattering and 6 sets of
(cD, cE ) strengths. For details see text

(cD, cE ) for elastic scattering cross section at E = 70 MeV.
That map was obtained with about 5000 values of strength
combinations, both varied in step of 0.1. The minimum of
χ2 valley is indicated by black squares. It crosses with χ2

values for the 3H correlation line, shown by yellow dots, in
their minimum. The resulting values of strengths and their
errors are cD = 2.910 ± 0.140 and cE = 0.385 ± 0.015.
Using these strengths we demonstrate in Fig. 3 importance
of contributions to the cross section from individual terms
of the N2LO 3NF. We show percentage changes in the cross
section values calculated solely with the NN potential by
adding the parameter-free term itself, and by the combina-
tion of that term with the D- or E-terms. The 2π -exchange
contribution as well as the short-range D-term are important
at both energies. The contribution of the E term is negligible
at E = 70 MeV but clearly visible at 190 MeV.

4 Summary and conclusions

In summary, we presented a new powerful calculational
scheme which enables us to take efficiently into account any
number of contact terms of a chiral 3NF in the 3N contin-
uum Faddeev calculations. That approach facilitates a reduc-
tion of the time required to compute observables for a given
set of strengths to seconds and is thus especially suited to
repeated calculations with varying strengths of contact terms.
We demonstrated that the proposed emulator reproduces very
well the exact predictions for 3N continuum observables. It
is conceivable that with the help of the constructed emulator
of the exact solutions of the 3N Faddeev equation fine tuning
of a 3N Hamiltonian parameters based on available 3N scat-
tering data is feasible. To that aim not only existing neutron-
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 0  500  1000  1500  2000  2500  3000

Fig. 2 The color map ofχ2 values for nd elastic scattering cross section
at E = 70 MeV, in the plane of strengths (cD, cE ) of N2LO 3NF contact
terms. It was obtained with the EΔTi emulator for combination of
chiral NN N4LO+ potential and N2LO 3NF and computed from about
5000 strengths combinations. The proton-deuteron cross section data
were taken from [29] and χ2 calculated for c.m. angles in the range
θc.m. ∈ (62.18o, 158.33o). The (black) squares show the position of
the χ2-minimum at given cE -value and (yellow) dots depict the 3H
correlation line
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θ

c.m.
 [deg]

0

10

20

30

40

50

Δ [%]

0 60 120 180
θ

c.m.
 [deg]

E=70 MeV E=190 MeV

Fig. 3 The (red) solid lines show percentage changes of the nd elastic
scattering cross section at E = 70 and 190 MeV, predicted with SMS
N4LO+ NN potential, induced by N2LO 3NF with strengths of the
contact terms cD = 2.910 and cE = 0.385. The (blue) dashed lines
correspond to changes caused by a 3NF parameter-free term, while
the (black) dash-dotted and (magenta) dash-double-dotted curves to
changes by a 3NF parameter free + D and parameter free + E terms,
respectively

deuteron elastic scattering and breakup data but also more
abundant and precise proton-deuteron data should be used.
However, before using the proton-deuteron data they should
be corrected for the effects of the proton-proton Coulomb
force acting in the proton-deuteron system. Such procedure
involving estimation of the Coulomb corrections through the
difference of calculations with and without Coulomb force
included [21,30–32] have been already applied for example
in [12].
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