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Abstract We review the holographic approach to electro-
magnetic phenomena in large N QCD. After a brief dis-
cussion of earlier holographic models, we concentrate on
the improved holographic QCD model extended to involve
magnetically induced phenomena. We explore the influence
of magnetic fields on the QCD ground state, focusing on
(inverse) magnetic catalysis of chiral condensate, investigate
the phase diagram of the theory as a function of magnetic
field, temperature and quark chemical potential, and, finally
discuss effects of magnetic fields on the quark–anti-quark
potential, shear viscosity, speed of sound and magnetization.

1 Introduction

Magnetic phenomena in QCD have been playing a major
role in a variety of problems ranging from thermal properties
of strongly interacting matter to its non-equilibrium evolu-
tion. A central motivation for a theoretical underpinning of
electromagnetic properties of QCD is their realization in the
ongoing and future planned experiments and observations.
Intense magnetic fields are believed to occur in off-central
heavy ion collisions [1–7]. These fields, that are mostly pro-
duced by the spectator nuclei which do not participate in
plasma formation and fly away from the collision region,
can rise up to eB ∼ 5–10 m2

π where the pion mass mπ pro-
vides a typical energy scale. As a result, these electromag-
netic fields are expected to influence the charge dynamics in
the quark–gluon plasma substantially. An example of such
dynamics involves anomaly induced transport that is sourced
by magnetic fields and/or vorticity [2,3,8–12]. These, chi-
ral magnetic and chiral vortical effects may have impor-
tant implications for the strong CP problem and generation
of baryon asymmetry in the early universe; see [13] for a
recent review. It has been suggested that magnetic fields also
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induce more ordinary types of charge transport, arising from
the Faraday effect and Lorentz and Coulomb forces in the
quark–gluon plasma [7,14–16] that would potentially leave
distinctive imprints on experimental observables; see [17].

More recently, a fascinating new window into quark–
gluon physics and its electromagnetic properties has opened
by precision measurements of neutron stars [18], again highly
magnetic and extremely dense astronomical objects that pack
as much mass as two suns within a sphere of radius of about
10 km. The gravitational wave detectors LIGO and Virgo and
the X-ray telescope NICER provide crucial new information
on the Equation of State of quarks and gluons when they are
dense and hot. Magnetic fields constitute an important part
of the post-merger evolution and magneto-hydrodynamic
description of QCD matter is essential in computing the post-
merger gravitational wave and electromagnetic radiation pro-
files. With the very high rate of development in this field, it
is conceivable that the gravitational waves and their electro-
magnetic counterparts [19] arising from neutron star merg-
ers and the subsequent kilonovae explosions would bring us
new crucial information on the transport (electromagnetic
and otherwise) properties of quark matter as well.

All these developments point toward the need to underpin
electromagnetic properties of QCD in a presumably strongly
coupled regime. Electromagnetic phenomena in QCD is an
age-old subject that has been studied using perturbative QCD,
effective field theory [20] and lattice QCD [21]; see [22]
for a review. These studies revealed interesting phenomena,
such as the aforementioned chiral magnetic effect, inverse
magnetic catalysis [23] and magnetically induced thermody-
namic phases [20]. However, if such electromagnetic effects
arise when the QCD coupling is strong, then first-principles
traditional methods — with the exception of lattice QCD —
become hard to apply. On the other hand, lattice approach is
mostly restricted to vanishing or small quark density and to
static phenomena, not always suitable for studying neutron
stars and transport in the QGP. Alternative non-perturbative
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methods, such as the functional renormalization group [24],
and holographic correspondence [25] are, therefore, wel-
come. This review focuses on the use of holography to
investigate electromagnetic properties of strongly interacting
nuclear matter. We will refer to this relatively recent branch
of research, perhaps too broadly, as magneto-holography.

In the next section, after shortly introducing the basics of
holography, we explain how to incorporate magnetic fields
in this theory and review the relevant literature. In Sect. 3
we focus on a specific model, called improved holographic
QCD, and explain how to couple electromagnetic fields. In
Sect. 4 we explore the phase diagram of the theory at finite
temperature, quark chemical potential and external magnetic
field. Section 5 is devoted to a discussion of thermodynamic
observables such as the speed of sound and magnetization,
and Sect. 6 focuses on the physics of chiral condensate and
how magnetic fields affect the ground state of large-N QCD.
Holographic calculations reveal that the quark–anti-quark
potential and hydrodynamic transport coefficients such as
shear viscosity, depend strongly on the magnetic field as we
explain in Sects. 7 and 8. We end the review by discussing
limitations of holography, providing a brief look at the topics
we omitted, and, an outlook to open problems. The appendix
provides details of the particular holographic model we con-
sider.

2 Magneto-holography

Gauge-gravity correspondence, “holography” for short, stems
from an equivalence between two separate descriptions of
D-branes in terms of open and closed strings [25–27]. In the
original example of Maldacena, this relates the maximally
supersymmetric N = 4 super Yang–Mills theory to IIB
closed string theory on the curved 10D AdS5×S5 space-time.
However, the idea of holography — that is, the equivalence
between gravitational theory in a D-dimensional space-time
and gauge theory living on its d < D-dimensional boundary
— is believed to transcend 10D superstring theory and orig-
inate from more general principles [28–30]. Indeed, earlier
examples of holography exist [31–34] and do not rely on D-
branes. In this review, we follow the latter lore embodied in
5D non-critical string theory [33] and construct a 5D holo-
graphic theory for QCD in the presence of magnetic fields.

Regardless of its origin, holography relates dynamics of
closed strings in the bulk of an asymptotically AdS space-
time to gauge theory that describes the dynamics of the
boundary of this space. The additional non-compact holo-
graphic coordinate r on the string side, corresponds to the
renormalization group energy scale of the gauge theory
where near boundary r → 0 region corresponding to the
UV. We will be interested in a thermal state on the boundary
field theory, and this corresponds to having a black hole in

Fig. 1 Holographic correspondence posits an equivalence between
Einstein’s general relativity in the bulk of a 5 dimensional hypothet-
ical space with a black hole at the center and strongly coupled finite
temperature quantum field theory at finite on the 4D boundary [25–
27]. Concretely, it maps collective transport—here denoted by current
J at the black point — to fluctuations near the horizon — at the white
point—through propagation of bulk wave, A, toward black hole. Univer-
sal properties of horizon geometry then lead to constraints on transport
in the plasma

the center of the bulk space [35], see Fig. 1. We will also
consider the following Veneziano large N limit [36] in the
gauge theory

N , N f → ∞, g → 0, x ≡ N f

N
, λ ≡ g2N � 1, (1)

where N is the number of colors, equivalently rank of the
SU (N ) gauge group, N f is the number of quark flavors and
g is the Yang–Mills coupling constant. The combination x
and ’t Hooft coupling λ is kept fixed, but the latter is also
taken large. This limit focuses on a simple, yet interesting
corner of holography: Parameters of gauge and string theory
are related as [25]

gs ∼ g2, R�2
s ∼ (g2N )−

1
2 = λ− 1

2 , (2)

where gs is the string coupling constant, R�2
s is the Ricci cur-

vature of the gravitational background in string units and λ is
the ’t Hooft coupling. The limit (1) then suppresses string
loop corrections1 and the massive string states, reducing
string theory to Einstein’s gravity coupled to matter fields.
The limit (1) is then motivated to have a simple, tractable
corner of the holographic correspondence, and, at the same
time, keeping intact the flavor sector to which electromag-
netic fields couple.

In this limit, the basic prescription of holography becomes
equivalence between the generating function of the gauge
theory and Einstein’s action evaluated on-shell:

W[J (x)] = Sgravi t y[φ(x, r0) → S(x)], (3)

1 Strictly speaking, it only suppresses closed string loops. Open string
loops are also negligible in the gravitational backgrounds we work with
[37].
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Here,W is the generating function of connected n-point func-
tions, S(x) is a source coupled to a gauge-invariant operator
O(x), φ(x, r) is the corresponding bulk field — see Fig. 1
for an example where A is analogous to φ and J is analogous
to the VeV 〈O〉 — and r0 is the boundary of the 5D geome-
try. Gravitational action in (3) includes a Gibbons-Hawking
boundary term [38] to render metric variations well-defined,
and counterterms [39] to remove divergences that arise when
removing the cut-off r0 → 0. The precise form of the limit
in (3) as r0 → 0 is [40]

φ(x, r) → S(x)r4−Δ + R(x)rΔ, r → 0, (4)

where R is proportional to the VeV of the operator O and Δ

is its conformal dimension in the UV theory.
For example, RHS of (3) evaluated on a black hole with

Hawking temperature T and S = 0, yields F(T )/T where F
is the free energy of the gauge theory. This becomes relevant
in Sect. 5 where we investigate the thermodynamic prop-
erties of large N QCD. Connected correlators 〈O(x)O(y)〉
follow from evaluating the RHS, keeping J as the bound-
ary condition for φ and varying with respect to S twice. The
type of the correlator in Lorentzian time is determined by
the other boundary condition in the deep interior of the 5D
geometry. For example, retarded (advanced) Green’s func-
tions are given by the infalling (outgoing) boundary condi-
tion at the horizon [41]. Retarded Green’s function play an
important role in transport — see Sect. 8 for an example —
as they determine hydrodynamic transport coefficients a la
Kubo formulas [42,43].

Eventually, we are after the holographic description of
SU(N) gauge theory coupled to U(1) electromagnetic gauge
field. When U(1) interactions are weakly coupled, quantum
fluctuations can safely be ignored and electromagnetism can
be treated as a background gauge field coupled to a global
current of the gauge theory. In N = 4 super Yang–Mills
theory a proper proxy for this current is a U(1) subgroup
of the SU (4) R-symmetry of the theory [44]. In this theory,
effect of B on gauge dynamics is non-negligible without the
need to scale the number of flavors as in (1), as the charged
fields are all in adjoint representations that scale with the
same power of N as the gluons.

In the rest of this section we review the holographic
description of N = 4 super Yang–Mills with an electro-
magnetic source. In Sect. 3 we discuss a more realistic alter-
native with fundamental flavors charged under U(1) instead
of adjoints, in the context of improved holographic models.

Generically, a background magnetic field B in the x3 direc-
tion in gauge theory corresponds to a dynamical bulk U(1)
gauge field Aμ in the 5D bulk with the boundary condition

lim
r→0

Aμ(r, x) =
(

μ,− x2B

2
,
x1B

2
, 0, 0

)
, (5)

where we also added a time component, μ, which will play
the role of quark chemical potential. The holographic dual
theory can be obtained by a twisted Kaluza–Klein reduction
of IIB supergravity in 10D with the resulting action,

Sgravi t y = 1

16πG5

∫
d5x

√−g

(
R + 12

�2 − �2F2
)

+ CS, (6)

where G5 is the 5D Newton’s constant, � is the AdS radius,
F = d A and there is a Chern–Simons term with a fixed coef-
ficient. This is the bosonic part of minimal gauged supergrav-
ity in 5D [44]. The simplest solution to this action that is con-
sistent with symmetries of a thermal state with non-vanishing
B and vanishing chemical potential is of the form [45]

ds2 = e2A(r)
(

dr2

f (r)
− dt2 f (r) + e2W (r)(dx2

1 + dx2
2 ) + dx2

3

)
,

F = Bdx1 ∧ dx2, (7)

where f (r) is the blackening factor which vanishes at the
horizon f (rh) = 0. For the ground state with T → 0 one
sets f (r) = 1. The ground state preserves SO(1, 1) × O(2)

(boosts along and rotations around B) as in the dual field
theory. The conformal factor A(r) corresponds to the RG
energy scale of the gauge theory2 [46] (see also [47,48]). W
measures the anisotropy in the field theory caused by rotation
symmetry breaking by B.

Solution (7) interpolates between AdS5 near the bound-
ary r → 0 where W → 0, A → − log r , f → 1 and a
BTZ black hole [49] times R2 as r → rh . Analogously, the
ground state exhibits an AdS3 factor in the IR. This corre-
sponds to the fact that an external magnetic field triggers an
RG flow from the 4D conformal theory in the UV to an effec-
tively 2D conformal theory in the IR as a result of Landau
quantization [50]. Such AdS3 factors will always be present
in magneto-holography, albeit approximately, even in non-
conformal holographic models more akin to QCD [51].

Before focusing on a specific magneto-holographic model,
we list earlier holographic studies with magnetic fields3:
[52–67], see also [68] for an earlier review and the refer-
ences therein. Phenomenon of (inverse) magnetic catalysis
has been an important focus of previous holographic studies
[60,64,69–77], as well as applications to condensed matter,
see [78] and references therein. Recently, there has also been
revived interest in magnetic phenomena out of equilibrium
in the context of heavy ion collisions [79,80].

2 Intuitively this is because energy of a photon emitted from a point-like
source at point r in the interior should climb up the gravitational poten-
tial exp(A) before reaching the boundary implying that A determines
the energy of the source for the boundary observer.
3 This is a representative selection with many unintended omissions.
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Fig. 2 Comparison of lattice QCD results to the improved holographic
model for the trace of the stress tensor (interaction measure) nor-
malized by T 4N 2 in pure Yang–Mills theory. Lattice results are for
N = 3, 4, 5, 6 and 8

3 Improved holographic models

In the rest of this review we concentrate on a specific holo-
graphic theory that shares the same salient features as large-N
QCD: non-trivial RG flow with asymptotic freedom, linear
confinement of quarks, gapped hadron spectrum, chiral sym-
metry breaking, a specific anomaly pattern and presence of a
confinement/deconfinement phase transition at finite T. This
improved holographic QCD theory [48,81] follows the 5D
non-critical string theoretic approach to holography and is
constructed “bottom-up” i.e. by assuming that there exists a
5D string dual to QCD, approximating this string theory by
Einstein’s gravity coupled to matter fields, assumed to suf-
ficiently capture the IR physics, and finally constraining the
Einstein’s action by requiring the aforementioned properties
of QCD. See [82] for a review of the improved holographic
QCD program. See [83] for a very recent and more compre-
hensive review of bottom-up holographic QCD.

Before detailing the holographic model, we present in
Fig. 2 a prediction of the holographic model for pure Yang–
Mills, i.e. in the absence of quarks. We plot the so-called
interaction measure — i.e. the trace anomaly characterizing
how far is the state from the conformal limit — obtained
from the holographic model and compared to lattice results.
This figure demonstrates three points: (i) non-conformality
of QCD/pure Yang–Mills is of utmost importance, espe-
cially around the deconfinement transition/cross-over which
is the temperature range relevant for heavy ion collisions. (ii)
when properly normalized by N 2, thermodynamic quantities
become almost independent of N . This indirectly justifies our
approach to QCD in the large N limit. (iii) holographic pre-
dictions agree very well with the lattice. Motivated by this
agreement with the first-principles calculations when they

are available, the rest of the paper reviews attempts to extend
it with finite chemical potential and magnetic fields where
lattice data becomes limited.

To determine which fields should be included in the 5D
action one considers the bulk-boundary correspondence in
(3) and introduces a 5D gravitational field per relevant and
marginal operator in the IR: 5D metric dual to the stress
tensor, a real scalar “dilaton” dual to trG2 where Gμν is the
gluon field strength, a complex scalar “tachyon” dual to quark
condensate, a 5D axion dual to trG∧G and gauge fields dual
to conserved global symmetries. Below, we will ignore the
axion, as its effects are suppressed in the large N limit [81],
and consider only a single current J dual to bulk U(1) gauge
field (5). Our starting point is the following 5D gravity action
that represent the glue and flavor contributions4,

Sgravi t y = Sg + S f , (8)

with the glue part Sg , given by

Sg = M3
pN

2
∫ √−g d5

(
R − 4

3
(∂ϕ)2 + V (ϕ)

)
+ GH + Sct ,

(9)

where R is the Einstein–Hilbert term, ϕ is the dilaton. The
potential V in (9) is assumed to include a negative cosmolog-
ical constant, which, in the absence of ϕ, assures presence of
an AdS solution. Mp is the 5D Planck scale (a parameter of
the model fixed by the UV limit of the free energy) and the
N dependence is factored out. The Gibbons–Hawking term,
GH term is given by

SGH = 2M3
pN

2
∫

∂M
d4x

√
h K (10)

with Kμν denoting the extrinsic curvature

Kμν ≡ −∇μnν = 1

2
nρ∂ρhμν, K = habKab (11)

and hab is the induced metric on the boundary and nμ is the
(outward) unit vector normal to the boundary.

The flavor part S f of (8) is given by the DBI action of N f +
N f space-filling D4 flavor brane–anti-brane pairs for N f left
and right handed quarks and their Wess–Zumino coupling to
the background Ramond–Ramond fields.5 We will ignore the
WZ term in this review for simplicity; see [87,88] for a full
account of its relevance to anomalies and transport in QCD.
The gauge theory living on the flavor branes correspond to

4 The improved holographic model in the presence of fundamental fla-
vors and in the Veneziano limit was coined “V-QCD” in [85]. In what
follows, we will use the term “improved holographic QCD” generally,
to also include the V-QCD model.
5 Wess–Zumino action includes a Chern–Simons term like in (6) and
it is important for realization of QCD anomalies in holography [86]. It
is also important to incorporate the contribution of dynamical gluons to
anomalous transport [87].
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the U (N f )L × U (N f )R flavor symmetry of the UV theory
The U (1)L−R subgroup of this symmetry is absent in the
quantum theory due to chiral anomaly. Below, we use the
U (1)L+R subgroup to introduce quark chemical potential
and the magnetic field, as in (5). The generic form of this
non-Abelian action is spelled out in [85,86]. We will make a
further simplifying assumption and treat all quarks with the
same mass and charge6. Then the flavor brane DBI action
reduces to [85]

S f = −x M3
pN

2
∫

d5x V f (ϕ, τ )
√−detDμν,

Dμν = gμν + w(ϕ) Fμν + κ(ϕ) ∂μτ ∂ντ

(12)

where x is the flavor to color ratio in the limit (1). We only
turned on U (1)L+R subgroup of the full flavor symmetry
with F = d A the associated field strength, and set the other
background gauge fields to zero. This gauge field satisfies
the near boundary asymptotics (5). τ(r) denotes an open
string “tachyon” dual to the quark mass operator with the
near boundary asymptotics,

τ(r) � mqr(− log Λr)−ρ + 〈q̄q〉r3(− log Λr)ρ, (13)

as r → 0. Here Λ is a constant of motion proportional to
ΛQCD . The power ρ is to be matched to the anomalous
dimension of q̄q and the QCD β-function (see [85,89] for
details). In this review we only consider massless quarks
mq = 0, therefore the non normalizable mode of the tachyon
solution vanishes, providing a boundary condition for the τ

equation of motion. Then, the non-trivial profile of τ in r
corresponds to spontaneous breaking of chiral symmetry in
QCD.

The general solutions with finite B and μ will be of the
form (7), with addition of nontrivial temporal component of
the gauge field — with this, the U(1) field strength becomes
F = A′

t (r)dr ∧dt + Bdx1 ∧dx2 — together with nontrivial
dilaton ϕ, and τ fields. This solution exhibits an IR singular-
ity where the conformal factor vanishes as A → −∞ and the
Einstein frame Ricci scalar diverges7. A crucial condition for
acceptability of this singularity is that it can be cloaked by
an infinitesimal horizon and perturbative fluctuations around
the background are repelled from the it [81,90]. The back-
grounds in this review all satisfy these IR regularity criteria.

The potentials V , V f , w and κ should be chosen such that
the resulting backgrounds satisfy basic properties of QCD.
In particular, improved holographic QCD theory differs from
other holographic constructions in the UV asymptotics of the

6 With this assumption the flavor symmetry remains SU (N f ) even
in the presence of background magnetic field, instead of SU (Nu) ×
SU (Nd ) for Nu “up-type” quarks with charge + 2/3 and Nd “down-
type” quarks with charge − 1/3.
7 Ricci scalar and other curvature invariants in the string frame As =
A + 2ϕ/3 typically remain finite or vanish.

dilaton potential V . exp(ϕ) couples to the gluon field strength
trG2, therefore corresponds to the ‘t Hooft coupling λ. On
the other hand, as explained below (7), the conformal factor
A is related to the RG energy scale as A(r) = log E in
an holographic renormalization scheme [48]. Therefore the
beta function of the field theory is determined from the ratio
ϕ′(r)/A′(r). Crucially, this ratio is in one-to-one connection
to the dilaton potential V upon using Einstein’s equations and
the IR regularity requirement above. All in all, this allows
us fix the UV asymptotics of V by reproducing asymptotic
freedom in the UV. This leads to the small ϕ asymptotics of
V ,

V (ϕ) = 12

�2 + v1e
ϕ + v2e

2ϕ + · · · , ϕ → −∞, (14)

where the first term is the cosmological constant and coeffi-
cients vi are fixed in terms of the beta-function coefficients
of large N QCD8. On the other hand, the large ϕ asymptotics
of V is fixed by the requirement of linear confinement of
quarks [81] as,

V (ϕ) = V∞ e
4
3 ϕϕ

1
2 + · · · , ϕ → +∞, (15)

with V∞ some constant fixed by the quark string tension
[92]. The choice of V f in (12) was motivated in [37,86,93]
to realize the spontaneous symmetry breaking and the axial
anomaly of QCD, to be

V f (ϕ, T T †) = V f 0(ϕ)e−a(ϕ)τ 2
. (16)

Similarly, UV and IR asymptotia of the other potentials enter-
ing (6) are determined by requiring other salient features of
QCD [85]. We list these potentials in Appendix A and refer to
the literature for derivation, see e.g. [84] and the references
therein. One should stress that, even though large/small ϕ

asymptotia are fixed by the physical requirements, shape of
the potentials for intermediate values of ϕ remain undeter-
mined to large extent. One typically introduces an efficient
parametrization of these functions and fixes the remaining
parameters by comparing with data from lattice-QCD or
experiment. Presence of these systematic uncertainties is an
inherent property of bottom-up holography which strongly
affects quantitative predictions.

Qualitative predictions and understanding of universal
features of dual gauge theories are unaffected by these sys-
tematic uncertainties, however. Some of the notable exam-
ples of such universal results are: the holographic c-theorem
[94], bounds on charge and energy correlations [95–98] upper
or lower bounds on transport coefficients [99–101], one-
to-one connection between existence of a deconfinement

8 Demanding asymptotic freedom in holographic QCD should be
understood as fixing the UV boundary conditions at a cut-off scale
beyond which holographic description fails. Holographic duals of
weakly coupled theories generally involve string corrections to all
orders [91].
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Fig. 3 Phase diagram of the ihQCD theory in the Veneziano limit with
flavor-to-color ratio x = 1, at finite quark chemical potential and van-
ishing magnetic field and quark masses. Axes are labelled in units of
Λ. Figure is taken from [84]

phase transition at Tc and gapped and discrete hadron spectra
[102], existence of a maximum in bulk viscosity around Tc
[103], 1/T 2 scaling of the interaction measure Tμ

μ /T 4 for
T � 1.5Tc [104,105], bounds on speed of sound [106,107],
modified Einstein relations between transport and diffusion
[108–110], universal relations between transport coefficients
and thermodynamic properties [111,112] and anomalous
transport coefficients at strong coupling [113,114]. Holog-
raphy was either directly used or was the inspiration behind
these findings. Bottom-up holography is often the shortest
path to such universal phenomena.

4 Phase diagram

In this section, we summarize the qualitative picture arising
from (12), in particular how the phase diagram of the theory
depends on quark chemical potential μ and external mag-
netic field B. To determine the phase diagram one obtains all
asymptotically AdS solutions to (12) with the boundary con-
ditions as specified above, and compares their free energies
in the grand canonical ensemble by evaluating correspond-
ing on-shell values of the action, see Eq. (3). At vanishing B
and finite μ, the holographic phase diagram was worked out
in [84], which we show in Fig. 3.

The confined phase, denoted by “hadron gas” in the figure,
exists up to some finite μ in the small temperature regime.
In this phase the chiral symmetry is spontaneously broken as
SU (N f )L × SU (N f )R → SU (N f )L+R by non-vanishing
chiral condensate. This phase is represented by the “thermal
gas solution” in the holographic background. It is a horizon-
less solution obtained from (7) by substituting f = 1 and
W = 0. The phase denoted by χSB is a deconfined quark–
gluon plasma with non-vanishing chiral condensate; i.e. chi-
ral symmetry remains broken. Holographically, this phase

corresponds to a black hole accompanied by a non-trivial
vector bulk field and a non-trivial profile for the tachyon field
τ(r). The hadron gas phase is separated from the χSB phase
by a first order phase separation curve Tc(μ) (red, solid) in
Fig. 3. At higher temperatures, the chiral condensate melts
through a second-order phase transition (blue, dashed curve)
at Tχ (μ) resulting in a deconfined state with chiral symme-
try restoration. This phase boundary becomes a continuous
crossover when quark masses are included [84]. This high
temperature (Orange in Fig. 3, pink in Figs. 4 and 5) phase
holographically corresponds to a black hole with τ = 0.

Generic features of the phase diagram remains the same
for different choices of the potentials in the action, in partic-
ular the existence of the three phases and the nature of the
phase boundaries remain unaltered. Precise location of the
phase boundaries will depend on the details of the bottom-
up construction. Unfortunately, not much can be said about
the location of the critical point conjectured to be present on
the (T, μ) plane in real QCD [115], as this critical point is
pushed to the μ = 0 boundary of the phase diagram in the
Veneziano limit, the limit we employ in this paper.

Phase diagram at vanishing μ, finite B in the improved
holographic model was studied in [77] and the result is shown
in Fig. 4. In this figure we also show how the flavor-to-color
ratio x influences the diagram. We observe that presence of
the intermediate (blue) phase depends on the ratio x and the
magnitude of B. In particular, it disappears for smaller x at
small values of B. It reappears at higher magnetic fields for all
x . For sufficiently large x , the phase transition temperatures
between the hadronic and the plasma phase and the chirally
broken and unbroken plasmas decrease with increasing B
for small B. As we discuss in the next section, this will be
connected to the inverse magnetic catalysis phenomenon. A
3D holographic phase diagram including all axes (T, μ, B)

is not available yet. A priority in this regard is exploration
of the other conjectured phases in QCD such as baryonic,
color-flavor-locked and superconducting phases. These are
all interesting future directions that require solutions to con-
ceptual issues such as how to realize baryons in bottom-up
holographic QCD [116,117].

Finally, in Fig. 5 we present the phase diagram on the
temperature-chemical potential plane for the various choices
of B. We included B = 0 case (same as Fig. 3) on the top
left corner as a reference point. Even though magnetic field
tends to remove the chirally broken plasma (blue) phase at
μ = 0, this phase is present at finite μ and B, and remains a
generic prediction of the holographic model. Whether there
is an analog in actual QCD is unclear, it may well be cloaked
by baryonic, superconducting or color-flavor locked phases,
which have not yet been fully investigated as possible saddles
of the dual gravitational theory. Another feature emerging in
Fig. 5 is the merger of first order confinement/deconfinement
transition with the second order chiral symmetry restoration
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Fig. 4 Phase diagram of
ihQCD in the presence of an
external magnetic field for
various values of the ratio
x = N f /Nc. Figure is adapted
from [77]

Fig. 5 Phase diagram of the
ihQCD theory in the Veneziano
limit with flavor-to-color ratio
x = 1 and with finite quark
chemical potential and for
various magnetic fields. Figure
from [67]

transition at finite μ and sufficiently large B. Close inspection
of the merging point reveals a bifurcation of the solid and the
dashed lines and the solid line ending on a critical point; see
[67] for details.

5 Thermodynamic observables

An essential quantity that characterizes the thermodynamic
equation of state in the deconfined phase is the speed of sound
cs . Sound waves are comprised of alternating high and low
pressure regions along the direction of the wave motion. In
the absence of magnetic field and chemical potential, the
typical speed of sound waves are determined by how pressure
density varies with the energy density,

c2
s = dp

dε
= sdT

Tds
, (17)

where we used the first law of thermodynamics in the second
equation. At finite μ and B, this is generalized to

c2
s = sdT + ndμ

Tds + μdn + BdM

∣∣∣∣
n/s,B

, (18)

where n is quark density and M is magnetization. Con-
straints on cs arising from microscopic physics would be
extremely interesting both for the QGP and for the neutron
stars [118]. Such constraints can be derived from holog-
raphy at strong coupling within certain assumptions. Refs.
[106,107] showed that cs approaches to its conformal value
1/

√
3 from below at high temperatures when conformality is

broken by a single relevant scalar operator. The latter is also
the situation in improved holographic QCD in the absence of
flavors, that is, in the limit of large N pure Yang–Mills theory.
The question remains whether similar holographic bounds
arise at finite μ and/or B. This was studied in [67] and the
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Fig. 6 Speed of sound in
holographic QCD as a function
of temperature for different
values of chemical potential and
magnetic field. The dashed
horizontal line corresponds to
the conformal value c2

s = 1/3.
Figure from [67]

Fig. 7 Magnetization
normalized by the magnetic
field strength as a function of
temperature for various choices
of μ and B. The crosses denote
chiral symmetry restoration
transitions. M is normalized
such that M(T = 0, μ = 0) = 0
for all B. Figure from [77]

outcome is shown in Figs. 6. As clear from these figures that
the proposed conformal bound is violated at finite chemi-
cal potential and non-vanishing magnetic field. There is of
course no contradiction as [106,107] assumed μ = B = 0.
Whether, there is another universal upper bound (smaller than
the speed of light) at strong coupling, also at finite μ and B
remains to be seen.

Another observable of interest ismagnetization M . This is
defined as the response of energy (or free energy) to variation
of the external magnetic field

M = −dF

dB

∣∣∣∣
T,μ

, (19)

and it has been studied at vanishing quark chemical potential
by lattice QCD simulations, see e.g [119]. We plot magne-
tization in Fig. 7 as a function of T for the various values
of B and μ. Magnetic susceptibility which is defined as the

derivative of M with respect to B is also computed in [77]
for vanishing μ. In the limit B → 0 it can be read off from
from the top-left corner of Fig. 7 as it is equivalent to M/B
in the limit B = 0.

Magnetization is directly linked to the shape of phase
boundaries in the phase diagram with B. In particular, it
determines how the deconfinement (solid curve in Fig. 5)
and the chiral symmetry restoration (dashed curve) transi-
tion temperatures vary with the magnetic field [67,120]. If
one holds fixed the chemical potential, then it immediately
follows from the first law dF = −SdT − MdB and the fact
that the free energy is continuous across a phase transition
that deconfinement temperature satisfies

δTd(B)

δB
= −ΔM(B)

ΔS(B)
, (20)

123



Eur. Phys. J. A (2021) 57 :247 Page 9 of 17 247

where ΔM and ΔS are difference of the quantity across the
phase boundary. In a deconfinement phase transition ΔS >

0 hence the sign of the LHS is completely determined by
ΔM . Applying the same reasoning to the second-order chiral
restoration transition (with ΔS = 0) one finds that ΔM = 0
and that the chiral restoration temperature satisfies

δTχ (B)

δB
= −Δ∂M

∂T

Δ ∂S
∂T

. (21)

Noting that the denominator is proportional to the difference
of specific heats across the phase boundary, one concludes
that Tχ increases (decreases) with B iff ∂M/∂T in the chiral
symmetric phase is higher (lower) than the same quantity in
the chirally broken phase. This will become relevant when
assessing (inverse) magnetic catalysis of the chiral conden-
sate in the next section.

6 Ground state and inverse magnetic catalysis

Perturbative QCD and effective field theory studies generi-
cally show that the chiral condensate is strengthened in the
presence of a magnetic field; a phenomenon called “magnetic
catalysis” [121–123]. This can be qualitatively understood as
an outcome of Landau quantization: motion of quarks trans-
verse to B are restricted resulting in reduction from 3+1 to
1+1 in the effective dimension of the system. As the IR effects
responsible for condensate formation are stronger in 2D, this
results in an effective increase in the magnitude of the con-
densate with B. This suggestive argument is substantiated by
explicit calculations at weak coupling, see [20] for a review.

However, lattice studies with 2+1 flavors [21,23,124,125]
revealed a more complicated behavior. It is found that
for temperatures smaller than the deconfinement transition
temperature—that is around 150 MeV—the condensate in
the confined phase increases with B up to a certain turning
point, above which it decreases with increasing B. This turn-
ing point depends on the temperature. Moreover, for larger
temperatures slightly below deconfinement, the condensate
decreases even for small B. Therefore one finds that strong
coupling in QCD triggers the effect opposite to magnetic
catalysis. This is coined “inverse magnetic catalysis” (IMC).

The precise physical mechanism for this behavior is not
completely clear. There are indications from further lattice
studies [126,127] that the presence of a turning point in the
condensate as a function of B results from a competition
between two separate contributions. Considering the path
integral representation of 〈q̄q〉, one can identify these two
contributions as follows. 1) a direct coupling of fermion prop-
agators inside q̄q to B, called “valence quarks” in [126]. This
always tends to strengthen the condensate, essentially for the
same reason as above that leads to magnetic catalysis. 2)

an indirect coupling of B to the quark determinant arising
from the gluon path integral, called “sea quarks”. This con-
tribution becomes stronger at intermediate or large values of
the coupling constant, and it was argued in [126,127] that it
dominates over the first source for relatively large values of
B and T, leading to the inverse effect. See [128] for a sim-
ilar suggestion where the authors propose that IMC results
from a combined effect of gluon screening and weakening of
gauge coupling at high energies. These are, however, mostly
suggestive arguments and it is desirable to investigate the
question using an alternative non-perturbative approach.

The question has been addressed in holography in the var-
ious works [60,64,70–76] for toy systems involving adjoint
flavors or small number of fundamental quarks for which the
fermion contribution to the background is suppressed at large
N. Recently, the question has been investigated in detail in
[77] in the Veneziano limit (1) where it was concluded that
the holographic description supports the valence vs. sea quark
suggestion of [126,127].

In the rest of this section, we present the findings of [77].
Effect of B on the ground state and the phase diagram can
be parametrized by a constant c that enters the w potential in
(12), see Appendix. We find that inverse magnetic catalysis
takes place for small choices of this constant, which we will
choose as either9 of c = 0.4 or c = 0.25. In Fig. 8 we show
the phase boundaries for the deconfinement and chiral sym-
metry restoration transitions for x = 1 and c = 0.410. We
observe that both of these transition temperatures initially
decrease with increasing B. In the deconfined - chiral sym-
metry broken phase with Td < T < Tχ , this means that it
becomes easier to melt the condensate at larger B. Contours
of constant condensate are given in the same plot. A look
at these contours in the phase Td < T < Tχ confirms that
the condensate decreases with B for sufficiently small val-
ues, as expected from IMC. One also observes that the curves
of constant condensate extend between the curves Td(B) and
Tχ (B) continuously decreasing with increasing T and finally
vanishing at Tχ leading to the second order chiral symmetry
restoration transition discussed in the previous section11.

Finally, in Fig. 9 we plot the renormalization invariant
and dimensionless combination ΔΣ(T, B) = Σ(T, B) −
Σ(T, 0) where

9 It becomes clear below that allowing a small freedom in this choice
is beneficial in gauging the effects of magnetic fields in holography.
Fine-tuning of this constant requires a more extensive matching of holo-
graphic QCD with lattice.
10 A similar plot for different values of c can be found in [77] where
the transition temperature as a function of B was shown to have same
qualitative features for small c.
11 Constancy of the condensate (see vertical contours in Fig. 8) below
Td is an artifact of holographic QCD as the temperature dependence in
the confined phase is suppressed in the large-N limit.
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Fig. 8 Phase boundaries and curves of constant 〈q̄q〉 in ihQCD for a
choice of x = 1 and c = 0.4 (a parametrization of the holographic
potential w, see the appendix). Dimensionful quantities are normalized
by Λ ≈ 1GeV . Plot reproduced from paper [77]

Fig. 9 (Normalized) chiral condensate as a function of B in the decon-
fined - chirally broken phase in ihQCD for x = 1 and c = 0.4. This
picture demonstrates the phenomenon of inverse magnetic catalysis.
Plot reproduced from paper [77]

Σ(T, B) = 〈q̄q〉(T, B)

〈q̄q〉(0, 0)
. (22)

We observe, in qualitative agreement with the lattice
results [21,23,124,125] mentioned above, that the conden-
sate increases with B up to a certain temperature around
T/Λ ≈ 0.138, then it starts decreasing for larger T until
restoration of chiral symmetry. For larger T the condensate
drops to zero for large B, as demonstrated by the blue curve
in Fig. 9, because the condensates vanishes above Tχ , cf.
Fig. 8.

A suggestive argument for the physical mechanism behind
inverse magnetic catalysis, similar to the argument of [126,
127]—i.e. competition between “valence” vs. “sea”—can
also be made in holography. The condensate is determined
by the equation of motion of τ , see (12). This equation
depends on B again in two separate ways: an explicit depen-
dence through dependence of the EoM on F2 in (12), and an
implicit dependence arising from dependence of the back-
ground functions on B. As shown in [77] the latter depen-

Fig. 10 Chiral symmetry restoration temperature as a function of quark
chemical potential for various values of B. Figure from [67]

dence behaves similar to the sea quarks, and the former
behaves like the valence quarks. This can be shown by isolat-
ing either of the two dependences by playing with the values
of B and x .

In passing, we note that the same holographic model
also suggests another possible source for the phenomenon:
anisotropy in the quantum state. In [129,130] it was shown
that the same inverse catalysis effect can be reproduced in
an anisotropic state in the absence of B. This effect, coined
“inverse anisotropic catalysis” in [130] hints at the possi-
bility that inverse magnetic catalysis may be mainly due to
the anisotropy created by B, rather than its impact on charge
dynamics. It would be very interesting to investigate whether
inverse anisotropic catalysis is present on the lattice.

Next, one can ask what happens to inverse magnetic
catalysis at finite density? This question cannot be directly
addressed on the lattice because of the sign problem [131].
The question was investigated in holography in [67] by turn-
ing on both chemical potential and magnetic field as in
(5). Our findings are summarized in Figs. 10 and 11. Fig-
ure 10 shows that the chiral restoration temperature decreases
(increases) for small (large) μ signaling IMC for small den-
sities. The regime where IMC is realized is shown by the red
area in Fig. 11.

7 Quark–anti-quark potential

External magnetic fields also impact another important
observable in QCD, the quark–anti-quark potential. In the
confining ground state of QCD, quarks experience a linear
potential of the form

Vqq̄(L) ≈ σ0L − αe f f

L
, (23)

where σ0 is called the string tension and αe f f is an effec-
tive QCD coupling. The second term in (23) is the analog
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Fig. 11 Presence of inverse magnetic catalysis in improved holo-
graphic QCD at finite quark chemical potential. Figure from [67]

of Coulomb interaction between particles of two opposite
charges, while the first term can be understood as arising
from a gluon flux tube stretching like a string between the
quark and the anti-quark. This observable in the presence of
a magnetic field has been studied on the lattice [132], where
it was found that Vqq̄ becomes anisotropic. In particular, the
string tension increases in the direction perpendicular to B
and decreases parallel to it.

Quark–anti-quark potential in the holographic dual descrip-
tion is given by the area of a Nambu–Goto test string embed-
ded in the 5D bulk with end-points anchored to the quark
and the anti-quark locations on the boundary gauge theory12

[133,134]. It was computed in the holographic dual ofN = 4
super Yang–Mills in the presence of magnetic field in [62];
see also [135,136] .

The problem was studied in the Veneziano limit of
improved holographic models in [51], results of which we
present below. From a qualitative point of view, one first won-
ders if magnetic fields obstruct linear confinement, as one
might think because they generically induce an AdS3 × R

2

region [51] in the geometry. This would imply a confor-
mal rather than confining quark–anti-quark potential. This
does not happen however. In contrast to Einstein–Maxwell
type models [50,62], in our setup B enters in the 5D theory
through the flavor DBI action. Since the flavor sector decou-
ples in the deep IR, the effect of B on the geometry becomes
negligible, and far IR geometry is the same, that is confining,
as in the case B = 0.

We present the quark potential and the string tension as
a function of quark–anti-quark separation L and magnetic
field in Figs. 12 and 13 for B parallel and perpendicular to
the quark separation vector denoted by B‖ and B⊥. As a side
note, one may wonder whether one can observe breaking
of the QCD string due to formation of mesons in this holo-

12 This area typically diverges and should be regulated by subtracting
disconnected strings attached to the quark and the anti-quark.

Fig. 12 Quark–anti-quark potentials for two cases, when the qq̄ pair
is separated along the magnetic field (B‖) or orthogonal to it (B⊥)
for c = 0.25. The potentials are shown together with the asymptotic
behavior of the potentials for large separation (dashed). Figure from
[51]

graphic model where quarks are dynamical. Single Nambu–
Goto string configurations we consider here are not sufficient
to capture this effect in the large N approximation. It is also
interesting to compare the string tensions with the lattice
study of [132]. In Fig. 13 we plot the string tensions (nor-
malized by the B = 0 value) for different choices of the
parameter c and observe that the choice c = 0.25 agrees
better with [132]. In particular, this lattice study also finds
monotonically increasing (decreasing) functions of B for the
perpendicular (parallel) cases in the range eB ∼ 0−1.2 GeV.

8 Shear viscosity

It is well known that shear viscosity to entropy density takes
the universal value η/s = 1/4π [137,138] in two-derivative
holography. This result is in remarkable agreement with
experimental data [139–142]. This finding, among others,
has been an important driving force behind the applications
of holography to QGP physics. It is important to stress that
this result is universal [143] in an isotropic state, i.e. it is com-
pletely independent of the details of the 5D bulk action, as
long as higher derivative terms can be ignored13. For exam-
ple, η/s will be 1/4π regardless of the choice of potentials
V , V f 0, κ , w and a entering the action (8).

Yet, this is only true in an isotropic state. In an an-isotropic
situation, caused, for example, by presence of an external
magnetic field or different pressure gradients in different
directions—which occurs in heavy ion collisions—the shear
viscosity on the (xy), (xz) and (yz) planes could be all differ-

13 Terms with more than two derivatives typically arise in effective
actions obtained from string theory and are associated with higher pow-
ers of the string length scale in AdS units λs/�. They correspond to 1/λ

corrections, see Eq. (2).
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Fig. 13 String tensions, i.e. the slope of the quark–anti-quark poten-
tials in the confining regime, for the cases explained in Fig. 12. Figure
from [51]

ent [65,129,144–154]. In case of partial breaking of isotropy,
SO(3) → SO(2), the shear viscosity/entropy ratio on the
plane perpendicular to the anisotropy vector continues to
assume its universal value 1/4π as the conditions for uni-
versality still apply. This, for example, yields ηxy/s = 1/4π

when B is in the z-direction. In the general case, the shear
viscosity tensor is computed using the Kubo formula,

ηi j = − 1

ω
Im 〈Ti j (ω, k1) Ti j (ω, k2)〉

∣∣
ω→0, k1,2→0, (24)

where the limit on the right is taken first. These two point
functions are, in turn, computed in holography from fluctu-
ations of the associated metric components as explained in
Sect. 2. For the metric (7) the result is (see [51] for a recent
derivation)

ηxy

s
= 1

4π
,

ηxz

s
= ηyz

s
= e2W (rh)

4π
(25)

We plot them in Fig. 14. The longitudinal components
decrease monotonically from the UV to the IR as also
observed in other anisotropic backgrounds [129,149–152,
154]. The universal value ηi j/s = 1/4π is attained in the
UV. This is because the 5D background, (7), is chosen to be
asymptotically AdS. They attain smaller, non-zero values in
the IR. See [51] for more on interpretation of these results.
In summary, holographic calculations indicate that magnetic
field substantially reduces the shear viscosity parallel to it, a
fact which could have important implications for the quark–
gluon plasma created in heavy ion collisions.

9 Discussion

We reviewed recent progress in the holographic approach
to strong nuclear force in the presence of magnetic fields,
mainly focusing on thermodynamic and transport properties
relevant to the quark–gluon plasma. We discussed the phase

Fig. 14 Shear viscosity to entropy ratio of the longitudinal component
ηxz = ηyz as a function of temperature (in units of Λ ∼ 1 GeV) for
c = 0.25 in holographic QCD with a magnetic field along z. The curves
are cut off at the chiral transition temperature below which there is a
non-trivial chiral condensate. Figure from [51]

diagram of large-N QCD, magnetic catalysis of chiral con-
densate, quark–anti-quark potential and shear viscosity in the
presence of external magnetic fields. As the first-principles
lattice theory is already available to study QCD with mag-
netic fields, our results are mainly useful in regimes where the
lattice approach becomes unsuitable, i.e. finite quark density,
transport and large magnetic fields.

The premier promise of holography is to uncover univer-
sal phenomena at strong coupling, and explain these phe-
nomena in a qualitative manner. Several such examples are
listed at the end of Sect. 3. We should ask whether there are
similar examples with magnetic fields. The answer is in the
affirmative. One such example is inverse magnetic cataly-
sis. As discussed in detail in Sect. 6, improved holographic
models generically exhibit this phenomenon for sufficiently
small values of the parameter c in the w potential of the DBI
action. Interestingly, for larger values of c for which IMC dis-
appears, the quark–anti-quark potential profile also becomes
unphysical. This is an example of how holography can relate
different phenomena in the same theory by requiring overall
consistency. The model also points toward a possible expla-
nation of the IMC phenomenon by relating it to backreaction
of B on the background geometry, which was suggested in
[77] as the holographic analog of the “sea quarks” [126,127].
We did not cover here another universal feature of the holo-
graphic model, that the chiral condensate tends to decrease in
an anisotropic state even in the absence of B, called “inverse
anisotropic catalysis” [129,130].

Another generic behavior we observe is the presence of a
deconfined but chiral symmetry breaking state in the phase
diagram, shown by blue in Figs. 3, 4 and 5. Figure 3 shows
that this phase reappears for large values of B, and, for very
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large B, it exhibits magnetic catalysis rather than the inverse
effect. This is consistent with the QCD result obtained by
solving the gap equation in the “improved rainbow approx-
imation”, which is valid for eB � Λ2

QCD , see e.g. [20].
Finally, we observe in Sect. 8 that the shear viscosity on the
plane parallel to B generically decreases, and it does so sub-
stantially. This observation may be relevant for off-central
heavy ion collisions.

Beyond qualitative insights and a generic, broad-brush
picture of observables, improved holographic models also
seem to provide accurate quantitative results, at least for the
thermodynamic potentials, see Fig. 2. This can hardly be a
coincidence. After all, it is inconceivable that QCD in full
— with infinitely many operators mixing in the RG flow
— could be described by gravity coupled to a few scalars.
Why does it, then, seem to work? Holography in the two-
derivative approximation certainly cannot describe the entire
energy range of QCD. The perturbative UV regime requires
string corrections as clear from the fact that the two-derivative
answer for the shear viscosity to entropy ratio, 1/4π , is
largely off the pQCD answer. However, there are strong
arguments — mostly due to Polyakov, see e.g. [33,34] —
that large N QCD is dual to 5D non-critical string theory
(possibly with world-sheet supersymmetry) which might be
approximated in the IR, reliably, by Einstein’s gravity cou-
pled to several scalars and form-fields. A hint in QFT is that,
Ward identities select a closed subset of operators, e.g. stress
tensor and trG2 in pure Yang–Mills. More generally, QCD
sum-rules [155] indicate a semi-closed subset of operators
dominating the IR regime. Thus, it is sensible that, a subset
of UV insensitive observables are well captured by only a few
relevant or marginal operators in the background of infinitely
many other, whose overall effect in the gravity dual is to dress
the potentials entering the two-derivative action. Thermody-
namic potentials turn out to be this type. We refer to [156]
for a detailed discussion.

A shorter argument is the following. If the IR dynamics in
the plasma state is governed by relativistic hydrodynamics,
which is, by definition, characterized by the “slow”, IR vari-
ables, then one can construct, by hand, a corresponding 5D
gravitational theory following the fluid–gravity prescription
[157]. Improved holography does not use this prescription
but plausibly arrives at the same answer.

We omitted a number of important topics in this review.
Non-equilibrium dynamics of strongly interacting plasma
coupled to electromagnetic fields [79,80] is a major problem
with a bearing on both heavy ion collisions and BNS merg-
ers. AdS/CFT generically predicts rapid “hydrodynamiza-
tion” of the debris left by the colliding heavy ions, in a time
scale τ ∼ 1/T [158,159] and a natural question is whether B
affects the proportionality coefficient markedly or not. This
is an open problem.

A related question involves the significance of anoma-
lous transport in quark–gluon plasma, e.g. chiral separation,
chiral magnetic and chiral vortical effects, and chiral mag-
netic wave, see [11,13] for a review. Consider chiral magnetic
effect for definiteness. The magnitude of the chiral magnetic
current J = aCME B depends on the value of the coefficient
aCME , which, if electromagnetic fields are treated in the lin-
ear approximation, mainly depends on the chiral imbalance
in the system. This is, in turn, to a great extent determined by
the sphaleron decay rate, that was computed at weak coupling
[160,160,161], and in strongly coupled conformal N = 4
super Yang–Mills plasma without, and with magnetic fields
[41,162] using holography. The calculation was carried out in
improved holographic models again without and with mag-
netic fields [63,163] where it was shown that the decay rate
goes up significantly both as a result of non-conformality and
of magnetic fields. Eventually, the amount of chiral imbal-
ance in the system, hence the strength of anomalous transport
effects should be determined by the pre-equilibrium physics.
This is another open problem.

A more technical open problem involves a detailed com-
parison between the holographic model with the available
experimental and lattice data. This should include, e.g. the
vector meson spectrum at vanishing B and the thermody-
namic observables at finite B [21], and provide a means to
fix the parameters of the model, e.g. the constant c (see the
Appendix). It is desirable to allow for and explore different
parametrizations of the potentials. However, one should pre-
serve the established findings of the holographic model in
this study, a task that turns out to be challenging. Machine
learning techniques, e.g. the ones developed for a simpler
holographic study in [164], could be useful in this study.

Magnetic fields also influence other interesting observ-
ables such as the entanglement entropy and the butterfly
velocity that can be studied using holography. Entanglement
entropy, which is notoriously difficult to compute in strongly
interacting QFTs, in holography is conjectured by [165] to be
captured by the area of a spatial minimal surface homologous
to the boundary entangling region in the QFT, see [166] for a
review. Similarly, the butterfly velocity has been conjectured
in [167] to be intimately related to fundamental diffusion
properties of strongly interacting systems and a holographic
prescription to compute it was given in [168]. In [51] these
observables were proposed as tools to disentangle the effect
of pressure anisotropy and magnetic fields in heavy ion col-
lisions. Finally, the techniques we discussed in this review
have interesting applications in condensed matter [78,169]
where magnetic fields provide crucial probes, for example,
of quantum phase transitions.

We conclude this review with a look forward. Recently
opened fascinating windows into strong nuclear matter,
LIGO/Virgo GW detectors, NICER measurements, ongo-
ing (recently upgraded LHC, RHIC) and future planned
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large-scale heavy ion experiments (FAIR, NICA), all probe,
directly or indirectly, its electromagnetic properties, making
today an exciting time to construct the theory. We strongly
believe a judicious combination of lattice QCD, kinetic the-
ory, hydrodynamics with holography will deliver the basic
observables in these measurements: particle yields in heavy
ion collisions and gravitational waveforms in neutron star
mergers.
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A The Potentials

In this appendix we list the potentials of the holographic
model. Defining λ = exp ϕ, the potentials are:

V (λ) = 12

�2

[
1 + 88λ

27
+ 4619λ2

729

√
1 + ln(1 + λ)

(1 + λ)2/3

]
, (26)

V f 0(λ) = 12

L2
UV

[
L2
UV

�2 − 1 + 8

27

(
11

L2
UV

�2 − 11 + 2x

)
λ

+ 1

729

(
4619

L2
UV

�2 − 4619 + 1714x − 92x2

)
λ2

]
,

κ(λ) = [1 + ln(1 + λ)]−1/2

[1 + 3
4

(
115−16x

27 − 1
2

)
λ]4/3

, a(λ) = 3

2L2
UV

, (27)

whereLUV is given in terms of the AdS radius �, such that the
boundary expansion of the metric is A ∼ ln (LUV /r)+· · · .

The radius depends on x as

L3
UV = �3

(
1 + 7x

4

)
. (28)

The function w is parametrized by a single parameter c

w(λ) = κ(cλ) = (1 + log(1 + c λ))− 1
2(

1 + 3
4

(
115−16x

27 − 1
2

)
c λ

)4/3 , (29)

where x is the ratio of the number of flavors to color.
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