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Abstract The study of fusion reactions at extreme sub-
barrier energies has seen an increased interest in recent years,
although difficult to measure due to their very small cross sec-
tions. Such reactions are extremely important for our under-
standing of the production of heavy elements in various envi-
ronments. In this article, the status of the field is reviewed
covering the experimental techniques, the available data, and
the theoretical approaches used to describe such reactions.
The fusion hindrance effect, first discovered in medium-mass
systems, has been found to be relevant also for lighter sys-
tems. In some light systems, resonance structures are found
to be important, while for heavy systems, the fission process
plays an important role. In the near barrier region, couplings
to collective excitations in the fusion participants and trans-
fer reactions have been found to give a good description of
the measured fusion cross sections and it results in a dis-
tribution of fusion barrier heights. New physics ingredients,
related to the overlap process of the two projectiles, have to
be introduced to describe the hindrance behavior. In addi-
tion, it has recently been found that the fusion cross section
in both near-barrier and sub-barrier regions can be described
very well in many cases using simple, analytical forms of
the barrier-height distributions or a modified version of the
classic Wong formula.

1 Introduction

Heavy-ion fusion, the most complex process in the inter-
action between two atomic nuclei has been studied exten-
sively for more than 60 years, especially after the discovery
of the sub-barrier fusion enhancement caused by couplings to
intrinsic excitations of the two reaction partners. More than
one thousand excitation functions have already been mea-
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sured [1] to study the interplay between nuclear structure
and dynamics in fusion reactions.

Heavy-ion fusion reactions are essential for efforts to
extend the nuclear chart and for the synthesis of very heavy
elements. In addition, some heavy-ion fusion reactions in
lighter systems are central for our understanding of the reac-
tion networks that support the energy production and ele-
mental synthesis in stellar environments.

Fusion cross sections have been measured over a wide
range of twelve orders of magnitude, from barn to pb,
much broader than for any other nuclear reaction (see recent
reviews: [2–6]). In the early days of heavy-ion fusion studies,
excitation functions in the range of hundreds of mb to 10 mb
have been measured and the Coulomb barrier height and a
barrier radius were the first two parameters to be determined
for various colliding systems. Deviations between the mea-
sured cross sections and the predictions by the classical for-
mula observed at energies around the Coulomb barrier, some-
times called the sub-barrier fusion enhancement, led to the
Coupled-Channels (CC) description [7,8]. For these studies,
measurements in the cross section range down to 0.1 mb were
required. Subsequently, technologies were developed to per-
form precise, fine-energy-step measurements, which pushed
the study to a new level in fusion dynamics by inspecting the
barrier-height distributions [9,10].

Again, deviations between measured cross sections and
the CC calculations which appeared at the lowest measured
energies for some colliding systems led the authors of Ref.
[11,12] to push the cross section measurements to the sub-µb
region leading to the observation of a sharp drop-off in fusion
cross section at the lowest energies which was identified as
heavy-ion fusion hindrance at extreme sub-barrier energies
[11–13].

The characteristics of fusion enhancement and fusion hin-
drance are illustrated in Fig. 1 for the system 64Ni+64Ni. The
curves are CC calculations (red solid) and potential model
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Fig. 1 Fusion excitation function for the system 64Ni +64 Ni (data:
Beckerman [16], Jiang [12]). The effects of fusion hindrance and fusion
enhancement are illustrated. The fusion barrier is in this case about 97
MeV

calculations without couplings (black dashed). The differ-
ence between the experimental data and the black curve dis-
plays the fusion enhancement, while the difference between
the red curve and the measurements demonstrates the fusion
hindrance at extreme subbarrier energies.

In the past, fusion reactions in light-mass systems at deep
sub-barrier energies [14,15], which are of astrophysical inter-
est, were sometimes considered as a different field. The
observation of fusion hindrance, first discovered in heavier
systems, can serve as a link between these two sub-fields.

The goal of the present article is to review the status of
heavy-ion fusion studies at extreme sub-barrier energies, with
a focus on the fusion hindrance phenomenon. Many exper-
imental data have been published since the discovery of the
hindrance effect in 2002. These data will be discussed and
analyzed in conjunction with a reanalysis of previous exper-
imental data.

1.1 Structure of the article

During the last 25 years, several review papers on the general
subject of heavy-ion fusion reactions have been published [2–
6]. Three of them also cover studies of the heavy-ion fusion
hindrance at extreme sub-barrier energies [4–6]. Some new
measurements of medium- and light-mass systems were sub-
sequently published.

Recently, several empirical recipes for reproducing heavy-
ion fusion excitation functions have been proposed (Refs.
[17,18]), which can describe the fusion hindrance over a large
mass range.

In addition to these reviews, the field of heavy-ion fusion
reactions has been the subject of a series of international
conferences [19–25].

This review is organized in the following way. After the
Introduction, Sect. 2 provides a brief summary of the devel-
opment of experimental techniques for fusion measurements
that are mandatory for reaching the small cross section levels
at which the hindrance effect appears.

The present theoretical understanding of the heavy-ion
fusion theory, including the sub-barrier hindrance phe-
nomenon, is discussed in Sect. 3.

Sections 4 and 5 contain the main presentation and discus-
sion of the results pertaining to heavy-ion fusion hindrance,
with heavy- and light-mass systems treated separately.

In Sect. 6, the systematics of the fusion hindrance phe-
nomenon are presented, covering the whole mass region.

Section 7 introduces two new empirical recipes, which
have not yet been widely discussed in the fusion community,
but which can reproduce all the experimental data including
those at extreme sub-barrier energies.

The final Sect. 8 provides the summary of the work and
an outlook.

In this paper, the energy E is the center-of-mass energy
unless specified otherwise.

1.2 Representations of the excitation function

In most heavy-ion fusion experiments, the basic quantity
measured is the total fusion cross section as a function of
the collision energy, the so-called excitation function. It is
often plotted directly as a function of energy either in linear
or logarithmic scales. However, because of the steepness of
excitation function at near- or sub-barrier energies, it may
be difficult to recognize possible structures as well as devia-
tions from theoretical curves, especially in logarithmic plots.
In order to alleviate this problem, one often uses other repre-
sentations in the comparison of measurements and theoreti-
cal calculations. A particular representation may emphasize
the behavior of the excitation function in some part of the
energy range. Of course, any theoretical calculation, which
can reproduce the experimental excitation function must also
reproduce all the other representations as well.

The fusion cross section for spin zero reaction partners is
given by

σ f us(E) = π

k2

∑

l

(2l + 1)Tl(E), (1)

where k is the wave number, l is the orbital angular momen-
tum, Tl is the transmission coefficient for the orbital angu-
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lar momentum l, and E is the center-of-mass energy in the
collision. The simplest method for obtaining the Tl needed
for this calculation is the classical (black body) assumption
where Tl is assumed to be unity for l-values up to a sharp
cut-off value of lmax, and zero above this value. Here, lmax is
the angular momentum for which the collision energy equals
the Coulomb barrier, V , plus the centrifugal energy, Erot .
This approach leads to the expression for σc(E)E [26],

σc(E)E = πR2(E − V ), (2)

where R is the barrier radius. A more sophisticated analyt-
ical expression developed by Wong [27]: which includes
the effects of quantum mechanical tunneling through the
Coulomb barrier approximated by an inverted parabola
potential, is given by

σw(E)E = R2

2
h̄ω ln[1 + exp((2π/h̄ω)(E − V ))]. (3)

Here, ω is the frequency of the inverted harmonic poten-
tial. As expected, the Wong formula approaches the value
given by Eq. (1) at energies above the Coulomb barrier where
σ(E)E vs E is nearly a straight line (see Ref. [28]). For this
reason, this representation of the data, σ(E)E , is frequently
used since it allows for a simple derivation of the fusion bar-
rier height and radius by simple linear fits to the asymptotic,
above-barrier part of the excitation function.

Moreover, the first derivative

d(σ (E)E)/dE, (4)

evaluated at well-above barrier energies, gives directly the
value of πR2 from which the barrier radius can be obtained.

In addition, within the coupled channel model, the second
derivative of the quantity σ(E)E ,

d2(σ (E)E)/dE2 (5)

represents, under certain simplifying assumptions, the dis-
tribution of fusion barrier heights, provided that the data are
of sufficient quality (the data have to be measured in small
enough energy steps) to allow for accurate estimates of the
second derivative [2,10].

At low energies relevant for astrophysical environments,
the astrophysical S factor [13,29] and the logarithmic deriva-
tives [11,13] are often used to represent the experimental
data. They are given by:

S(E) = σ(E)Eexp(2πη), (6)

and

L(E) = d[ln(σ (E)E)]/dE . (7)

Fig. 2 Fusion excitation function of the system 90Zr +90 Zr as a func-
tion of laboratory energy (black solid symbols). The green and red
symbols are for the systems 90Zr +92 Zr and 90Zr +96 Zr, scaled down
by factors 2×10−3 and 2×10−4, respectively. The black open symbols
and the solid curve are the S(E) factor of 90Zr +90 Zr

Here η is the Sommerfeld parameter,

η = Z1Z2e
2/(h̄v), (8)

where v is the relative velocity of the two heavy ions, and
Z1, Z2 are their respective atomic numbers. The parameter η

is a quantity that determines the importance of the Coulomb
effect [26].

Both of these representations will be used in the present
review article. We emphasize that in discussing the physics
behind a specific representation of the cross section, certain
approximations are often involved. For example, referring to

the second derivative d2(σ (E)E)

dE2 as a barrier-height distribu-
tion is done under the assumption of strong absorption. The

observed value of d2(σ (E)E)

dE2 includes not only the distribu-
tion of fusion barrier heights, but also the effects of quantum
mechanical tunneling through the barriers.

Similarly, one may relate the first derivative of σ E to the
transmission coefficient, T (E),

d(Eσ)

dE
= πR2T (E). (9)

This representation is often used at energies above the
Coulomb barrier, and assumes the strong absorption approx-
imation [30].

During the 1980’s, measurements of spin distributions of
compound nuclei formed via heavy-ion fusion were obtained,
and explained by an l-dependent representation, dσl/dl [31].
The very small cross sections at extreme sub-barrier energies
have so far prevented the use of this representation, although
some predictions about the dσl/dl have been obtained from
the CC calculations for the explanation of fusion hindrance
in different models.
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2 Experimental techniques

2.1 Experimental challenges

For such sub-barrier measurements, detectors with high effi-
ciency, high-intensity beams with well known energies and
targets, which can handle these beams, are needed. Spe-
cial effort has to be placed on understanding possible back-
ground effects, especially in the range of cross section below
10µb.

Non-monoisotopic targets present a special challenge, in
particular if the interest is focused on the lightest isotope.
For example, bombarding a 58Ni target with a 58Ni beam
will have contributions from reactions of the 64Ni contami-
nant in the target with the 58Ni beam. Because of the lab to
c.m. conversion, the c.m. energy for the 64Ni target contam-
inant is considerably higher, which affects the 58Ni +58 Ni
measurement at the lowest energies. At energies Elab < 185
MeV, the fusion yields will be dominated by the 64Ni con-
taminant even at the low abundance values of 2 × 10−4.
For that reason the cross section measurement for fusion of
58Ni+58Ni in Ref. [16,32] has not yet been extended to lower
energies.

In Fig. 2, we present an analysis for a measurement of
fusion in the system of 90Zr+90 Zr [33]. The excitation func-
tion of 90Zr +90 Zr is shown by black solid symbols plot-
ted as a function of the laboratory energy. Also shown by
red and green solid symbols are the excitation functions of
90Zr +96 Zr and 90Zr +92 Zr, but scaled down by factors of
2×10−3 and 2×10−4, respectively, which are typical values
of these target contaminations. As can be seen, at energies
below ≈ 350 MeV, small target contaminations of 92Zr and
96Zr may dominate the measured excitation function. The
resulting S factor of 90Zr +90 Zr, shown by black open sym-
bols and the solid curve, exhibits a maximum followed by a
continuous rise, originating from the target contamination of
heavier isotopes. In fact, the excitation functions measured
for 90Zr +96 Zr and 90Zr +92 Zr show clear S factor max-
ima without the additional increase towards lower energies,
(see Fig. 29 below for 90Zr +92 Zr.) Thus, in order to avoid
this difficulty in fusion measurements at extreme sub-barrier
energies, monoisotopic targets or the heaviest isotopes of a
given element should be employed in the experiments. Oth-
erwise, targets with extremely high isotopic enrichment must
be used.

In addition to problems originating from target contami-
nants, some experiments also suffer from impurities of the
ion beam. Electron Cyclotron Resonance (ECR) ion sources
are known to have a so-called ’memory effect’ [35] from
samples used in previous experiments. The effect of such a
contamination is shown in Fig. 3 from an experiment study-
ing fusion reactions between a 58Ni beam and monoisotopic
89Y at the ATLAS accelerator [36]. At a laboratory energy of

Fig. 3 Effect of a small 58Fe beam contamination from a measurement
of fusion cross sections in the system 58Ni+89Y at the ATLAS accelera-
tor plotted as a function of the laboratory energy. Since no experimental
data for 58Fe+89 Y exist, the high-energy part of the 58Ni+89 Y excita-
tion function has been shifted down by the difference in the respective
Coulomb barriers as calculated with the Bass model [34] (ΔV = 11.28
MeV) and scaled down by a factor of 2000 (red solid) to reproduce the
two lowest energy points

∼ 205 MeV the excitation function shows a slight change in
slope which is not observed for the similar system 60Ni+89 Y
[11]. Since 89Y is a monoisotopic element this cannot origi-
nate from the presence of a heavier target contaminant as for
the case of 58Ni +58 Ni. However, 58Ni has a lower Z iso-
bar, 58Fe, for which the Coulomb barrier for 58Fe +89 Y
fusion is lower than for 58Ni +89 Y. Shifting the experi-
mental 58Ni +89 Y excitation function by the difference in
the Coulomb barriers, calculated with the Bass model [34],
(VC = 137.33 MeV and 126.05 MeV for projectile 58Ni and
58Fe, respectively), and using a beam contamination ratio of
about 0.0005 (i.e. 0.5 nA in the beam intensity of 1µA used in
the experiment) gives a good description of the experimental
data.

While each fusion system encounters different back-
ground problems, the use of a beam particle which does not
have a stable isobaric partner with lower Z and the use of the
heaviest isotope as a target can in most cases eliminate the
experimental difficulties mentioned above.

In addition, chemical contaminations from ubiquitous ele-
ments can lead to additional backgrounds. An example is
the presence of hydrogen (and deuterium) in carbon tar-
gets which, through the 12C(d,p) reaction, can lead to back-
ground protons which will interfere with protons from the
12C(12C,p)23Na fusion channel [37]. For this reason, highly-
ordered pyrolytic-graphite (HOPG) has been used in some
of the experiments. This material is known to have very high
purity, which minimizes the contribution from the 12C(d,p)
background reaction mentioned above.
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Fig. 4 Schematics of the MIT-BNL Recoil Mass Selector, composed
of a magnetic quadrupole doublet, a small electrostatic deflector, a Wien
filter and a final quadrupole doublet.The ERs were focused onto a detec-
tor telescope (see text). Figure modified from Ref. [16]

2.2 Advanced facilities for low cross section measurements

A variety of experimental set-ups have been utilized at facil-
ities worldwide to study heavy-ion fusion reactions at very
low energies starting from the 1980’s. Below we present a
short description of some devices that have been relevant for
obtaining the results reported in the following sections.

The experimental set-up used in the pioneering experi-
ments of Beckerman et al. [16,32] on fusion in the Ni + Ni
systems is schematically shown in Fig. 4. Direct detection of
the evaporation residues (ERs) at 0◦ and at small angles with
respect to the beam was accomplished, following separation
from the beam and beam-like ions by means of an electro-
static deflector and a E × B crossed-field velocity selector.
A ΔE-E telescope detected and identified the ERs, by using
a proportional counter filled with isobutane gas and a 450
mm2 silicon surface barrier detector mounted at the rear of
the telescope.

Several experiments on low-energy fusion reactions,
including the first one where the hindrance phenomenon was
observed, were performed with the Fragment Mass Analyzer
(FMA) [38] at the Argonne superconducting linear accel-
erator ATLAS. A layout of the FMA is shown in Fig. 5.
It has large momentum and angular acceptances (10% and
θlab ≤ 2.9◦, respectively), that allow a high detection effi-
ciency for the ERs (50–70% for each charge state), and beam
suppression factor (about 4×1017) [39]. In the following sec-
tions we will report on several measurements done using the
FMA since 2001.

The velocity filter SHIP was installed at GSI, Germany,
in the late 1970’s. It consists (see Fig. 6) of a sequence of
magnetic and electric fields with a very high beam rejection
capability and a high efficiency for transporting the ERs to
the focal plane detectors. The main purpose of SHIP was
synthesizing superheavy elements using fusion reactions, and

Fig. 5 Layout of the FMA at ATLAS. ED1 and ED2 are electric
dipoles, and MD is a magnetic dipole. Q1,Q2,Q3 and Q4 are magnetic
quadrupoles. The target chamber and the detector system are also indi-
cated. Figure redrawn and modified from Ref. [39]

Fig. 6 The velocity filter SHIP, installed at GSI [42,43]

great success was achieved in this endeavor [40]. This topic
is outside the scope of the present review. Several relevant
studies were also performed on heavy-ion fusion below the
barrier, e.g. the fusion measurements in the Zr + Zr systems
shown in Fig. 2, (see also Reisdorf [41]).

Several setups have been developed and constructed at
the Australian National University (ANU), Canberra, for the
measurement of low-energy fusion cross sections, such as the
velocity filter separating the ERs from beam-like and elastic
scattering ions at very small angles. The first experiment (and
several others later on) deriving fusion barrier distributions
from careful measurements of fusion excitation functions,
were performed using this velocity filter [2,9]. The capabili-
ties of the ANU setup has been a fundamental ingredient for
the progress of fusion studies in the 1990’s.

Fusion–fission fragments in coincidence [44,45] are
detected at ANU by the set-up named Cube. It is complemen-
tary to the velocity filter, and consists of large-area multiwire
proportional counters MWPC, that are X, Y position sensi-
tive. The center of the MWPC’s is placed at 180 mm from
the target, so that scattering angles of 95◦ ≤ θlab ≤ 170◦ in
the backward hemisphere, and 10◦ ≤ θlab ≤ 85◦ in the for-
ward hemisphere are covered. Energy loss and time of arrival
are provided by the central foils of the two MWPC’s. Only
coincident signals between the two detectors are acquired.
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Fig. 7 The PISOLO set-up used for measurements of fusion cross sec-
tions at LNL. Figure partially redrawn from Ref. [46]

A gas-filled 6.5 T superconducting solenoid SOLITAIRE
[47] was also developed and installed at ANU. The ERs are
detected with very high efficiency because their angular dis-
tribution is covered in a single measurement from 0.45◦ to
9.5◦.

About 30 years ago, fusion cross sections covering four
orders of magnitude were measured at Oak Ridge National
Laboratory (ORNL) for the systems 46,50Ti+90Zr,93Nb [48],
using a velocity filter. It consists of two electrostatic deflec-
tors separated by a dipole magnet. A quadrupole doublet
followed the deflectors to focus the ERs onto the focal plane
detector consisting of a ΔE–E ionization chamber followed
by a silicon detector. The whole set-up could rotate around
the target to measure the angular distribution of ERs with a
solid angle of ≈ 1 msr.

The two systems 46,50Ti +124 Sn were investigated more
recently [49]. The first part of these measurements were
performed at the Holifield Radioactive Ion Beam Facility
(HRIBF), using a 124Sn beam on titanium targets in inverse
kinematics. The ERs were identified in a system consisting
of three micro-channel plate detectors and a TOF-ΔE–E tele-
scope [50], providing the Z identification. The second part
of the experiment on 46,50Ti +124 Sn followed at the Aus-
tralian National University in direct kinematics with beams
of 46,50Ti using the superconducting solenoid SOLITAIRE.

Fusion-evaporation cross sections have been measured at
Laboratori Nazionale di Legnaro (LNL) since 1983 using the
set-up PISOLO, which is based on an electrostatic separator
[51]. Its present layout is shown in Fig. 7. A two-stage elec-
trostatic deflector follows an entrance collimator; most of the
beam and beam-like particles are stopped on one side of the
exit collimator which allows ER to enter the Energy-ToF-
ΔE detector telescope consisting two micro-channel plate
detectors, an ionization chamber and a silicon detector. The
original configuration underwent various upgrades in recent
years [46], that have allowed to measure cross sections in the
extreme sub-barrier energy range, down to 0.5–1 µb.

In more recent years, the group at the China Institute of
Atomic Energy of Beijing, China [52] installed a similar set-
up, that has allowed reliable measurements of fusion excita-
tion functions for 32S +90,96 Zr [53] and for 16O +74,76 Ge
[54].

Fig. 8 Schematic of the experimental setup at ANL for the first
particle-γ coincidence measurement at astrophysical energies. The
spherical target chamber is mounted in the middle of the Gammasphere
array [55,56]

The Heavy-ion reaction analyzer, HIRA at the Inter Uni-
versity Accelerator Centre (IUAC), New Dehli, is a recoil
mass spectrometer (RMS) having a high rejection factor for
the primary beam ≈ 1013, that allows to operate it in the
beam direction. Similar to the Fragment Mass Separator,
FMA at ATLAS, the HIRA spectrometer [57] has a symmet-
ric electrostatic dipole-magnetic dipole-electrostatic dipole
(ED-MD-ED) configuration. Two quadrupole doublets are
placed upstream and downstream of the two electric dipoles.
A very good mass resolution (� 1/300) is obtained at the
focal plane for the reaction products. HIRA offers also a vari-
able acceptance 1–10 msr, and energy and mass acceptances
± 20% and ± 5%, respectively. The sliding seal scattering
chamber allows the device to rotate up to 25◦. A γ -ray array
can be installed around the target by using another small Al
scattering chamber.

γ -ray spectroscopy [37] and particle-spectroscopy [58]
have been used for measuring fusion of light-mass sys-
tems at astrophysical sub-barrier energies at the Ruhr-
Universität Bochum (Germany) and at the Center for Iso-
topic Research on the Cultural and Environmental heritage
(CIRCE), Caserta (Italy) [59].

At Argonne (ANL) the Gammasphere array [60] was oper-
ated in a combined setup with silicon detectors placed near
the target for the γ -particle-coincidence study of 12C +12 C
[55,56]. A schematic drawing of the setup is shown in Fig. 8.
Cross sections down to ≈ 6 nb were measured [56].

A different set-up was recently developed at the Univer-
sity of Notre Dame exploiting a 5 MV Pelletron accelerator.

123



Eur. Phys. J. A (2021) 57 :235 Page 7 of 47 235

Fig. 9 The STELLA set-up includes important developments for
reaching the picobarn cross section range. Three annular silicon detec-
tors and a rotating target capable to sustain beam intensities above
10µA, are installed. The direction of the beam (from right to left) is
given by the yellow arrow. Only half of the LaBr3(Ce) γ -ray is shown.
See text for details

As significant results, we mention the fusion measurements
of 12C+16 O [61] and 12C+12 C [62]. High-intensity oxygen
and carbon beams impinged on thick, ultrapure graphite tar-
gets. Protons and γ -rays were simultaneously measured for
singles and for coincidence events, using an array of silicon
detectors, and an HpGe detector close to the thick target.

Another experimental set-up called STELLA, designed
and constructed in Strasbourg [63], is optimized for the mea-
surement of extreme sub-barrier light heavy-ion fusion cross
sections. It is installed at the Andromède accelerator of the
Institut de Physique Nucléaire, Orsay (France) and it is able
to determine very small cross sections in the picobarn range.
STELLA is based on the coincident measurement of emitted
γ -rays using FATIMA [64] (an array of LaBr3(Ce) scintilla-
tors), and of evaporated charged particles using annular sili-
con detectors. A rotating target was employed in this setup.
It has been used for a study of the 12C +12 C fusion reaction
[65] and is shown in Fig. 9.

A measurement of the 12C +13 C fusion reaction was per-
formed by detecting the decay of the residual nucleus 24Na
with a half-life of T1/2 = 15 h, following proton evapo-
ration. The 3 MV Tandetron of the Horia Hulubei National
Institute for R&D in Physics and Nuclear Engineering (IFIN-
HH) provided a 13C beam with a current up to 15 pµA on a
1.5 mm thick natural carbon target [66]. At low energies the
irradiated targets were transported (in 3 hours) to the under-
ground laboratory in the SLANIC salt mine (Romania) for
γ -ray measurements [67]. Cross sections down to the 10 pb
range were determined [68].

Recently, studies of fusion hindrance in asymmetric sys-
tems with light projectiles (6,7Li, 12C) on the heavy target
198Pt, were performed by Shrivastava et al. [69,70]. Fusion
cross sections were measured down to ≈100 nb using an off-
line technique where coincidences between characteristic X-
and γ -rays were detected [71].

The Argonne Gas-Filled Fragment Analyzer, AGFA is
a new gas-filled separator [72], recently developed and
installed at ANL. It is based on an innovative quadrupole-
dipole design and has an overall length � 4 m, with the
following features: (1) high efficiency (up to ≈ 70%) for ER
detection, (2) small image size at the focal plane, where a
large double-sided Si strip detector is mounted, (3) a maxi-
mum Bρ of 2.5 Tm (bending angle 38◦) and (4) the ability to
work in a combined set-up with Gammasphere and/or with a
gas catcher for the production of exotic beams of radioactive
ions. The solid angle of AGFA exceeds 40 msr in stand-alone
mode. AGFA has not yet been used for experiment of fusion
excitation functions.

The hybrid recoil mass analyzer (HYRA) [73] is installed
at the IUAC in New Delhi with a dual mode/dual stage config-
uration. The layout of the first stage is Q1Q2-MD1-Q3-MD2-
Q4Q5 (Q are the magnetic quadrupoles and MD the magnetic
dipoles), operating with momentum dispersion in gas-filled
mode or as a momentum achromat in vacuum mode. The sec-
ond stage is Q6Q7-ED-MD3-Q8Q9, thus producing a mass
dispersion at the focal plane.

Several experiments were performed in recent years using
the first stage of HYRA in gas-filled mode. Among those
experiments we cite the spin distributions and ER cross sec-
tions in 28Si +176 Yb by Sudarshan et al. [74], and fusion-
evaporation in studies of the 16O+194Pt [75], 19F+194,196,198

Pt [76] and 31P +170 Er [77] reactions.

2.3 Indirect methods

One of the big experimental challenges for measurements at
deep subbarrier energies originates from the extremely small
fusion cross sections. To overcome this problem, several indi-
rect methods have been conceived [78]. Among them, the
Trojan horse method, THM, has been successfully applied
to many nuclear astrophysical reactions. The basic idea of
this method is schematically shown in Fig. 10. Here, the pro-
jectile consists of two parts (a = X + s) and one of them, X ,
is transferred to the target nucleus, A, to form a compound
nucleus. The other fragment, s, acts as a spectator. Even when
the relative energy between the fragment X and the target A
may be low, the incident energy of the projectile a can be set
to a much higher energy. In this way, the Coulomb barrier is
easily overcome, and at the same time, the electron screening
effect can become negligibly small.

In order to relate the three-body reaction of (X + s) + A
to the virtual two-body reaction of X + A, theoretical cal-
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Fig. 10 A schematic description of the Trojan horse method. The pro-
jectile nucleus a consists of two fragments, X and s, for which the
fragments X fuses with the target nucleus A while the fragment s acts
as a spectator. After X fuses with A, the compound nucleus decays into
B + b

culations have to be applied, where the plane-wave impulse
approximation has often been used [79].

Recently, the Trojan horse method was applied to the
astrophysically important 12C +12 C fusion reaction [80].
The validity of the results has been called into question by
theoretical calculations, which will be discussed further in
Sect. 5.

3 Theoretical models

3.1 Potential model

The simplest approach to nuclear fusion reactions is to
employ a potential model, in which the projectile and the tar-
get nuclei are assumed to be inert particles. Vaz, Alexander,
and Satchler [81], as well as Bass [82], employed this idea
and empirically determined fusion barriers in a systematic
way. Once a potential is given, one can use a simple for-
mula, Eq. (3), derived by Wong [27] to estimate fusion cross
sections. Even though the potential model does not work
for heavy systems at energies below the Coulomb barrier,
as we will discuss in Sect. 3.3, it still provides useful refer-
ence cross sections to discuss dynamical effects in heavy-ion
fusion reactions.

In the potential model, the interaction between a projec-
tile and a target nucleus is modeled by a spherical complex
potential,

V (r) = VN (r) + VC (r) − iW (r), (10)

where r is the distance between centers of the colliding
nuclei, VN (r) and VC (r) are the nuclear and the Coulomb
parts of the potential, respectively. The imaginary part of the
potential, −iW (r), simulates a compound nucleus forma-
tion as an absorption of the incident flux inside the Coulomb
barrier.

The radial Schrödinger equation is solved with the regular
boundary condition at the origin, together with the asymp-
totic boundary condition given by

ul(r) → H (−)
l (kr) − Sl H

(+)
l (kr) (r → ∞), (11)

where ul(r) is the radial wave function for the partial wave l,
and Sl is the S-matrix. H (−)

l (kr) and H (+)
l (kr) are the incom-

ing and the outgoing Coulomb wave functions, respectively,
and k is the wave number, given as k =

√
2µE/h̄2, μ and E

being the reduced mass and the incident energy in the center
of mass frame, respectively. The fusion cross sections are
then obtained from Eq. 1 with Tl = 1 − |Sl |2

σfus(E) = π

k2

∑

l

(2l + 1)(1 − |Sl |2). (12)

Notice that with the boundary condition of Eq. (11) the factor
1 − |Sl |2, can also be expressed as [83],

1 − |Sl |2 = 2μ

kh̄2

∫ ∞

0
dr W (r)|u(r)|2. (13)

The regular boundary condition at the origin is often
replaced by the incoming wave boundary condition (IWBC)
given by [4,84–86]

ul(r) =
√

k

kl(r)
T̃l exp

(
−i

∫ r

rabs

kl(r
′)dr ′

)
(r ≤ rabs),

(14)

where

kl(r) =
√

2μ

h̄2

(
E − VN (r) − VC (r) − l(l + 1)h̄2

2μr2

)
(15)

is the local wave number, which takes into account the real
part of the potential V (r) and the centrifugal potential, and
rabs is the absorption radius. T̃l is the transmission coeffi-
cient. The main assumption here is that the absorption is so
strong that the incoming flux never bounces back. This is
achieved by taking W (r) large enough in Eq. (10) and at the
same time neglecting the reflected flux due to −iW (r). In the
IWBC model, one does not need to introduce explicitly the
imaginary part of the internuclear potential. Moreover, the
penetration probability, 1−|Sl |2, in Eq. (12) can be replaced
by 1 − |Sl |2 = |Tl |2, which has a large numerical advantage
at energies well below the Coulomb barrier [4].

Figure 11 shows as an example the astrophysical S factor
(see Eq. (6)) obtained by the potential model calculations for
the 16O +16 O reaction. The solid line employs a Woods-
Saxon potential with the depth parameter of V0 = −54.5
MeV, a radius of R = 6.5 fm, and a diffuseness parameter of
a = 0.45 fm. One can see that this calculation reproduces the
experimental data for this system quite well. In the literature,
a simple square-well potential has also been used for a nuclear
potential [88–93]. The dashed curve in Fig. 11 was obtained
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Fig. 11 The astrophysical S-factor for the 16O+16 O reaction obtained
with the potential model. The solid and the dashed lines show results
of a Woods–Saxon potential and a square-well potential, respectively.
The data are taken from Ref. [87]

with the depth and the radius of the square-well potential
of V0 = −9.4 MeV and R = 8.13 fm. Even though this
potential is significantly shallower and wider than the Woods-
Saxon potential [93], it reproduces the data equally well.

Figure 12 compares similar potential model calculations
for a light, 14N+12 C, and a heavy, 16O+154 Sm, system. For
the 14N+12 C system, the potential model works remarkably
well as for the 16O +16 O system shown in Fig. 11. In con-
trast, for the heavier system, 16O +154 Sm, it considerably
underestimates the fusion cross sections at energies below
the Coulomb barrier, which is about 59 MeV for this sys-
tem. Interestingly, the potential model still works at energies
above the Coulomb barrier. These features can be understood
in terms of the static deformation of the target nucleus, 154Sm
[4] (see Sect. 3.3).

Besides the Woods–Saxon and the square-well potentials,
a double-folding potential [96] with an effective nucleon–
nucleon interaction, such as the density-dependent Michigan
three-range Yukawa (DDM3Y) interaction [97,98], as well
as the Sao Paulo potential [99], have also been employed for
an internuclear potential. In the double folding model, the
internuclear potential is constructed as

VN (r) =
∫

d r1d r2 ρ1(r1)ρ2(r2)vNN(r + r2 − r1), (16)

where ρi (r) is the density distribution of the nucleus i and
vNN(r) is an effective nucleon–nucleon interaction. The Sao
Paulo potential is in fact based also on the double folding
procedure and takes into account the effect of non-locality of
the potential as a velocity dependence. Recently, a potential
based on the time-dependent Hartree–Fock (TDHF) method
has also been developed. In this approach, the potential
is constructed using the density-constrained TDHF method

Fig. 12 Potential model calculations for the 14N +12 C system (upper
panel) and for the 16O+154 Sm system (lower panel). The experimental
data are taken from Refs. [94,95]

(DC-TDHF) [100,101], in which the total energy is min-
imized at each internuclear distance under the condition
that the density distribution of the system coincides with
that obtained with a TDHF time evolution. Even though the
TDHF method itself cannot describe a many-body tunneling
phenomenon, and thus cannot be applied to fusion at ener-
gies below the Coulomb barrier, the DC-TDHF method can
still be used to estimate fusion cross sections in that energy
region. Recently, this method has successfully been applied
to the 12C +12 C system, suggesting that the astrophysical
S-factor for this system does not drop off significantly even
at deep sub-barrier energies [102].

3.2 Complex potentials

The IWBC model leads only to a smooth excitation func-
tion for fusion cross sections and does not yield a resonance
structure. This is because the incident flux has to return back
to the outside of the barrier after it is for a while trapped
inside, when a resonance structure is realized. Since the
IWBC model assumes a complete absorption of the flux, this
resonance behavior does not happen with the IWBC model.
While this is a reasonable approximation for medium-heavy
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Fig. 13 Comparison between a potential model calculation (the dashed
line) and a coupled-channels calculation (the solid line) for fusion cross
sections in the 16O +154 Sm system

and heavy systems, light systems often exhibit resonance
behaviors in fusion cross sections.

In order to describe such resonances, one would have to
use a complex potential with a weak absorption. A typical
example is the 12C+12 C reaction, for which pronounced res-
onance structures have been experimentally observed [15].
The weak absorption is due to the fact that the density of states
of the compound system, 24Mg, is not large enough, and thus
the compound nucleus may not be formed even if the inci-
dent flux reaches the inside the Coulomb barrier [103,104].
This situation may be simulated using the imaginary part of
an optical potential which depends on the level density, as
has been discussed in Refs. [105–108]. In this approach, the
imaginary part of the potential is assumed to be

W (r) = w0ρJ (E
∗) f (r), (17)

where w0 is an overall strength, ρJ (E∗) is the level density
of the compound nucleus at the excitation energy of E∗ with
the angular momentum J , and f (r) determines the radial
dependence of the imaginary potential. This form may be
justified if one considers a transition from the entrance chan-
nel to compound nucleus states using the Fermi’s golden rule
[105–108]. In this approach, the energy, the angular momen-
tum, and the system dependences of the imaginary potential
are taken into account through the level density of the com-
pound nucleus. It has been demonstrated that the difference
between the 12C +12 C and the 12C +13 C systems concern-
ing the resonance structures in the fusion excitation functions
can be qualitatively accounted for by this approach [109].

3.3 Coupled-channels calculations

As we have briefly discussed in connection with Fig. 12, the
large enhancement of fusion cross sections for heavy systems
at subbarrier energies can be explained by taking into account
the nuclear structure effects of the colliding nuclei. This is
to take into account excitations of the colliding nuclei dur-
ing fusion reactions. This can actually be achieved by using
the coupled-channels approach [4,86], in which one solves
coupled Schrödinger equations to compute the S-matrix. In
the case of the 16O +154 Sm system shown in Fig. 12, one
has to condider the coupling of the relative motion between
the projectile and the target nuclei to the ground state rota-
tional band of 154Sm. Such couplings dynamically modify
the potential barrier, eventually enhancing fusion cross sec-
tions at energies below the static Coulomb barrier. The solid
line in Fig. 13 shows fusion cross sections so obtained. One
can see that the large enhancement of fusion cross sections
can be well accounted for by taking into account the rota-
tional excitations of the 154Sm nucleus. Notice that for such
heavy deformed nuclei, the channel coupling effects can be
well interpreted in term of angle dependent Coulomb barriers
[4].

Incidently, in Ref. [110] Dasgupta et al. underlined the
inadequacy of the coherent CC model because an irreversible
energy dissipation starts occurring inside the barrier in this
model, but it does not influence the coherence of quantum
states. They argued that, instead, an increasing degree of
decoherence takes place with increasing overlap of the two
nuclei, leading to hindrance of quantum tunneling [111].
the coupled-channels method was extended in Ref. [112] by
taking into account the anharmonicity of the multi-octupole
phonon states of 208Pb, obtaining better results for the fusion
excitation function of 16O +208 Pb, compared to CC calcula-
tions in the harmonic-oscillator limit. The barrier distribution
is also much better reproduced.

A similar channel coupling can be expected in light sys-
tems as well. For instance, it has been realized that a single-
channel optical model calculation discussed in the previous
subsection does not yield a sufficient number of subbarrier
resonance peaks in the fusion excitation function for the
12C+12 C system. One would then need to extend the poten-
tial model by taking into account the excitations in the 12C
nuclei. It has been demonstrated that the channel-coupling
effects significantly increase the number of resonance peaks
in the 12C +12 C system [113]. In fact, several authors have
discussed the role of channel couplings in this reaction under
different names of the model, that is, the Nogami–Imanishi
model [114,115], the double resonance model [116], and the
band-crossing model [113]. These models have pointed out
the importance of the excitation to the first 2+ state in 12C
at 4.44 MeV. Thus, when the 2+ state is excited, the rela-
tive energy, E , decreases by 4.4 MeV and at the same time
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the relative angular momentum is also changed from l to l,
l + 2, and l − 2. If the potential for l − 2 holds a resonance
at E ′ = E − 4.4 MeV, this leads to a resonance structure
in the fusion excitation function [105]. Notice that this is
nothing but the Feshbach resonance, which has been widely
discussed in the physics of cold atoms [117,118].

More recent coupled-channels calculations for the 12C+12

C system also include the excitation to the Hoyle state, the
second 0+ state at 7.65 MeV, as well as the octupole phonon
state at 9.64 MeV in 12C [119,120]. These calculations have
indicated the importance of the inclusion of the Hoyle state
and the mutual excitation channels in the coupled-channels
calculation for this system.

3.4 Deep-subbarrier hindrance

3.4.1 Theoretical models: sudden versus adiabatic

For heavy-ion fusion reactions, such as 60Ni +89 Y, it has
been observed that fusion cross sections fall off much steeper
at deep subbarrier energies when compared to a theoreti-
cal extrapolation of fusion cross sections based on coupled-
channels calculations [5,11].

It was the first pointed out by Brink [121] that the anomaly
in the fusion excitation function at extreme sub-barrier ener-
gies might be associated with events taking place after pass-
ing the barrier, when the densities of projectile and target
begin to merge. At this stage, the two-body potential descrip-
tion may fail. Subsequently, Dasso and Pollarolo [122] pro-
posed that a shallow potential is needed to reproduce the
experimental cross sections for the fusion of 60Ni +89 Y.

In order to interpret the fusion hindrance at extreme sub-
barrier energies, two theoretical models have been proposed,
based either on the sudden approximation by Mişicu and
Esbensen [123–125], or on the adiabatic approximation by
Ichikawa et al. [126–130]. The difference between the sud-
den and the adiabatic models is schematically illustrated in
Fig. 14. In the sudden model, one usually considers a shallow
and thick potential barrier as proposed by Dasso and Pol-
larolo (see the upper panel of Fig. 14). In Ref. [123,124],
a repulsive core is introduced to a double folding poten-
tial, Eq. (16), in which the repulsive part is constructed also
with the double-folding procedure but with a repulsive zero-
range interaction. The strength of the repulsive interaction is
determined based on the equation of motion, particularly the
incompressibility, K , of infinite nuclear matter. The under-
lying assumption here is that the reaction takes place so sud-
denly that the density is doubled in the overlapping region
of the projectile and the target nuclei. That is, the increase of
the potential energy, ΔV , at the origin due to the repulsive
core is assumed to be equivalent to the increase of the energy
of nuclear matter from the normal density, ρ0, to twice the

Fig. 14 Schematic illustration of the difference between the sudden
model and the adiabatic model for deep-subbarrier fusion hindrance.
In the sudden model, fusion hindrance originates from a cut off of
high partial waves due to a shallow potential. On the other hand, in
the adiabatic model, the hindrance is explained as a consequence of a
quenching of channel-coupling effects. The axes are given in arbitrary
units

normal density, 2ρ0. This leads to the relation [123,124]

ΔV

Ap
= ρ2

0

(
∂2E(ρ)

∂ρ2

)

ρ=ρ0

= K

9
, (18)

where Ap is the mass number of the projectile nucleus (here
the projectile is assumed to be lighter than the target nucleus).
In this model, the fusion hindrance takes place because high
partial waves are cut off due to the shallow potential.

Notice that the microscopic origin of the repulsion in the
overlapping region is due to the Pauli principle, as pointed
out in Ref. [125] (see also Refs. [131,132]). In this model, the
authors introduced a new microscopic approach to heavy-ion
fusion and demonstrated, on the basis of density-constrained
frozen Hartree–Fock calculations, that the main effect of
Pauli repulsion is to reduce the tunneling probability inside
the Coulomb barrier, thus producing the hindrance.

A calculation based on the sudden model is shown in
Fig. 15. Here, fusion cross sections (upper panel) and astro-
physical S-factors (lower panel) are calculated with (solid
lines) and without (dotted lines) a repulsive core for the
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Fig. 15 Fusion cross sections (upper panel) and astrophysical S-
factors (lower panel) for the 64Ni +64 Ni system. The dotted lines
show results of conventional coupled-channels calculations. On the
other hand, the solid lines show results of the sudden model with a
repulsive core in the internuclear potential. The dashed green curve
represents a potential model calculation without couplings. Taken from
Ref. [123,124]

64Ni +64 Ni system. One can see that the conventional
coupled-channels calculation (dotted lines) works well at
energies higher than about 89 MeV, but overestimates fusion
cross sections, and thus astrophysical S-factors, at lower
energies. This can be cured by introducing a repulsive core
in the internuclear potential, as is demonstrated by the solid
lines in the figure.

In contrast to the sudden model, the adiabatic model
assumes (see lower panel of Fig. 14) that the internuclear
potential is smoothly connected to a mono-nucleus poten-
tial, which is often described by the liquid drop model. After
touching, this potential is regarded as an adiabatic potential,
in which the energy is minimized at each internuclear dis-
tance. Since the main effect of excitations has already been
taken into account in the adiabatic potential [4], the effect
of excitation would be double-counted if one naively contin-
ues the coupled-channels calculations even after two nuclei
touch each other, although one could still consider a molec-
ular type of excitations. In the adiabatic model, the coupling
effect is effectively damped after the touching [126–128].

Fig. 16 Similar to (Fig. 15), but with the adiabatic model. Taken from
Ref. [128]. Excitation functions obtained from CC calculations using
the Woods–Saxon potential as well as calculations using the Yukawa-
plus-exponential (YPE) without (NC), with couplings and damping are
given by short-dashed, long-dashed and solid red curves, respectively.
(Courtesey of T. Ichikawa.)

Such gradual damping of collective motions after the touch-
ing has been demonstrated microscopically using the ran-
dom phase approximation (RPA) with two-center shell model
wave functions [129,130]. In this model, the deep subbarrier
hindrance originates from a quenching of an enhancement of
fusion cross sections due to the channel coupling effects (see
the lower panel of Fig. 14).

Figure 16 shows fusion cross sections (upper panel) and
astrophysical S factors (lower panel) obtained with the adi-
abatic model for the same system as in Fig. 15. One can see
that the fit is as good as the fit with the sudden model shown
in Fig. 15. This is also the case for other systems [128].
Discriminating between these two approaches would require
measuring at even lower energies because only there do the
predicted S factors deviate from each other. Such measure-
ments are very interesting, however, would be very challeng-
ing as well. Alternatively, one may need observables other
than fusion cross sections and astrophysical S factors to judge
which model is more reasonable. The mean angular momenta
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Fig. 17 A schematic illustration of an internucleus potential and the
dynamics of fusion reactions in the sudden and the adiabatic models.
Taken from Ref. [128]

of a compound nucleus could be used for that purpose [70],
even though a direct measurement of such quantity may be
extremely challenging at deep subbarrier energies.

We note that, even though the physics origin of the hin-
drance is different in the sudden and the adiabatic models,
both of them point to the importance of dynamical effects
after two colliding nuclei touch with each other [133], see
Fig. 17 and the note.1

3.4.2 A remark on deep/shallow potentials

The sudden model appears to correspond to a shallow inter-
nuclear potential while the adiabatic model corresponds to a
deep potential. We remark that the discussion on the depth
of a potential may be slightly more complex. That is, the
sudden (the adiabatic) model may not necessarily be con-
nected to a shallow (a deep) potential. First, while it has been
widely accepted that the Pauli principle leads to a repulsive
core, one may also introduce yet another interpretation of the
Pauli principle, by way of the Pauli attraction rather than the
Pauli repulsion. Notice that the role of the Pauli principle is to
dampen the radial wave function at short distances, and both
the Pauli repulsion and the Pauli attraction achieve this in a
similar way. This has recently been advocated by Ohkubo
for a nucleon–nucleon interaction [134]. The Pauli attraction
can naturally emerge from the semi-classical theory in such
a way that the physical wave function has to be orthogonal-
ized to Pauli forbidden states and thus the potential has to be
deep enough to hold the forbidden states [135–138]. Notice
that such deep potentials have to be used with care, as deeply
bound states in such a potential would simply be unphysical;

1 After submission of the present manuscript, an article by Wen et al.
[231] has appeared, which offers further theoretical insight into the
sub-barrier hindrance phenomenon.

the potential is meaningful only for physical states that are
orthogonal to the Pauli forbidden states. Second, those two
types of the potentials can be connected to each other using
the supersymmetric transformation [139,140]. In any case,
the potential has to be discussed together with the kinetic
energy, otherwise the discussion might be misleading since
the potential itself is not an observable.

3.4.3 Deep subbarrier hindrance in light systems

An interesting question is whether the deep subbarrier hin-
drance, which has been observed in medium-heavy systems,
still remains in lighter systems [68]. Recent measurements
of the 12C +30 Si [141], and 12C +13 C [68] systems have
indicated that the hindrance may be absent, or at least rather
small, for these light systems. For the 12C+12 C system, the-
oretical calculations based on the sudden model as well as the
density-constrained time-dependent Hartree–Fock method
do not show the hindrance effect [68,102]. This tendency
could be understood naturally with the adiabatic model [126–
128]. Notice that the strength of the coupling at the barrier
is approximately proportional to the charge product of the
projectile and the target nuclei, Z1Z2, and thus the channel
coupling effect is relatively weak in light systems [4]. There-
fore, the degree of enhancement of fusion cross sections at
subbarrier energies is small. Notice that the adiabatic model
explains the origin of the deep-subbarrier hindrance as a con-
sequence of quenching (see Sec. 3.4.1 and the lower panel of
Fig. 14). Since the enhancement of the fusion cross section
is small in light systems from the beginning, the fusion cross
sections are not altered much even if the fusion enhancement
is quenched at deep subbarrier energies.

On the other hand, the fusion hindrance may still appear
due to the overlap of the two nuclei participating in the col-
lision process. In the sudden model, it is due to the depth of
the potential pocket. See Sect. 5 for further discussions on
fusion hindrance in light systems.

4 Fusion Hindrance in medium- and heavy-mass
systems

Fusion excitation functions of medium-mass systems at very
low energies are determined by several concurring effects.
We have (1) quantum tunneling through the Coulomb bar-
rier, (2) cross section enhancements due to couplings of the
entrance channel with low-lying collective modes of the col-
liding nuclei, producing fusion barrier distributions with var-
ious shapes and peak structures, (3) the so-called hindrance
phenomenon whose origin is still a matter of debate and
experimental work. Fusion hindrance generally shows up
below the energy where the barrier distribution vanishes, that
is below the energy range where collective enhancements
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Fig. 18 Fusion excitation function of 60Ni +89 Y. Reproduced from
the first paper on hindrance [11]

are effective. It is becoming clear that this threshold tends
to be lower for systems involving soft nuclei, and/or where
couplings to positive Q-value nucleon transfer channels are
available. Therefore, for such cases hindrance may not be
observed if the sensitivity of the experimental set-up is not
high enough.

Below we present a few cases where hindrance is known
to be present by the shape of the excitation function and/or by
the comparison of measured cross sections with theoretical
values calculated within standard coupled-channel models.

4.1 Evidence of hindrance

Below the lowest barrier produced by channel couplings,
one would expect that the energy-weighted excitation func-
tions Eσ display a simple exponential falloff with decreasing
energy [27]. In fact this is not always true, as shown for the
first time for the system 60Ni +89 Y by Jiang et al. [11] (see
Fig. 18 ), where it was found that, at deep sub-barrier energies,
the cross section decreases very rapidly, much steeper than
predicted by a simple exponential falloff [27]. This fusion
cross section was measured down to 1.6 µb (an upper limit
of 95 nb was established for the lowest measured energy)
using the Fragment Mass Analyzer [38] at ATLAS.

Other systems investigated in the same energy range far
below the barrier gave evidence that the slope of many excita-
tion functions keeps increasing with decreasing energy. It is

clear by now that the low-energy hindrance effect is a general
phenomenon for heavy-ion fusion, even if it shows up with
varying intensities and distinct features in different systems.

Fusion hindrance is often conveniently represented by the
logarithmic slope L(E) of the excitation function or by the
astrophysical S factor S(E) [29] defined by Eqs. (7) and (6).

An S-factor maximum occurs at the point where the loga-
rithmic derivative L(E) reaches the value πη

E . Since the two
quantities L(E) and S(E) are algebraically related [13]

dS

dE
= S(E)

[
L(E) − πη

E

]
, (19)

the derivative, dS/dE , vanishes when the logarithmic deriva-
tive equals πη/E , and an S-factor maximum appears. At
this point, the energy and logarithmic derivative values
are denoted as Es and Ls , respectively, and the quantity
Lcs(E) = πη

E is called the constant S-factor function. The
condition for an S-factor maximum thus leads to the relation

Es = [0.495ζ/Ls]2/3 (MeV), (20)

where Es and Ls are given in units of MeV and 1/MeV,
respectively, and ζ is a dimensionless system parameter

ζ = Z1Z2

√
M1M2

M1 + M2
, (21)

where Z1 and Z2 are the respective charge numbers and M1

and M2 are the respective nuclear masses in units of MN , MN

being the nucleon mass. The behavior of the excitation func-
tion in the energy region near and below the barrier is usually
well described by the S factor. S(E) can be extracted directly
from the cross section, whereas the logarithmic slope L(E),
being a derivative of the excitation function, is subject to
larger experimental uncertainties.

Historically, the S(E) representation has frequently been
used in light-ion reactions, where the Gamow factor
exp(−2πη) accounts for the main part of the strong energy
dependence of the fusion cross sections. As a consequence,
far below the barrier the S factor has only a weak depen-
dence on energy for proton- and α-induced reactions. The
S factor for heavy-ion fusion reactions, however, has a very
strong energy dependence just below the Coulomb barrier; it
increases steeply with decreasing energy, reflecting the weak
energy dependence of the Eσ product when compared to that
of the Gamow factor.

Nevertheless, when the fusion Q value is negative, S must
have a maximum because it has to drop to zero at the positive
center-of-mass energy E = −Q, where the ground state of
the compound nucleus is reached. That is

S(E) → 0 for E → −Q when Q < 0. (22)

The energy where L(E) = Lcs(E) = πη/E (and the S
factor has a maximum) has often been taken as the threshold
for the hindrance effect. However, we will see that hindrance
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(a)

(b)

(c)

Fig. 19 Fusion excitation functions and astrophysical S factors of
64Ni+64 Ni [12] (a), 58Ni+54 Fe [46] (b) and 16O+208 Pb (c), compared
to CC calculations. For the last system, full symbols refer to the more
recent measurement from Ref. [110], while the open symbols originate
from Morton et al. [142]

may show up even in the absence of a maximum of S(E).
Conversely, for systems whose fusion Q value is positive,
it is not necessary to have an S factor maximum, although
there could be one.

4.1.1 Examples of the fusion hindrance

In Fig. 19 we show the fusion hindrance for three represen-
tative cases: (a) 64Ni +64 Ni [12], (b) 58Ni +54 Fe [46], and
(c) 16O +208 Pb [110,142]. The fusion excitation function
for 64Ni +64 Ni was measured down to � 20 nb. The cross
sections far below the barrier are much lower than predicted
by standard CC calculations employing the Woods–Saxon
potential shown by the red dash-dotted line. The S factor

data are shown by red symbols. Below the Coulomb barrier,
the S factor develops a clear maximum. The WS calcula-
tion starts overpredicting the excitation function below ∼ 89
MeV indicating the onset of fusion hindrance. The CC calcu-
lation using the M3Y + repulsion potential (blue continuous
line) gives a good account of the data.

Similar results are obtained for the systems 58Ni +54 Fe
(b) and 16O +208 Pb (c). The calculations based on a WS
potential overpredict the low energy part of the excitation
function in both cases, and a maximum of the S factor vs.
energy appears.

For 58Ni +54 Fe it is observed that the S factor maximum
shows up at an energy where the fusion cross section is larger
when compared to 64Ni+64Ni. This may be a consequence of
the different structure of the nuclei involved in the reaction;
58Ni and 54Fe are stiff, whereas 64Ni is softer. This will be
discussed in more detail below.

For 16O +208 Pb, the previous data of Morton et al. [142]
were augmented by Dasgupta et al. [110] and Fig. 19c shows
the complete excitation function, where the low-energy slope
appears to be very steep. The astrophysical S factor satu-
rates in the same energy range. The calculations based on a
WS potential overpredict the low-energy part of the excita-
tion function, whereas the CC calculations using the M3Y +
repulsion potential closely fit the low-energy cross sections
and the S factor.

Another case involves the system 64Ni +100 Mo [143],
whose fusion behavior is shown in Fig. 20 in terms of the
fusion excitation function and its logarithmic derivative. In
this case, CC calculations with a WS potential reproduce
the data reasonably well with the low-energy cross sections
mainly determined by the strong quadrupole vibration of
100Mo. Up to four phonons of this collective mode have to
be considered; however, one notices that the lowest energy
points decrease faster than the CC results. This is better seen
in a plot of the logarithmic slope (red triangles) showing that
the CC calculations tend to saturate below the barrier, while
the experimental points keep increasing and the logarithmic
slope reaches the Lcs value, though only in the sub-µb cross
section range.

We would like to point out the different behavior between
58Ni +54 Fe, where fusion hindrance shows up clearly, and
the case of 48Ti +58 Fe [144], where fusion hindrance is not
observed in the measured energy range down to � 2µb.
As discussed in Ref. [6] (see Fig. 39 of that article), the
logarithmic slope of 58Ni +54 Fe below the barrier keeps
increasing, reaching and exceeding the value Lcs [12], while
the slope of 48Ti +58 Fe saturates and stays much lower than
Lcs .

The situation is shown in Fig. 21, where panel (b) demon-
strates the different trends of the two S factors, compared to
standard CC calculations using a WS potential and including
the 2+ and 3− states of the nuclei. It is also interesting to
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Fig. 20 Fusion excitation function (left scale) and logarithmic deriva-
tive (right scale) of 64Ni +100 Mo [143] compared to CC calculations
(see text for detail)

examine the two barrier distributions (BD) shown in panel
(a) of the same figure. The energy scale of the plot is normal-
ized to the Akyüz–Winther barrier [150]. Both distributions
have a complex structure with several peaks. However, the
BD of 48Ti+58 Fe is wider at low energies and extends lower
with respect to Vb than for 58Ni+54 Fe pushing the hindrance
threshold for this system below the investigated energy range.

The difference in nuclear structure of the colliding nuclei
gives rise to this situation, because 48Ti and 58Fe are soft
nuclei with rather strong and low-lying quadrupole excita-
tions at ≈ 800–900 keV, while 58Ni and 54Fe have closed
proton and neutron shells and are rather stiff. The stiffness
of the reaction partners thus allows the fusion hindrance to
appear already at a level of ≈ 180µb.

4.2 Influence of transfer channels and low-energy
excitations

Several studies have given firm evidence that the excitation of
low-lying collective states (Q < 0) and the nucleon transfer
reactions, especially those channels having Q > 0 (Broglia
et al. [145]), are the two most important contributions to the
near-barrier fusion enhancement.

The CC model [7,8] indicates that coupling to Q > 0 reac-
tion channels produces a change of the sub-barrier excitation
function different from what is expected by inelastic cou-
plings with Q < 0 because the excitation function decreases
more slowly below the barrier when Q > 0 due to the dif-
ferent shapes of the barrier distribution produced by the two
kinds of couplings.

4.2.1 The Ca + Zr systems

The case of 40Ca +96 Zr [146] is of particular interest for the
investigation of the effects of transfer couplings on fusion,
because the Q-values for g.s.→g.s. neutron pick-up transfer

(a)

(b)

Fig. 21 Fusion barrier distributions (BD) (a) and S factors of 48Ti+58

Fe and 58Ni +54 Fe (b) compared to standard CC calculations using a
Woods–Saxon potential. Vb are 73.26 and 92.93 MeV for 48Ti +58 Fe
and 58Ni +54 Fe, respectivly

Fig. 22 Fusion excitation functions of 40Ca+96 Zr (full dots from Ref.
[146], open symbols from Ref. [147,148]) and triangles for 48Ca+96 Zr
[149]. The insert shows the barrier distributions of the two systems. The
energy scale is relative to the Coulomb barrier Vb obtained with the
Akyüz Winther potential [150]. The values of Vb are 98.30 and 95.90
MeV for 40Ca +96 Zr and 48Ca +96 Zr, respectivly
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Fig. 23 Logarithmic slopes for the two systems 40Ca +96 Zr [146–
148] (red dots) and 48Ca +96 Zr [149] (blue triangles). L(E) values
were obtained using the two-points difference method

channels are very large and positive, i.e. Q = + 5.53, + 9.64
and + 11.62 MeV for 2n, 4n and 6n transfers, respectively.

The sub-barrier fusion excitation function for this reaction
has been measured down to cross sections as small as �
2.4µb, two orders of magnitude smaller than obtained in a
previous experiment [147,148]. The low-energy fusion cross
section was found to be greatly enhanced with respect to
40Ca +90 Zr, and the need of coupling to transfer channels
was suggested.

The comparison with 48Ca+96 Zr, where no Q > 0 trans-
fer channels are available, is very informative (see Fig. 22).
The sub-barrier cross section for this system drops very
steeply, while the excitation function of 40Ca+96Zr decreases
slowly (and smoothly) below the barrier. From the insert of
the same figure, we note that the two barrier distributions have
quite different shapes, that of 40Ca +96 Zr extending much
further toward low energies. This leads to a flatter slope of
the excitation function of this system, and indicates the effect
of nucleon transfer.

The experimental logarithmic slopes of the two systems
are shown in Fig. 23. One notices the very different behav-
ior of the two systems where the steep sub-barrier slope
of 48Ca +96 Zr, leading to hindrance, is not observed for
40Ca+96 Zr whose excitation function decreases very slowly
below the barrier. Indeed, the wider BD for 40Ca+96Zr proba-
bly pushes the onset of the hindrance effect to lower energies.

The recent CC analysis [151] of the excitation function
for 40Ca +96 Zr is shown in Fig. 24. It includes explicitly
one- and two-nucleon Q > 0 transfer channels with cou-
pling strengths calibrated to reproduce the measured neutron-
transfer data. Such transfer couplings give rise to significant
cross section enhancements, even at the level of a few µb.
One obtains an excellent account of the fusion data; a signif-
icant contribution to the enhancement is due also to proton
stripping channels having positive Q-values as well.

Fig. 24 Fusion cross sections for 40Ca+96 Zr [146–148] are compared
with CC calculations [151] using the WS potential. The red full line
reproducing the data includes couplings to the one- and two-nucleon
transfer channels as well as the inelastic 2+ and 3− excitations in both
nuclei (dotted green line). Figure adapted from [151]

The hindrance caused by Pauli blocking is suppressed in
40Ca +96 Zr by the large number of transfer channels with
positive Q-values [151]. Locating the hindrance threshold
in 40Ca +96 Zr would require challenging measurements of
cross sections in the sub-µb range.

4.2.2 The Ni + Ni systems and other cases

In the 58Ni +64 Ni system, the influence of positive Q-value
transfer channels on near-barrier fusion was demonstrated
by Beckerman et al. [16]. For this case, the lowest measured
cross section was relatively large (σ �0.1 mb). The fusion
excitation function of 58Ni +64 Ni has recently been remea-
sured and extended to lower cross sections by two orders
of magnitude in experiments performed at the XTU Tandem
accelerator of LNL [152].

The case of 58Ni +64 Ni is very similar to 40Ca +96 Zr
because of the gentle fall-off of both sub-barrier fusion exci-
tation functions, originating from the couplings to several
Q > 0 neutron pick-up channels.

The new results for 58Ni +64 Ni are in agreement with
previous data [16] and are shown in the upper panel of the
Fig. 25 (blue dots) compared to the previous results for the
symmetric Ni + Ni systems [12,16]. We notice that the gen-
tle fall-off of the sub-barrier cross sections for 58Ni +64 Ni
continues down to the level of � 1µb. The fusion excitation
functions of 58Ni+64 Ni and 64Ni+64 Ni are compared in the
lower panel of the figure with the results of coupled-channels
calculations. While for 64Ni +64 Ni the low energy data are
overpredicted by a standard Woods–Saxon CC calculation
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Fig. 25 (upper panel) Fusion cross sections of various Ni + Ni systems.
(lower panel) Experimental data of 58Ni +64 Ni, 64Ni compared to CC
calculations (see text for details)

and one needs a M3Y + repulsion potential for a good fit (see
Fig. 19), the low-energy cross sections of 58Ni +64 Ni are
underpredicted by an analogous Woods–Saxon calculation.

This trend at far sub-barrier energies (no hindrance
observed for 58Ni +64 Ni) suggests that, as was observed
for 40Ca +96 Zr, the availability of several states following
transfer with Q > 0 effectively counterbalances the Pauli
repulsion that, in general, is predicted to reduce the tunnel-
ing probability through the Coulomb barrier [125,153].

We should also mention that the two systems 35,37Cl +
130Te have recently been investigated at HYRA [154,155].
The evidence coming from those experiments points at the
importance of the two-neutron pick-up channel for fusion of
35Cl +130 Te, as opposed to the case of 37Cl +130 Te, where
that channel with a positive Q-value is not available. Also, a
universal correlation between the fusion excitation function
and the strength of the total neutron-transfer cross sections
for systems ranging from S + Ca to Ni +Sn has been studied
in Ref. [156].

No S-factor maximum has so far been observed in systems
having a negative fusion Q value and strong Q >0 transfer
couplings, because in these cases the maximum probably
shows up at very low energies.

4.2.3 Low-energy excitation modes

It has been shown in some representative examples discussed
in the previous paragraphs, that fusion hindrance is in gen-
eral easier to detect in fusion reactions between stiff nuclei, as
are most of the cases presented above. Indeed, systems where
soft nuclei are involved generally show a similar behavior, as
far as fusion hindrance is concerned, to the cases we have dis-
cussed above having positive Q-value nucleon transfer chan-
nels. This happens because fusion barrier distributions of soft
systems tend to be very wide due to the effect of strong cou-
plings to collective modes of excitation. Consequently, the
threshold of hindrance (S-factor maximum), that shows up
where the barrier distribution vanishes, may be pushed down
in energy, and possibly becomes difficult to reach, depending
on the sensitivity of the set-up that has to be able to measure
very small cross sections at deep sub-barrier energies.

Let us consider again the system 64Ni +100 Mo [143]
where hindrance shows up at very low sub-barrier energies
due to the soft structure of the two nuclei and, in particu-
lar, because of the strong quadrupole vibration of 100Mo (see
Fig. 20). In Fig. 26, we show the behavior of the near-by case
60Ni +100 Mo [157], where the presence of various neutron
transfer channels with Q >0 could influence the sub-barrier
cross sections. Actually, the quadrupole vibration of 100Mo
is the dominant ingredient for enhancement also in this case.
Figure 26 illustrates this situation, in which the excitation
function is well reproduced by CC calculations including
that vibration up to the 4th phonon level. However the low-
est energy points are slightly under-predicted, and the slope
L(E) does not increase so much below the barrier (see the
insert), as was noticed for 64Ni +100 Mo. Hindrance is not
observed in 60Ni +100 Mo down to level of � 2 µb and this
may very well be a consequence of the Q >0 neutron pick-
up channels, as was suggested in Ref. [157]. A small relative
enhancement of 60Ni +100 Mo with respect to 64Ni +100 Mo
was indeed observed (see Fig. 2 of the original article) at low
energies.

For such heavy and soft systems, in general, fusion is
strongly affected by multi-phonon excitations, so that one
should include couplings to all orders in the CC calculations,
and the simple harmonic approximation of the vibrational
modes should not be used. It is, however, unfortunate that
in most cases the experimental information on multi-phonon
states is missing.

During the initial studies of fusion hindrance, a phe-
nomenological analysis led to a purely empirical formula
[158] for the expected energy Ere f

s of the S-factor maximum.
The formula was originally developed for medium-mass sys-
tems with negative fusion Q-value, involving closed-shell
nuclei for both projectile and target (stiff systems). It was
found that the logarithmic derivative of the energy-weighted
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Fig. 26 Fusion excitation function of 60Ni +100 Mo [157] compared
with CC calculations using the WS potential and including up to four
phonons of the quadrupole vibration in 100Mo. The inset shows the
logarithmic derivative, L(E) obtained using all data point (full dots)
and every second one (open dots)

cross section, Ls , at the energy Ere f
s , has the nearly constant

value Lre f
s ∼ 2.33 MeV−1.

The condition for the S-factor maximum is Lre f
s =

πη/Ere f
s (see Eq. 19). The Sommerfeld parameter, Eq. 8,

is given by

η = Z1Z
2
2/(h̄v) = 0.1575

Z1Z2√
E

√
M1M2

M1 + M2

= 0.1575
ζ√
E

, (23)

where E is the center-of-mass energy given in units of MeV.
Using the condition for the S-factor maximum, Ls = πη/Es ,
we thus obtain

Ere f
s = 0.356

[
Z1Z2

√
M1M2

M1 + M2

]2/3

= 0.356ζ 2/3(MeV).

(24)

It was found that the energy, Es , of the S-factor maximum
tends to decrease with respect to Eref

s , when the total number
of “valence nucleons” outside closed shells in the entrance
channel, increases [157].

A quantitative relation between the stiffness and the devi-
ation from Es has not yet been established. The fusion hin-
drance for soft systems occurs at center-of-mass energies Es

that are 7-15 MeV lower than the systematics established for
the stiff systems.

4.2.4 The Si + Si systems: isotopic effects far below the
barrier

The fusion excitation function for 28Si +28 Si has recently
been measured down to a level of �600 nb [159] (see Fig. 27).

Fig. 27 Fusion excitation function of 30Si +30 Si (see Ref. [160]),
compared to the system 28Si+28Si. The energy scale is normalized to the
Akyüz–Winther Coulomb barrier [150]. The reported errors are purely
statistical uncertainties. The insert shows the logarithmic derivatives
(slopes) of the excitation functions for the two systems. L(E) values
were obtained with the two-points difference method. The values of Vb
are 28.10 and 28.80 MeV for 30Si +30 Si and 28Si +28 Si, respectivly

The logarithmic derivative, shown in the insert, displays an
irregularity below the barrier, but no indication of an S-factor
maximum appears. This behavior was tentatively attributed
to the large oblate deformation of 28Si because CC calcula-
tions largely underestimate the 28Si +28 Si cross sections at
low energies, unless a weak imaginary potential is applied,
probably simulating the effect of deformation.

A more recent experiment was performed to clarify the
underlying fusion dynamics by studying the case of 30Si+30

Si. 30Si has no permanent deformation and its low-energy
excitations are vibrational in nature. The excitation function
of 30Si +30 Si was measured down to the level of a few µb
[160]. It has a regular shape, at variance with the unusual
trend of 28Si +28 Si. The extracted logarithmic derivative
does not reach the Lcs limit at low energies, as shown in
Fig. 27, so that no maximum of the S factor shows up.

CC calculations were performed including the low-lying
2+ and 3− excitations. Using a Woods–Saxon potential
the experimental cross sections at low energies are over-
predicted, which is a clear sign of hindrance, while the cal-
culations performed with a M3Y + repulsive potential nicely
fit the data, without the need of an imaginary potential. Thus,
the comparison with the results for 28Si +28 Si strengthens
the explanation of the oblate shape of 28Si being the reason
for the irregular behavior of that system.

The measured excitation function of 28Si +30 Si [159,
161] shows hindrance at a few MeV below the Coulomb
barrier by comparing the data to CC calculations using a WS
potential (see Fig. 28), whereas a nice fit is obtained when
using the M3Y+rep potential, and including one- and two-
neutron transfer channels in the coupling scheme, in addition
to the low-lying surface excitations. The influence of transfer
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Fig. 28 Fusion excitation function of 28Si+30 Si (see Ref. [159,161]),
compared to CC calculations employing the WS and the M3Y + repul-
sion potentials (see text). The filled and open symbols represent the
cross sections measured in Ref. [161] and [159], respectively

is calculated to be small, as is the overall magnitude of the
hindrance effect.

4.3 Characteristics of the experimental S(E)

Following the first observation of fusion hindrance in the
60Ni +89 Y system by Jiang et al. [11], subsequent experi-

ments have shown that fusion cross sections of other systems
exhibit the hindrance effect at low energies as well, as shown
by the existence of an S-factor maximum. It was also realized
that many previously published measurements, performed
down to deep sub-barrier energies, revealed the existence of
fusion hindrance. In the following three figures, Figs. 29, 30,
and 31, several systems, with or without an observed S(E)-
factor maximum, are discussed separately. In these figures
and others shown later, data from earlier measurements are
also included. It should be noted that most systems shown in
these three figures have negative fusion Q values, hence an
S-factor maximum must appear at low energies.

Nine systems, where an S-factor maximum has been
observed in the measured energy region, are shown in Fig. 29.
The solid lines in the figure are smooth fits to the data. The
systems 90Zr+92 Zr,89Y were measured at GSI in the 1980’s
[33] down to very small cross sections (� 120 nb and 340 nb,
respectively), below the onset of hindrance. Results for the
system 90Zr +90 Zr were obtained in the same experiments.
However, as discussed in Sect. 2, contaminants from heavier
Zr-isotopes in the target can hamper the observation of an
S-factor maximum in this case.

Four more examples for medium-mass systems are shown
in Fig. 30. The corresponding standard CC calculations were
performed using the Akyüz–Winther potential [150], includ-
ing the lowest 2+ and 3− collective modes. Although no
S-factor maximum is apparent in any of these systems, we

Fig. 29 Astrophysical S factors of several systems where a maximum
shows up. They were measured at ANL (28Si+64 Ni [162], 64Ni+64 Ni
[12] and 60Ni +89 Y [11]), LNL (40Ca +48 Ca [163] and 58Ni +54 Fe
[46]), ANU-Canberra (32S +89 Y [164]), MIT (58Ni +58 Ni [16]) and
GSI (90Zr+92 Zr, 89Y [33]). The energy scale has been shifted for some

of the systems for graphical reasons, i.e. by +25 MeV, +33 MeV, +33
MeV, -41 MeV, -41 MeV and +8 MeV for 58Ni +58 Ni, 28Si +64 Ni,
40Ca +48 Ca, 90Zr +92 Zr, 90Zr +89 Y and 32S +89 Y, respectively.
Among these nine systems, only 40Ca +48 Ca, has a positive fusion Q
value
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Fig. 30 Astrophysical S factors for several systems where the fusion
hindrance can be recognized by comparing the data with the results of
standard CC calculations. The reported cases are 36S +48 Ca [165],
48Ca +48 Ca [166], 40Ca +40 Ca [167] and 36S +64 Ni [168]. For
36S+48 Ca the energy scale has been shifted up by 5 MeV for graphical
convenience. Among these four systems, only 36S+48 Ca, has a positive
fusion Q value

Fig. 31 Astrophysical S factors for several systems where no maxi-
mum appears. The reported cases are 32S +48 Ca [169], 48Ti +58 Fe
[144], 40Ca +96 Zr [146,151], 58Ni +64 Ni [152] and 60Ni +100 Mo
[157]. For 32S +48 Ca and 60Ni +100 Mo the energy scale has been
shifted up by 20 MeV and − 25 MeV, respectively, for graphical con-
venience. Among these five systems, only 32S +48 Ca, has a positive
fusion Q value

see that the experimental S factor is well below the CC cal-
culations. One may therefore conclude that subbarrier fusion
hindrance is present in these four systems. We thus expect
that the S-factor maxima would appear if the measurements
were extended to even lower energies.

However, there are other cases where even the comparison
of the experimental S factor with standard CC calculations
does not give any indication of the fusion hindrance behavior.
Figure 31 shows five examples of this situation which may
be caused by the influence of nuclear structure and/or strong
transfer couplings, that push down the hindrance threshold
below the lowest measured energy. In particular, the case
of 40Ca +96 Zr [146,151] is a significant example of the

effect of couplings to quasi-elastic transfer channels with
Q > 0, as discussed earlier in more detail. The recent data
on 58Ni +64 Ni [152] show a similar trend.

As discussed at the beginning of this section, another
method to determine the location of an S-factor maximum
uses the logarithmic derivative L(E). An S-factor maxi-
mum appears at the crossing energy, Es , of the experimental
slope L(E) with the curve given by the constant S factor
Lcs(E) = πη(E)/E .

Empirical expressions have been developed to extrapo-
late the excitation functions toward lower energies and to
predict the energy, Es , of the S-factor maximum for those
systems which show only an indication of hindrance behavior
in the measured energy range. These expressions reproduce
the heavy-ion fusion excitation functions at low energies and
can be used to extrapolate the data to even lower energies
(see Refs. [170,171]) for systems, whose fusion Q value are
either positive or negative. These expressions are

L(E) = A0 + B0

E3/2 , for Q > 0, (25)

or

L(E) = A0 + B0

(E + Q)3/2 , for Q < 0. (26)

Here, A0 and B0 are parameters obtained from least-squares
fits to the low-energy experimental slope L(E). The corre-
sponding expressions for the cross section at low energy are:

σ(E) = σs
Es

E
exp

(
A0(E − Es)

− 2B0√
Es

[√ Es

E
− 1

])
, when Q > 0, (27)

and

σ(E) = σs
Es

E
exp

(
A0(E − Es)

− 2B0√
Es + Q

[√ Es + Q

E + Q
− 1

])
, when Q < 0.

(28)

Here σs is the cross section at the energy of the S factor maxi-
mum, Es , determined by the results of Eqs. (25) or (26). Thus,
these extrapolation formulae have three free parameters, A0,
B0, and σs . The energies, Es , at the S-factor maximum for
cases like those shown in Fig. 30 can be predicted.

The fusion Q values of the systems shown in either
Figs. 30 or 31, are mostly negative, so that there must be
an S-factor maximum at energies below the measured range.
The extrapolation recipes, Eqs. 25–28 mentioned above, have
been applied to these cases, and will be discussed in the fol-
lowing sections.
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Fig. 32 Experimental S(E) factor for the system, 24Mg +30 Si com-
pared to CC calculations using either a standard WS potential (blue
dashed line) or the M3Y + repulsion potential (green dashed line). The
extrapolation obtained from the empirical formula is also shown (red
full line) [170]

4.4 Toward astrophysical systems

The fusion hindrance effect is inevitable for heavy systems
with a positive energy threshold for compound nucleus for-
mation (Q < 0). For cases of light or medium-mass systems,
where the Q-value for fusion is positive, understanding the
hindrance behavior will have far-reaching consequences in
astrophysics where fusion of light systems determines late-
stage stellar evolution during the carbon and oxygen burning
in heavy stars.

There are many studies of fusion cross sections at extreme
low energies for 12C +12 C (see [62,65] and Refs. therein)
as well as for 16O +16 O. These cases will be discussed in
detail in Sect. 5. These measurements are experimentally
quite challenging and often result in large uncertainties and
serious discrepancies among the different experiments in the
low-energy range relevant for astrophysics. For that reason,
similar investigations in slightly heavier systems can be very
useful in order to validate the extrapolations towards these
cases.

To this end, some cases with small negative or positive
Q-values have been studied, including 28Si +64 Ni [161],
27Al+45Sc [172], 40Ca+48Ca [163], and 36S+48Ca [165]. In
these cases there is also evidence that the excitation functions
drop faster than predicted by the CC calculations with a stan-
dard WS potential, indicating that fusion hindrance occurs.

Several systems with large positive Q-values have been
studied recently. For 24Mg +30 Si, with Q=+25.53 MeV, an
S-factor maximum has been observed [173], as shown in
Fig. 32. The blue dot-dashed curve is the result of CC calcu-
lations with a standard Woods-Saxon potential, which clearly
overpredicts the experimental data at low energies. The green
dashed line is a similar calculation using the shallow potential
resulting from the M3Y + short-range repulsion [123,124].

Fig. 33 (top) Excitation function and S factor for the system 12C +24

Mg, compared with standard CC calculations (see text for details). (bot-
tom) Logarithmic derivative of the excitation function compared with
the Lcs value and with the CC calculations. Only statistical errors are
reported in both panels. Figure adapted from Ref. [174]

The red full curve is calculated with the empirical extrap-
olation recipe of Ref. [170], which predicts an S-factor maxi-
mum, and reproduces the data better than the sudden approx-
imation using the M3Y + repulsion potential.

These experiments have been recently extended to lighter
systems. 12C+24Mg [174] and 12C+30Si [141] have a system
parameter ζ very close to that of 16O +16 O and 12C +12 C,
and positive Q values for fusion (Q= + 16.3 MeV and +14.1
MeV, respectively).

These two systems show interesting features of fusion hin-
drance which go beyond our previous knowledge. The mea-
sured cross sections for 12C +24 Mg are shown in the upper
panel of Fig. 33 together with the astrophysical S factor. At
the energy where the slope L(E) (lower panel) reaches the
Lcs curve, the S factor develops a maximum, which usually
is taken as evidence for fusion hindrance. It is worthwhile to
notice that the cross section at the hindrance threshold has
a remarkably high value (σ= 1.6 mb). The reason why this
happens, in this particular system, is presently unknown.

Evidence for the hindrance effect has also been observed
for the system 12C +30 Si, whose fusion excitation func-
tion has been measured at LNL over a wide energy range.
In Fig. 34, the excitation function is compared with the the-
oretical results of the adiabatic model [126–128] using the
Yukawa-plus-exponential (YPE) potential (see lower panel
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Fig. 34 The excitation function of 12C+30 Si is compared to the results
of various CC calculations employing the YPE potentials, with and
without damping of the coupling strengths. The no-coupling limit is
also reported. The lower panel is an expanded view of the low-energy
range

of Fig. 34 for a detailed view). The result with and without
quenching are both reported in the figure, and a slight pref-
erence for the calculation with quenching may be observed.

The S factor appears to develop a maximum at lower ener-
gies shown in Fig. 35. This trend is supported by CC cal-
culations performed by means of the adiabatic model (red
curves), using both the WS and the YPE potentials [141].
However, the calculations are not able to reproduce the max-
imum around 10.5 MeV. In such a case, the energy threshold
for the onset of hindrance is better identified by a compar-
ison with the extrapolation curve (see the solid blue curve
in Fig. 35). We point out that the cross section at the hin-
drance threshold for 12C +30 Si, is in the 10−2 mb range,
which is substantially smaller than that for the near-by sys-
tem 12C +24 Mg (1.6 mb).

In both systems, 12C +24 Mg and 12C +30 Si, there are
indications of an S-factor maximum with an energy Es that
nicely fits in the systematics developed for medium-mass
systems [175] (see Sect. 6).

One can also notice that the fusion cross sections of these
systems would be fit, at the lowest measured energies, by
CC calculations with coupling strengths completely damped.
The cross sections at the lowest measured energies can, thus,
be predicted by single-barrier penetration calculations (no

Fig. 35 Astrophysical S factor for 12C +30 Si in comparison with the
CC calculations. A maximum of the S factor vs. energy seems to develop
around 10.5 MeV

couplings). This feature can be clearly seen for 12C +24 Mg
in the top panel of Fig. 33.

5 Fusion Hindrance in light-mass systems

The 12C +12 C, 12C +16 O and 16O +16 O fusion reactions at
low energies play an important role in the evolution of post-
main sequence stars, in the ignition of type Ia supernovae, in
accreting carbon-oxygen white dwarfs, and as a possible trig-
ger in the ignition of superbursts on the surface of accreting
neutron stars. Although these processes occur in explosive
scenarios, the associated Gamow energies are still very low,
resulting in extremely small cross sections, which in many
cases are not yet experimentally accessible [89]. In order to
obtain the astrophysical reaction rates, one has therefore to
use phenomenological extrapolation methods.

It is therefore very important to understand the low-energy
behavior of the astrophysical S(E) factor for light fusion
systems in order to address the question of a possible S-
factor maximum in these fusion reactions, since this would
strongly affect the astrophysical reaction rates [176].

Although fusion reactions in light-mass systems have pos-
itive Q-values and, thus, no maximum in the S factor is
required, it was shown in the previous section that an S-
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factor maximum has been observed in systems as light as
12C +24 Mg. This maximum, however, was broad, in con-
trast to what was observed for heavier systems.

5.1 General behavior of the S(E) factor for light systems

In this subsection we explore the evolution of the S(E) factor
as a function of the mass of the system. As discussed earlier,
the S-factor maximum is observed where the logarithmic
derivative L(E) crosses the constant S-factor line, Lcs(E).
The system dependence of the logarithmic derivative L(E)

is shown in Fig. 36 covering fusion reactions from 10B+10 B
(Q = +31.1 MeV) [177] to 60Ni +89 Y (Q = −90.5 MeV)
[11].

In this figure, experimental values of L(E) are obtained
numerically using the two-point (circles) or the three-point
(stars) difference method to calculate the derivative and to
compare to the constant S factor, Lcs(E), given by the black-
dashed curves. The red curves are calculations from the
extrapolation recipe using low-energy experimental data of
L(E) (See Eqs. 25 and 26.)

Several interesting features can be observed from Fig. 36.
The crossing angle between L(E) and Lcs(E) is getting
smaller going from heavier to lighter systems. For lighter sys-
tems, an S-factor maximum is therefore broader, and the ener-
gies at the maximum of the S factor are less well-determined.
This tendency has been studied in Ref. [158] and will be dis-
cussed further in Sect. 6.

The associated energies at the crossing points, Es which
are about 123 MeV for the 60Ni +89 Y system, decrease to
about 7 MeV for the astrophysically important 16O+16O sys-
tem. This has important consequences for the experimental
techniques used in these measurements.

As discussed in Sect. 2, the techniques for fusion measure-
ments in heavy systems involves in most cases the detection
of the fusion-evaporation residues emitted at small scatter-
ing angles by using time-of-flight or electro-magnetic rigidity
techniques. These techniques work well for heavier systems
(e.g. 60Ni +89 Y shown in Fig. 36, [11]) where the opening
angle of the compound nuclei is < 3◦, comparable to, for
example, the acceptance angle of the FMA at ATLAS [38] or
the electrostatic beam separator PISOLO at LNL [51]. For
lighter systems, such as 10B+10 B or 16O+16 O, the opening
angle increases by more than a factor of 10, and different
detection techniques are therefore required. For example, for
the study of fusion in the 12C +12 C system, the detection of
light evaporation particles (protons, neutrons and α’s) from
the compound nuclei or γ ’s from the decay of the residual
nuclei are used. The 12C +12 C system will be discussed
in more detail below. Experiments using different detection
techniques are also important for getting a better understand-
ing of the systematic uncertainties associated with the var-
ious experiments. More recently, dedicated setups to mea-

sure particle-γ coincidences have also been used to mea-
sure fusion cross sections at very low energies. Advantages
and disadvantages of all these techniques including back-
ground reactions from contaminants in the carbon targets
are discussed in Sect. 2 and in the respective publications
[37,56,58,62,65,178,179].

Another feature that can be observed from Fig. 36 is the
occurrence of oscillations in some of the systems. It is well
known that oscillations or resonances have been seen in the
excitation functions of 12C+12 C, 12C+16 O and other fusion
systems, whose reaction participants are α-cluster nuclei, as
early as in the 1960’s. While most of the logarithmic deriva-
tives shown in Fig. 36 exhibit a smooth increase of L(E)

towards lower energies, some systems, e.g. 12C +24 Mg and
12C +30 Si, show oscillations in the logarithmic derivative.
These oscillations make it difficult to identify the S-factor
maximum in these systems.

It should be mentioned, that at energies above the
Coulomb barrier, L(E) is always lower than the Lcs(E).
Both curves increase when the energy decreases. A cross-
over may appear only when the logarithmic derivative, L(E)

is steeper than the Lcs(E) curve. For fusion of 10B +10 B,
the experimental L(E) does not cross or touch the Lcs(E)

curve within the measured energy range.

5.2 The S-factor for the 16O +16 O system

Fusion in the 16O +16 O system has been measured in four
different experiments in the 1970s using both gas as well
as solid targets by detecting either γ rays or light charged
particles from the decay of the compound nuclei and covering
the energies from ∼ 7 to 11 MeV, [180–184]. The lowest
cross sections measured in these experiments are ∼ 5 µb.
In addition, two more experiments using solid targets and
γ detection techniques covering energies down to 8 MeV
[185] and 8.3 MeV [186] have been published. The results,
converted into astrophysical S factors, are shown in Fig. 37,
along with an optical model calculation shown by the blue
dashed line.

While there is a reasonable agreement among the different
experiments at the higher energies, the cross sections at E ∼
7 MeV differ by a factor of about four. Analyzing each data
set separately, one observes that the majority of the data show
a maximum in the S(E). However, the maximum does not
occur at the same energy in the different measurements. As
a result, showing these experimental data together, as done
in Fig. 37, the S-factor maximum becomes poorly defined.

The black-dashed curve in Fig. 37 is the result of Fowler’s
S-factor parameterization ([89]) given by

S(E) = S0
exp(−αE)

exp(−γ Em) + b exp(βE)
, (29)
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Fig. 36 Logarithmic derivatives L(E) for nine systems ranging from
10B+10 B to 60Ni+89 Y. Symbols are L(E), derived from experimental
cross sections, while the black dashed curves represent the constant-
S-factor function Lcs(E). The red curves are calculations from the
extrapolation recipe by using low-energy experimental data of L(E).

For 10B +10 B and 16O +16 O, L(E) values are obtained with the five-
points method and uncertainties are not shown. For 16O +16 O only
Spinka’s data are given (see Fig. 38 for details). For the other systems,
open circles and stars are obtained with two- and three-points difference
methods, respectively. See text for details

where S0, α, β, γ, b and m are six adjustable fit parameters.
The red curve is obtained from the hindrance parameteriza-
tion obtained in Ref. [170] with three adjustable parameters,
σs, A0, B0. Both extrapolations predict a nearly constant S
factor at energies below 8 MeV, in agreement with the data,

but a different trend for energies below ∼7 MeV, where no
experimental data exist.

As discussed earlier, another approach to locate the max-
imum of the S factor is by determining the crossing point of
the logarithmic derivative with the constant S factor curve
Lcs . The results of this approach for the 16O +16 O system
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Fig. 37 S(E) factors for the system 16O +16 O from different experi-
ments. The red curve, obtained from the hindrance extrapolation model
predicts a maximum in the S-factor curve, while Fowler’s parameteri-
zation result predicts a continuous rise at low energies

Fig. 38 Logarithmic derivative L(E) for the system 16O +16 O. The
crossing point of the L(E) and the constant S factor function Lcs(E)

determines the energy location of the S-factor maximum. The red curve
is obtained from the least-squares fit (see text for details). The L(S) val-
ues represented by black solid, black open, red triangle, blue triangle and
star were obtained with 3-, 5-, 3-. 3-, and 3-points difference methods,
respectively

are shown in Fig. 38. The symbols and curves are the same
as the ones used in Fig. 37. Although the S-factor data for
16O +16 O differ at the lowest energies by factor of four, the
derivative data show a much better agreement among the vari-
ous experiments, since the logarithmic derivative L(E) is not
sensitive to the absolute values of the excitation functions.
The crossing between L(E) and Lcs(E) (green dashed line)
occurs around 7±0.5 MeV. The narrow oscillating structure
at E = 8.8 MeV is only observed in the data by Spinka et
al. which are the only measurements that have been taken
at small enough energy steps to observe this feature. The
structure observed in the data of Hulke et al. at 7.75 MeV,
the only experiment for the 16O +16 O system using a gas

Fig. 39 S(E) factor for the system 12C+16 O as measured in different
experiments. The results from the recent measurements by Fang et al.
are shown by the larger symbols. The black dashed line is the prediction
by Fowler et al. [89]. The prediction from the hindrance model is given
by the red solid line

target and γ detection, has not been reproduced in the other
measurements.

No new measurements for this system have been published
since the analysis of these data with the hindrance model in
2007 [170]. Since an S-factor maximum has been seen in
most measurements, we conclude that, the 16O +16 O data
have shown an evidence of a maximum, though more data
are needed to confirm this conclusion.

5.3 The S(E) factor for the 12C +16 O system

Similar to the 16O+16 O system, most of the experiments for
12C+16 O were performed in the 1970’s [84,187,188], using
16O beams and natural carbon targets and detecting the decay
of the compound nuclei by either particle or γ -decays. More
recently, Fang et al. [61] remeasured this reaction with both
singles and particle-γ coincidence techniques. The coinci-
dence method, first used at ATLAS for measuring the fusion
of 12C+12C at low energies [55,56], is crucial to reduce back-
ground effects which hamper measurements of fusion cross
sections for light-mass systems at very low energies. The
lowest cross section measured for this system was 1.1 ± 0.8
nb, i.e. a factor of 103 lower than for the 16O +16 O system.

The experimental results of the S(E) factor and the loga-
rithmic derivative L(E) are shown in Figs. 39 and 40, respec-
tively. In these figures, the recent data by Fang et al. which
extend to an energy of about 3.6 MeV, are shown by larger
symbols.

A distinct difference between the 16O +16 O and 12C +16

O systems are the oscillations, observed in the excitation
functions of the 12C +16 O systems. We note that the fusion
oscillations in this system at energies above the Coulomb
barrier have been attributed to elastic alpha transfer channel.
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Fig. 40 Logarithmic derivative L(E) for the system 12C +16 O from
different experiments. The values of Ls given by symbols of red triangle,
star, open circle, square and solid circle were obtained with 8-, 5-, 4-.
6-, and 6-points difference methods, respectively. The crossing point
of L(E) and the constant S factor function Lcs(E) (dashed green line)
determines the energy of the S-factor maximum. The predictions from
Fowler’s parameterization and from the hindrance model are given by
the black-dashed and red-solid lines, respectively

These oscillations make the extraction of a possible S-
factor maximum very difficult as can be seen from Fig. 39.
The experimental data averaged over the oscillations are in
agreement with both the Fowler and the hindrance model.
Differences between the two extrapolations are expected for
energies below ∼ 4.5 MeV, where, at this time, data with
small enough uncertainties are not available. Cross section
measurements in the nb and sub-nb range are non-trivial
and subject to a variety of systematic uncertainties. Differ-
ent detection techniques are needed in order to get a better
understanding of the underlying systematics uncertainties.

In Ref. [170], the three earlier data sets were analysed
with the hindrance model using the L(E) data. Calculations
yielded an S-factor maximum at Es = 4.54 MeV. In Figs. 39
and 40 we show the new fit hindrance results including the
recently measured data by the red curves, which give an S-
factor maximum at a slightly lower energy of Es = 4.41
MeV. Other calculations, such as Optical Model calcula-
tions or Fowler’s extrapolation recipe, predict a continuous
increase of the S factor toward even lower energies. Their
L(E) curves do not cross the constant S factor curve Lcs(E).
It should be noted that at very low energies, the L(E) function
of Fowler’s expression becomes (see [89])

LFowler = Lcs(E) − α, (30)

where α = 0.64 MeV−1 for this system.
Thus, at extreme low energies, LFowler (E) will be parallel

to Ls(E) but always 0.64 MeV−1 lower than the Lcs(E), i.e.
that it will never cross the Lcs(E) curve.

In Ref. [61], it was hypothesized that there is a decrease in
the S(E) factor towards even lower energies, which may be
due to hindrance in the fusion probability. However, because
of the resonance-like structures, this conclusion may be pre-
mature, but the empirical extrapolation recipe (with expres-
sion L(E) = A0+B0/E3/2 and the corresponding excitation
function formula) works well at low energies, at least for sys-
tems as light as 12C +16 O.

5.4 The S(E) factor for the 12C +14 N system.

The fusion cross sections for the system 12C +14 N, mea-
sured in the 1970s ([94]), by detecting the γ decays of the
residual nuclei, have already been presented in Fig. 12 (see
Sect. 2), where they were found to be well described by the
potential model. Together with the neighboring 16O +14 N
system, mentioned later in Sect. 6, these are the only two
fusion reactions discussed in this review leading to an odd-
odd compound nucleus. The influence of this nuclear struc-
ture effect will be discussed later in this section. The cross
sections (open circles) for the 12C +14 N systems together
with the corresponding S-factors ( black stars) are shown in
Fig. 41. There may be a hint of a possible S-factor maxi-
mum at ∼ 3.4 MeV, but it would be necessary to measure the
fusion cross sections for this reaction to even lower energies
in order confirm this hypothesis. The black dashed curve in
Fig. 41 is taken from the potential model which reproduces
the experimental cross sections quite well, but does not yield
a maximum in the S-factor. The red curve originates from
the hindrance model which gives a maximum of the S factor
close to the lowest energies measured in this experiment.

The logarithmic derivative is presented in Fig. 42, with
open circles and stars referring to L(E) values obtained with
the two- and three-point difference methods, respectively.
The green curve gives the constant S-factor function Lcs(E)

while the red curve is a fit to the experimental data with the
expression A0 + B0/E3/2. Although the uncertainties for the
experimental values of L(E) are large, the results indicate
that they already touch or cross the Lcs at the lowest energies.

5.5 The S(E) factor for the 12C +13 C system.

Similar to the other systems discussed in the previous subsec-
tions, fusion experiments on 12C +13 C cover a time range
of more than 40 years starting with the first experiment in
1976. The early experiments covered the energy range down
to about 3.2 MeV and were all done using thin carbon targets
and detecting γ -rays or light particles from the decay of the
residual nuclei [90,189,190]. The two most recent experi-
ments, [68,191] were carried out after 2012 at the University
of Notre Dame and at the Horia Hulubei National Institute,
Romania. These measurements used the thick-target tech-
nique detecting the radioactive 24Na (T1/2 = 14.95 h). From
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Fig. 41 Cross sections (open circles) and S-factors S(E) (stars) for
fusion in the system 12C +14 N from Ref. [94]. The black dashed curve
uses the potential model shown in Fig. 12, while the red curve originates
from the hindrance model ([170])

Fig. 42 Logarithmic derivatives L(E) for the system 12C +14 N from
Ref. [94] using the three-point method. The green dashed curve is the
constant S-factor function Lcs(E), while the red curve is a fit with the
function A0+B0/E3/2. The L(E) values given by circles and stars were
obtained with the two- or three-points difference methods, respectively

the yields, the total fusion cross sections were then extrapo-
lated using statistical model calculations. In the second exper-
iment, the radioactivity was measured in an underground
counting laboratory. At an energy E = 2.323 MeV the total
fusion cross section obtained was 0.9 ± 0.3 nb.

The results from these experiments, plotted as S(E) factor
or as logarithmic derivatives L(E) are shown in Figs. 43
and 44, respectively. The black dashed and red solid curves
represent fits to the data available in 2007 using Fowler’s
parameterization and the hindrance model, respectively (see
Ref. [170]). Similar to the 12C+14N system, the experimental
data show only very small fluctuations. The results from the
recent experiments [68,191], both done with the thick target
technique, are in disagreement with the hindrance model,

Fig. 43 S-factor S(E) for fusion in the system 12C +13 C measured in
different experiments. The recent thick target measurements are shown
by larger symbols (Notani [191] and Zhang [68]). The predictions from
Fowler’s parameterization and from the hindrance model, obtained in
2007 [170] are given by the black dashed red solid lines, respectively

Fig. 44 Logarithmic derivative L(E) for the system 12C+13 C as mea-
sured in different experiments. The L(E) values represented by black
dashed, red solid, green solid, red open and black open symbols were
obtained with 5-, 3-, 3-. 3-, and 4-points difference methods, respec-
tively. The symbols and the lines are the same as in Fig. 43

but follow the Fowler parameterization as shown in Fig. 43.
More experiments using different detection techniques would
be helpful for this reaction. These data do not show evidence
for an S-factor maximum for the 12C +13 C system.

5.6 Fusion in the 12C +12 C system

Carbon, after hydrogen, helium and 16O, the fourth most
abundant element in the universe, plays an important role in
the stellar nucleosynthesis. Fusion between two 12C nuclei
can occur in quiescent carbon burning in the core of massive
stars and explosively in the ignition phase of type Ia super-
novae, or in so-called superbursts, which take place in the
surface region of neutron stars. The important energy range
in these astrophysical scenarios is 1–3 MeV in the center
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of mass, a region that has only recently become accessible
for study in the laboratory. For that reason many astrophysics
calculations still rely on extrapolations from fusion cross sec-
tions made at higher energies into the 1–3 MeV range.

In Ref. [170], the earlier fusion data for 12C +12 C (Ref.
[192–194]) have been analyzed within the hindrance model.
Since the fusion Q-value for this system is positive, no maxi-
mum of the S factor must occur at low energies. By using the
low energy L(E) fitting recipe, an S-factor maximum at Es

= 3.68 MeV was predicted, at variance with the predictions
from other calculations (e.g. Fowler et al.), which all predict
a rise of the S(E) factor. Gasques et al. [176] found that this
difference has strong consequences for stellar burning and
nucleosynthesis .

Several new measurements have recently pushed the
energy limits to lower and lower values. In addition to early
experiments by Kettner et al. [197] and Becker et al. [198],
several new measurements by Barron-Palos et al. [195],
Aguilera et al. [196], Spillane et al. [37] and Zickefoose
et al. [58,178], have measured the excitation function of
12C +12 C by detecting either charged particles or γ -rays.
Various experimental difficulties in these types of measure-
ments were discovered and a cross section of about 35 pb at
energies of 2.15 MeV has been extracted from Zickefoose’s
experiment [58]. In order to reduce the serious backgrounds
encountered in singles experiments (measuring particles or
γ ’s), the particle-γ coincidence technique was applied for
the first time to the 12C +12 C system in 2012 [55]. So far
three measurements with this technique have been performed
at ATLAS [56], at the Androméde accelerator of the Institut
de Physique Nucléaire, Orsay [65], and at the University of
Notre Dame [62].

The results from direct measurements of 12C+12 C fusion
reactions in the energy range between 2.2 and 5.5 MeV per-
formed since 2002 and converted into S factors are shown by
various symbols in Fig. 45.

The S factors from the most recent particle-γ coincidence
experiments are shown by larger symbols. The results from
singles experiments, detecting either charged particles or γ ’s
are shown by smaller circles. Extrapolations from Fowler et
al. [89] (black-dashed curve) and the hindrance model [170],
(red curve) are shown for comparison with the measurements.

While measurements using the particle-γ coincidence
technique are less affected by background reactions, the
lower detection efficiency leads to longer running times and,
thus, below E ∼ 2.6 MeV only upper limits of the fusion
cross sections have been obtained so far, namely σ < 580
pb [65] at 2.16 MeV and σ < 240 pb [62] at 2.2 MeV. Sin-
gles measurements have been performed in smaller energy
steps (see Fig. 45) but with limited accuracy due to the uncer-
tainties associated with the thick target technique (see Refs.
[37,58]).

Fig. 45 S factor for fusion reactions in the system 12C +12 C from
measurements performed since 2002. The results from the most recent,
particle-γ coincidence experiments are shown by the large symbols. The
results from non-coincidence experiments, detecting either charged-
particles or γ ’s (Barron-Palos, Zickefoose, and Spillane) are shown by
smaller symbols

Calculating the logarithmic derivatives L(E) for the
12C +12 C system is quite challenging and results are shown
in Fig. 46, by using cross sections from Refs. [177,192,193].
Due to their large uncertainties, the derivatives from the
Spillane and Zickefoose experiments are not shown in the
figure. The cross sections from Ref. [195] were subject to a
smoothing procedure and the energy range of the measure-
ment in Ref. [196] only extends down to 4.2 MeV, so that
these data are also not included. The green dashed line rep-
resents the constant S factor, and the red and black dashed
lines are the predictions from the hindrance model and from
Fowler’s parameterization, respectively. The amplitudes of
the oscillations for 12C +12 C are larger than those observed
for 12C +16 O, resulting in several crossing points between
the logarithmic derivative and the constant S-factor curve
LCS , which makes a determination of an S-factor maximum
very uncertain.

Recently, the Trojan–Horse-Method [78] has been used as
an indirect approach to constrain the fusion cross sections for
12C +12 C at even lower energies [80]. The results from this
experiment indicate a strong rise of the S factor at energies
below 2.5 MeV. However, such a large astrophysical S factor
is not supported by a recent new direct measurement [62]
(see also Ref. [65]), as well as by the systematics deduced
from the experimental data for the 12C +13 C system [68].
The applicability of this approach has been questioned in
several papers [199,200] by pointing to the use of the Plane-
Wave-Approximation (PWA) instead of the Distorted-Wave-
Born-Approximation. The distortion effect, which is absent
in the plane-wave approximation and plays an important role
when the charge of the transferred fragment X of the beam, is
not small [79,199], where X is the component of the incident
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Fig. 46 Logarithmic derivative L(E) for the fusion reactions in the
system 12C +12 C. L(E) values were obtained with the three-points
difference method. The results from the most recent particle-γ coin-
cidence experiments are not included, since they are not measured in
small enough energy steps for getting meaningful derivatives. Data from
Spillane and Zickefoose are not used either, since their cross section
uncertainties are very large

Fig. 47 Level density ρ as a function of the excitation energyU for the
systems 12C +12 C, 12C +13 C, 12C +14 N, 12C +16 O, and 16O +16 O,
using the parameterization of Ref. [202] and [201]. The solid points are
the excitation energies at the lowest energies (measured until now) for
these five systems. See text for details

nuclei, which is transfered to the target nucleus in the indirect
reaction (see Fig. 10 in Sect. 2.3). This renormalization does
not affect the structure of the excitation function calculated
in Ref. [80], but leads to a reduction of the cross sections at
E = 1.5 MeV by more than two orders of magnitude. The
astrophysical S factor from the Trojan horse method in fact
becomes compatible with the upper limit estimated with the
sudden model [200]. A better understanding of the limitations
of indirect techniques for these experiments is of paramount
importance. The results of this measurement are not included
in the analyses.

The results from the recent 12C+12 C fusion studies can be
summarized as follows: 1) The 12C+12 C and 12C+16 O sys-
tems show oscillations in their excitation functions. The other
systems discussed in Section 5 as well as other fusion exci-
tation functions e.g. 10B+10 B (see Fig. 36), 13C+13 C (Ref.
[191]) and 10B+12 C [190] have smooth excitation functions
that are well described by the potential model (see Fig. 41.
The origin of these oscillations in the fusion of 12C +12 C
can be attributed to the deficit in the level densities in rela-
tion to the decay width of the compound nucleus 24Mg [103].
Following the discussion from Ref. [103] by using the exper-
imental level densities tabulated in Ref. [201] and the depen-
dence on the excitation energy from Ref. [202] one obtains
level densities for the five systems 12C +12 C, 12C +13 C,
12C +14 N, 12C +16 O, and 16O +16 O, as shown by the
solid curves in Fig. 47. The solid points give the level den-
sities in the respective compound nuclei at the lowest mea-
sured energies. The three systems 12C +13 C, 12C +14 N and
16O +16 O, which show smooth S-factor curves, have very
similar level densities of 5000/MeV at the lowest measured
energies, while the two systems with oscillations, 12C +16 O
and 12C +12 C, have lower level densities of only 200/MeV
(12C+12 C) or 1000/MeV (12C+16 O) at the lowest measured
energy (solid points). The other parameter that needs to be
included in the discussion is the width, ΓJ of the respective
compound level. In order to include this effect, it was sug-
gested in Ref. [103] to impose a reduction factor PJ on the
CC(M3Y + rep.) calculations

σ =
∑

J

σ J
cc PJ , (31)

where this reduction factor for the fusion cross section is
given by

Pj = 1 − exp

(
−2π

Γ̄J

D j

)
. (32)

This reduction factor helps to explain the decrease in the
average S factor for energies below E ∼ 4 MeV for 12C+12C
[103].

2) By comparing the cross sections for the three systems
12C +12 C, 12C +13 C and 13C +13 C, Tang and Esbensen
found that the cross sections for 12C+13 C and 13C+13 C pro-
vide an upper limit for the fusion cross sections of 12C+12 C
over a wide energy range [120,191]. Based on this obser-
vation a more reliable upper limit for the 12C +12 C fusion
cross sections at stellar energies could be established. Note,
however, that it does not give the correct average behaviour
of the fusion cross sections for 12C +12 C at low energies.
Moreover, this upper limit is much lower than what has been
predicted based on the existance of a strong resonance at 1.5
MeV, which was conjectured by Perez-Torres et al. based on
an optical model calculation and used by Cooper et al. in
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an astrophysical calculation of the 12C +12 C reaction rate
[203,204].

3) Up to now, only the hindrance model predicts an S-
factor maximum for 12C +12 C. There are many theoretical
calculations, the results of which agree with the well-known
Fowler curve, which exhibits an increasing S(E) curve at
decreasing collision energies into the stellar energy regime.
However, the level density and the level width effects men-
tioned above have not yet been considered in many sophisti-
cated theoretical calculations.

In a recent paper, Beck et al. have compared the two kinds
of predictions, including the resonance behaviors, without
reaching any conclusion on this issue [200].

Therefore, at this point it is an open question whether
there is an S-factor maximum in 12C +12 C fusion, although
the three latest results of particle-γ coincidence experiments
are in agreement with the hindrance model. It may be noted
that the results at low energies around 2–3 MeV obtained by
Zickefoose [58] in the most recent singles measurement do
not support the theoretical curves mentioned above, which
predict a strong increase of S-factor towards low energies.

5.7 Fusion hindrance for astrophysical systems.

The systematics of fusion hindrance covering the full range
from light to heavy systems will be discussed in the next
subsection. Due to the importance of fusion reactions for
nuclear astrophysics, we will here give some general com-
ments about the existence or non-existence of fusion hin-
drance. The experimental data presented for many heavier
systems in Sect. 4 show the existence of fusion hindrance
through the presence of an S-factor maximum.

These maxima follow a systematic trend which can be
used to make extrapolations for lighter systems where no
maximum has yet been observed. Since, as shown in Fig. 48,
there is some nuclear structure dependence of the Es val-
ues with closed-shell nuclei having the maximum at higher
energies when compared to open-shell nuclei, the extrapo-
lated values for light nuclei can fluctuate by 10–15%. For
the astrophysically important systems, the predicted values
range from 6.3 to 7.3 MeV for 16O +16 O, 4.2–4.9 MeV for
16O+12 C and 3.4 - 4.0 MeV for 12C+12 C. While the above
value for 16O+16 O does cover the measured Es observed in
experiments, the values of the other two systems are located
at the low experimental regions and the oscillations com-
plicate the determination and the debate about the S-factor
maximum.

It should be mentioned that the extrapolation formula,
L(E) = A0 + B0/E3/2, is an empirical one. If the expo-
nent 3/2 in the expression changes to a smaller value, the
extrapolation of S(E) will not give a maximum. While this
expression works well for systems as light as 12C +16 O (see
Sect. 5.3), it might not be appropriate for all light systems.

Table 1 Summary of energies Es at the S-factor maxima. The system,
fusion Q value, the parameter ζ = Z1Z2

√
M1M2/(M1 + M2), that

characterizes the system and the energy Es are included in column 1–
4, respectively. The first group shows the medium-mass and heavy stiff
(closed-shell) systems, while the second groups shows the soft systems.
The third and fourth groups include medium-mass and light systems,
respectively. For the first three groups, an S-factor maximum has been
observed in the experiments. For the systems in the fourth group no
S-factor maximum has been observed yet, and the Es value has been
obtained by extrapolation

System Q value MeV ζ Es MeV References

90Zr +92 Zr −153.7 10786 170.7 [33]
90Zr +90 Zr −157.3 10727 175.2 [33]
90Zr +89 Y −151.5 10430 170.8 [33]
60Ni +89 Y −90.49 6533 122.9 [11]
58Ni +58 Ni −65.85 4219 94.0 [32]
54Fe +58 Ni −56.51 3848 86.7 [46]
19F +208 Pb −50.07 3079 75.5 [205]
32S +89 Y −36.62 3026 73.1 [164]
16O +208 Pb −46.48 2528 68.0 [110]
12C +198 Pt −13.96 1574 48.0 [70]
11B +197 Au −5.00 1275 39.8 [206]

64Ni +100 Mo −92.26 7343 120.6 [143]
64Ni +64 Ni −48.80 4432 87.5 [12]
36S +64 Ni −8.54 2149 52.3 [165]

28Si +64 Ni −1.79 1729 45.6 [162]
27Al +45 Sc 9.63 1121 32.4 [172]
28Si +30 Si 14.30 745.6 24.7 [161]
24Mg +30 Si 17.89 613.2 20.8 [207]
12C +30 Si 14.11 245.9 10.5 [141]
12C +24 Mg 16.30 203.6 9.7 [174]

16O +16 O 16.54 181.0 6.78 [180–184]
12C +20 Ne 18.97 164.3 5.85 [180]
14N +16 O 18.33 153.0 5.39 [208]
14N +14 N 27.23 129.6 4.15 [209]
13C +16 O 20.28 128.6 4.00 [189]
12C +16 O 16.76 125.7 4.54 [187,188]
12C +14 N 15.07 106.8 5.09 [190]
12C +13 C 16.32 89.9 3.45 [90,191]
12C +12 C 13.93 88.2 3.68 [192–194]
11B +14 N 24.72 86.9 2.90 [210]
11B +12 C 18.20 71.9 2.12 [190]
10B +10 B 31.14 55.9 1.47 [177]

6 Systematics of hindrance effect

6.1 Systematics of Es at the S-factor maximum

In order to obtain a reference curve for the energy, Es , at the
S-factor maximum, the measured Es values for stiff (closed-
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shell), medium-heavy and heavy systems are summarized in
the first part of Table 1. The second part lists the measured
Es values for some soft systems in the same mass region,
whereas the third part gives measured values for medium-
mass systems. The fourth part summarizes light-mass sys-
tems, where the Es values are obtained by extrapolation using
Eqs. (25) and (28) under the assumption that there are also
S-factor maxima.

We note that the first three systems listed in Table 1 are
heavy and they may therefore have a non-vanishing fission
decay branch. Since this decay branch has not been measured
for these systems, caution should be exercized in interpret-
ing the results for Es given in Table 1 based solely on the
measured ER cross sections. However, the fact that the Es

values for these systems fall well in line with the overall sys-
tematics (see Fig. 48) indicates that the fission branch is not
a major contributor. In the subbarrier region statistical model
calculations using the PACE4 code support this conclusion.

In the lower panel of Fig. 48 we show the Es values plotted
as a function of the system parameter ζ [(defined in Eq. (21)]
for all the systems listed in Table 1. The symbols refer to the
four groups of the Table, i.e. blue stars for light, red circles
for medium-light, green circles for medium-mass soft, and
black for medium-heavy and heavy stiff systems. In the upper
panel, the corresponding, experimental logarithmic slopes
Ls(Es) = 0.495ζ/E3/2

s (MeV−1) and Es is given in units of
(MeV) are shown with the same symbols.

The magenta curves in Fig. 48 are obtained from least-
squares fit of Ls vs. ζ for the systems listed in the first, third
and fourth parts with the result

Ls(ζ ) = 2.19 + 511/ζ (MeV−1), (33)

which deviates slightly from the historical value of 2.33
MeV−1, Ref. [13]. The corresponding magenta curve for Es

is given by

Es(ζ ) = [0.495ζ/(2.19 + 511/ζ )]2/3(MeV), (34)

which provides an average description of the stiff systems
over the whole mass region while the soft systems listed
in second part of the Table, such as e.g. 64Ni +64 Ni and
64Ni+100Mo, lie below the curve. Correspondingly, the curve
for Ls(ζ ) gives an average description of the stiff systems,
while the soft systems lie above the curve.

It is clear that the 12C +24 Mg,30Si systems deviate from
these systematics. This will be discussed later.

6.2 Radius of curvature ρ of S(E) near the S-factor
maximum, A0 and B0

In Ref. [211], the slopes of the logarithmic derivative were
studied quantitatively. The ratio of the slopes of L(E) and

(a)

(b)

Fig. 48 a The logarithmic derivative of the excitation function at the
hindrance threshold and b the energy at the maximum of the S factor
are plotted vs. the system parameter ζ , for the systems of Table 1. The
magenta lines are the result of least-squares fits, as specified in the two
panels, obtained by considering only the first-, third- and fourth-group
systems in Table 1. The fitted curves have parameters very close to those
obtained in the previous papers e.g. Ref. [175]

Lcs(E),

RR = dL(E)/dE

dLcs(E)/dE
. (35)

is a quantity related to the curvature of the S-factor maxi-
mum. A value of RR = 1, means that the two curves, L(E)

and Lcs(E), are parallel. In Fig. 49, the experimental results
for the ratio RR are shown. The black symbols originate from
Ref. [211], whereas the red points are from recent measure-
ments for the systems 12C +24 Mg [174], 12C +30 Si [141],
24Mg +30 Si [173], 28Si +30 Si [161], 30Si +30 Si [163,219],
27Al+45 Sc [172] and 40Ca+48 Ca [163]. The open symbols
are obtained by using extrapolation to low energies with the
empirical expressions Eqs. (25–28) in Sect. 4.3. The black
curve is a second-order polynomial of ζ given in Ref. [211],

RR = 1.10 + 1.70 × 10−3ζ + 9.48 × 10−8ζ 2. (36)

As can be seen from Fig. 49, RR decreases and approaches
to a value near unity as ζ decreases.

Approximating the S factor near the maximum by a Gaus-
sian curve,

S(E) = Smax exp
[
−(E − Es)

2/2ρ2
]
, (37)
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Fig. 49 RR, the ratio of energy derivatives of the slopes L(E) and
Lcs(E) at their crossing points is shown as a function of the system
parameter ζ . The solid circles are extracted from experimental data
while the open ones are extrapolated from data at low energies. The red
circles are new measurements performed since the publication of Ref.
[211]. The curve is a polynomial fit to the black data points

Fig. 50 Plot of the ratio ρ/Es as a function of the system parameter ζ .
The solid circles are extracted from experimental data while the open
symbols are extrapolated from data at low energies. The red circles are
the results from new measurements published after Ref. [211]

the variance ρ of the distribution is given by

1

ρ
=

∣∣∣∣
d2S

dE2

∣∣∣∣ =
∣∣∣∣
dL

dE
− d(πη/E)

dE

∣∣∣∣ , at E = Es . (38)

It can be used as a measure of the sharpness of the S-factor
maximum. 1/ρ is determined by the difference of the deriva-
tives of L(E) and Lcs(E).

In Fig. 50 we show the results for the ratio ρ/Es as a
function of ζ . A pronounced S-factor maximum appears for
small values of ρ/Es , whereas the S(E) factor is wider near
the S-factor maximum for larger values of ρ/Es ,

In addition to the difficulties in identifying an S-factor
maximum because of a gentle cross-over between the L(E)

and Lcs(E) curves, these difficulties are aggravated by poor

(a)

(b)

Fig. 51 Systematics of the fit parameters A0 and B0 as a function of
ζ

statistics and the serious backgrounds associated with the
small cross sections in the sub-barrier region. It is an experi-
mental challenge to ascertain whether the S-factor maximum
exists in light systems, and the problem becomes more and
more serious as the mass of compound nucleus decreases.

In Fig. 51, the parameters A0 and B0 which describe the
dependence of the logarithmic derivative, L(E), as a func-
tion of collision energy (see Eq. 25) are plotted as a function
of ζ . While for the parameter B0 as a function of ζ a nice
systematic trend is observed, the parameter A0 shows larger
fluctuations, especially for heavier systems. Low-mass sys-
tems, which are of interest in nuclear astrophysics, have an
almost constant value of A0 = −2.2.

6.3 Strength of fusion enhancement and hindrance

The signatures of fusion hindrance in lighter systems (e.g.
12C +24 Mg or 12C +30 Si) are less pronounced than the
ones in heavier systems (e.g. those presented in Sect. 4).
This behavior is shown in more detail in Fig. 52 by plotting
the ratios between the experimental cross sections and the
the standard CC calculations with a Woods Saxon potential
including all couplings, which is denoted σcc−ws as a func-
tion of E − Vc. Here Vc is the Coulomb barrier calculated
with the Akyüz–Winther potential [150]. The resulting cross
section ratios are shown in the upper panel for several sys-
tems from 64Ni+64 Ni to 12C+30 Si. One can clearly see that
fusion hindrance is present by the fact that this ratio shows a
pronounced deviation below unity in medium-mass systems,
whereas the deviation is smaller for 12C +30 Si. It should
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Fig. 52 Upper panel: ratio of the experimental cross sections to the
CC calculations using the Woods–Saxon potential for different sys-
tems. Lower panel: comparison done with the no-coupling limit for the
same systems. Values of Vc are 96.15, 52.30, 24.73 and 13.07 MeV for
64Ni +64 Ni, 28Si +64 Ni, 24Mg +30 Si, and 12C +30 Si, respectively

be noted, however, that the two heavier systems have been
measured down to smaller cross sections with respect to the
two lighter systems.

For comparison, the ratios between the experimental cross
sections and a calculation using a Woods Saxon potential but
without couplings, σnocoupling are shown in the lower panel.
These ratios display a maximum below the Coulomb bar-
rier but typically 2 MeV above the hindrance threshold indi-
cated by the vertical dashed lines. The peak is much more
prominent for heavier systems, indicating that the cross sec-
tion enhancement caused by coupled-channels effects is very
strong in those heavier cases.

Obviously, stronger enhancement and stronger hindrance
show up together for medium-mass systems. One can under-
stand that the two phenomena are not independent since they
have a common underlying physics cause as suggested by
Ichikawa et al. [126,127] with strenghs that scale with the
factor Z1Z2.

At lower energies the ratio σexp/σnocoupling decreases in
all cases, and reaches unity for 12C +30 Si. New experimen-

Fig. 53 Upper panel: measured vs. calculated fusion cross sections as
a function of the energy relative to the Coulomb barrier for 6,7Li + 198Pt
[69,70], 12C +198 Pt [70], 16O +208 Pb [110,142]. In the calculations a
standard WS potential was used. Lower panel: the same experimental
data are compared to the analogous no-coupling calculations. Vc values
are 28.55, 28.49, 47.34, 55.88 and 76.52 MeV for 6Li+198Pt, 7Li+198Pt,
11B +197 Au, 12C +198 Pt, and 16O +208 Pb, respectively

tal data could clarify whether the cross section approaches
the no-coupling limit, i.e. σexp/σnocoupling ∼ 1 at extreme
sub-barrier energies, or whether the decrease of the ratio will
continue at lower energies, possibly revealing new informa-
tion about the ion-ion potential far below the barrier.

Several asymmetric systems were recently studied by
Shrivastava et al. [70]. They investigated the features of
fusion hindrance and how it evolves with increasing mass
and charge for light projectiles such as 6,7Li and 12C on the
heavy target 198Pt. In their studies, the case of 16O +208 Pb
[110,142] was also re-analysed. Fusion cross sections down
to very small values (≈100 nb) were measured using an off-
line technique by detecting coincidences between character-
istic X- and γ -rays (see also [71]).

Similar to Fig. 52, ratios for these asymmetric systems are
shown in Fig. 53. From the upper panel of Fig. 53, clearly,
fusion hindrance is not observed for 6,7Li, but shows up when
going to the heavier 12C and 16O projectiles. The different
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behaviour of the 6,7Li-induced reactions might be due to
competing reaction channels such as transfer and/or break
up, preventing the observation of fusion hindrance. A com-
parison of the lower panels of Figs. 52 and 53 also indicates
that the cross section enhancement observed for the very
asymmetric systems induced by light projectiles is much
smaller than the value observed for medium-mass systems
such as e.g. 64Ni +64 Ni. These observed trends indicate the
importance of investigating the behaviour of light and more
asymmetric systems where the existence of hindrance and
its features are uncertain and a matter of debate based on the
few data, which are presently available.

7 Simple analytic fusion cross section formulae

In this section we give an overview of various analytic equa-
tions that have been suggested for the description of fusion
excitation functions.

7.1 Logarithmic derivative fits

In order to describe the fusion hindrance at extreme sub-
barrier energies and to extrapolate the excitation function to
lower energies, empirical expressions of the excitation func-
tions, Eqs. (25–28), that fit the logarithmic derivative data
at low energies have been introduced (see [170,171]). The
S-factor maximum is also well reproduced by this empirical
parametrization.

7.2 The Wong formula

It is well known that the Wong formula [27] given in Eq. 3
can reproduce excitation functions at higher energies quite
accurately, but that it often overpredicts the cross sections in
the range below ∼ 0.1 mb.

The derivation of the Wong formula is based on two
assumptions, namely (1) that the fusion barrier shape is
approximated by an inverted parabola for which the Hill–
Wheeler formula for quantum mechanical tunneling can be
applied, and (2) that the radius, R and curvature h̄ω of the
fusion barrier is independent of the angular momentum. It has
been found that, because of the first assumption, this formula
fails to reproduce the fusion hindrance seen at deep subbarrier
energies because the inverted parabola is not a good approx-
imation to the actual shape of the fusion barrier far below its
maximum. Thus, the 1/r dependence of the Coulomb repul-
sion at larger distances combined with the approximate expo-
nential shape of the nuclear attraction at smaller distances
yield a less penetrable barrier than the inverted parabola
assumed in the Wong formula. It has recently been shown
also that the second assumption is problematic, especially for
light systems. Recently, various modifications to the Wong

formula have been proposed to alleviate these shortcomings
as discussed in the next subsection.

At energies higher than the Coulomb barrier, the Wong
formula approaches the expression, Eq. 2 for the black body
approximation [26].

7.3 Modifications of the Wong formula

As mentioned above, in deriving his formula, Wong relied on
the assumptions that R and h̄ω are independent of the angu-
lar momentum l. Recently, however, Rowley and Hagino
presented an analysis [212] which shows that the parame-
ters B, R, ω should be angular momentum dependent. They
suggested to use a different parameter set for each angular
momentum l, and that one needs to derive numerically the
parameters, VE , RE and ωE .

In an alternative approach, Denisov and Sedykh recently
proposed to include a collision-energy dependence of the
barrier curvature and developed a method to obtain empir-
ical relations for the parameters V, R and h̄ω in the Wong
formula [18], where V is the barrier height. In this empiri-
cal description, Denisov et al. assumed that h̄ω includes an
energy dependent factor f (E) given by

f (E) = (E/V )3

1 + exp[−0.14215(E − V )] . (39)

A global fit to 85 experimental excitation functions of
even-even systems was carried out in order to fix nine free
parameters in their formulation. These fit results (85 figures)
have been presented in Ref. [18]. In Figs. 54 and 55 we show
the results for 16O +208 Pb and 64Ni +64 Ni, respectively,
compared with the calculations by the Denisov model shown
by the red curves. Both calculations are found to be in fair
agreement with the data and predict an S-factor maximum,
albeit not at the correct energies.

One should keep in mind, however, that in this approach
only one set of nine global parameters is used. Other calcula-
tions, using parameters individually adjusted to a particular
system are shown by the black (L(E) fit) and green curves
(single-Gaussian fit), will be discussed in next subsection.

7.4 Gaussian barrier distribution

The coupling between the fusion channel and intrinsic exci-
tations of the interacting nuclei, as described in the coupled
channels approach, leads to a distribution of interaction bar-
riers, which for most cases results in an enhanced cross sec-
tion at energies below the uncoupled fusion barrier. Rowley
et al. [10] have shown that this distribution of barrier heights,
D(E), can be extracted from experimental fusion data under
certain assumptions, provided that the cross sections are suf-
ficiently precise and that the excitation function has been
measured in small energy steps, such that the second deriva-
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Fig. 54 Fusion cross sections, σ(E) (open circles) and the correspond-
ing S(E) factors (solid triangles) for the system 16O+208 Pb [110]. The
red curve is the result from the Denisov model, whereas the black and
green curves are fits to the data using the single-Gaussian (Eq. 41) and
the logarithmic derivative (Eqs. 25, 26) approach, respectively

Fig. 55 Fusion cross sections, σ(E) (open circles) and the correspond-
ing S(E) factors (solid triangles) are shown for the system 64Ni +64 Ni
[12]. The red curve is the result from Denisov model, whereas the black
and green curves are fits to the data using the single-Gaussian (Eq. 41)
and the logarithmic derivative (Eqs. 25, 26), respectively

tive of the product of the cross section and the collision energy
can be computed with sufficient accuracy. In this case, the
distribution of fusion barriers can be derived from

D(E) = 1

πR2

d2(σ (E)E)

dE2 , with
∫

D(E)dE = 1. (40)

Subsequently, barrier distributions for many systems have
been studied using this method [2,10]. This kind of analysis
has played an important role for understanding the dynamics
of heavy-ion fusion reactions. One must emphasize, however,
that although Eq. (40) does not include any approxitation, the
interpretation of D(E) as a barrier distribution was obtained
under the black body approximation.

Another cross section formula was proposed by Siwek-
Wilczynska et al. [213,214], given by

σg(E) =
√

πR2
gWg√

2E

[√
π Z erfc(−Z) + exp(−Z2)

]
, (41)

where Z = (E−Vg)/
√

2Wg and Rg is the barrier radius. The
quantities Vg and Wg are defined below. This expression was
originally used in their study of super-heavy elements for-
mation, and was subsequently applied to the analysis of deep
subbarrier fusion reactions by Jiang et al. [17]. This approach
includes the effects of Coupled-channels in a schematic way
by approximating the resulting barrier distribution by a Gaus-
sian function and gives a surprisingly good representation of
the subbarrier hindrance phenomenon. In the following, we
discuss the essential points in more detail.

Siwek-Wilczynska et al. started from a Gaussian fusion
barrier distribution Dg(V ) and followed the idea by Stelson
et al. [215] and Rowley et al. [10] of using the black body
approximation [26] to arrive at the expressions

Dg(V ) = 1√
2πWg

exp

⎡

⎣−
(
V − Vg√

2Wg

)2
⎤

⎦ , (42)

with

σ(E) = πR2

E

∫ E

E0

(E − V )Dg(V )dV . (43)

Here, V is the barrier height, Vg is the centroid and Wg the
standard deviation of the distribution. The lower integration
limits are E0 = −Q or 0, depending on whether the fusion Q
value is negative or positive. Finally, they obtained a simple,
analytic function for the cross section, Eq. 41, which includes
the complementary error function erfc(Z).

It should be emphasized, however, that the derivation of
this formula relies on the assumption that for each barrier
height in the assumed distribution fusion occurs only if the
collision energy exceeds the barrier height for the partial
wave in question, i.e. there is no quantum mechanical tun-
neling of the barrier. The sub-barrier behavior is thus entirely
dependent on the shape of the barrier distribution at these
energies.

In Ref. [214], a table was included for 46 systems heav-
ier than 48Ca +48 Ca, for which relevant barrier distribution
parameters were derived. The data used were mostly in the
cross section range from 0.1 to 1000 mb.

In Ref. [17] it was found that Eq. (41) can reproduce the
hindrance behavior at extreme subbarrier energies very well,
even better than predicted by many theoretical calculations.

7.5 Comparison with experimental data

Although there are more than one thousand of experimental
fusion excitation functions published in the literature, only
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Table 2 Parameters obtained by least-squares fits with single-Gaussian
and L(E) recipes for 35 fusion systems, whose lowest measured cross
sections are less than 0.02 mb. Q is the fusion Q value, N is the number

of data points in the fitting, χ2 is the value defined in Eq. 44, EVR and
FF are cross sections for fusion-evaporation residues and fusion-fission,
respectively. See text for details

System Q Type N Data range Eexp
s χ2 Rg Vg Wg Eg

s A0 B0 El
s Ref.

MeV mb–mb MeV fm MeV MeV MeV MeV−1 MeV1/2 MeV

16O +18 O 24.41 EVR 21 0.006–224 0.38 7.95 9.89 0.873 −3.13 141.6 6.54 [87]
12C +24 Mg 16.30 EVR 21 0.015–668 9.7 2.54 6.40 11.10 0.741 9.87 −6.32 297.2 9.89 [174,216,217]
12C +30 Si 14.11 EVR 22 0.0027–815 10.5 1.08 7.79 13.31 0.962 10.54 −4.33 274.1 10.74 [141,218]
6Li +198 Pt 8.53 EVR 10 0.00017–348 45.7 7.89 27.43 1.75 −3.14 545.5 19.27 [69]
7Li +198 Pt 8.82 EVR 11 0.0002–1004 5.93 9.71 28.04 1.65 −2.57 507.2 18.58 [70]
24Mg +30 Si 17.89 EVR 20 0.0080–332 20.8 0.59 8.19 24.05 1.05 21.22 −7.12 984.5 20.91 [173,207]
28Si +28 Si 10.92 EVR 21 0.00063–453 13.5 8.39 28.95 1.26 22.51 −3.45 874.0 23.64 [159]
28Si +30 Si 14.30 EVR 17 0.0044–500 24.7 0.97 7.92 28.13 1.16 24.69 −8.13 1369 24.73 [161]
30Si +30 Si 15.61 EVR 20 0.0049–916 0.52 8.63 27.94 1.15 24.46 −5.40 968.1 22.93 [219]
27Al +45 Sc 9.63 EVR 16 0.00031–596 32.4 0.68 7.11 37.68 1.42 32.17 −7.14 1848 32.01 [172]
11B +197 Au −5.00 EVR+FF 17 0.0003–770 39.8 18.8 10.56 46.81 1.78 39.51 −5.29 1607 39.9 [206]
32S +48 Ca 7.66 EVR 21 0.0008–490 8.63 8.56 42.82 1.64 33.9 −6.97 2160 35.38 [169]
36S +48 Ca 7.55 EVR 25 0.0006–973 3.26 10.00 41.97 1.11 38.93 −10.32 3129 37.93 [165]
12C +198 Pt −13.96 EVR+FF 20 0.0001–670 48.0 12.5 10.89 55.38 1.81 48.68 −3.86 1232 48.0 [70]
40Ca +48 Ca∗ 4.56 EVR 23 0.0013–463 6.30 8.31 51.86 1.64 43.88 −6.22 2624 42.13 [163]
48Ca +48 Ca∗ −2.99 EVR 27 0.0006–506 7.43 9.87 51.17 1.08 48.45 −13.0 4741 47.54 [166,167]
28Si +64 Ni∗ −1.79 EVR 16 0.00003–506 45.6 0.58 8.05 50.45 1.40 45.73 −10.28 3791 45.65 [162]
36S +64 Ni∗ −8.54 EVR 24 0.0028–788.9 52.3 10.5 9.66 56.20 1.21 52.8 −17.4 5993 53.1 [168]
16O +208 Pb∗ −46.48 EVR+FF 38 0.000016–1133 68.0 106 10.43 73.59 1.57 69.06 −3.91 667.7 69.44 [110,142]
28Si +94 Mo 35.29 EVR 15 0.0039–381 3.58 6.99 73.17 1.43 69.18 −5.04 1465 [220]
48Ti +58 Fe −23.51 EVR 26 0.0018–351 0.49 8.07 70.99 1.71 63.13 −5.08 1924.7 62.05 [144]
54Fe +58 Ni −5.40 EVR 25 0.0011–433 86.7 24.2 9.13 91.51 1.76 84.78 −3.05 761.9 83.05 [46]
40Ca +96 Zr∗ −41.09 EVR 62 0.0027–474 5.67 9.63 94.15 2.95 −5.02 1476 78.17 [146]
58Ni +64 Ni −52.72 EVR 38 0.0013–308 2.40 6.70 94.74 2.22 80.96 −5.04 1465 85.70 [152]
64Ni +64 Ni∗ −48.80 EVR 16 0.00002–442 87.5 0.71 8.86 92.62 1.45 87.7 −8.29 2646 87.54 [12]
37Cl +130 Te −56.57 EVR 17 0.0012–648 0.50 11.15 102.1 2.15 87.7 −.70 1305 91.26 [154]
40Ar +112 Sn∗ −63.20 EVR+FF 15 0.0084–478 4.16 9.19 104.40 2.45 87.70 −3.41 990.8 87.54 [221]
40Ar +116 Sn∗ −62.36 EVR+FF 14 0.0038–512 9.75 8.99 103.84 2.44 87.38 −3.65 1061 92.95 [221]
40Ar +122 Sn∗ −58.64 EVR+FF 17 0.0018–661 8.97 9.90 103.79 2.66 83.59 −3.02 1023 89.75 [221]
40Ar +144 Sm∗ −90.66 EVR+FF 11 0.0016–322 6.85 8.20 124.49 2.29 111.46 −1.96 489.8 113.3 [221]
40Ar +148 Sm∗ −84.18 EVR+FF 12 0.0008–353 7.28 9.16 125.60 3.51 −1.13 382.0 103.9 [221]
40Ar +154 Sm∗ −75.31 EVR+FF 15 0.0016–407 24.4 8.38 122.80 4.17 −1.51 528.1 98.28 [221]
76Ge +86 Kr −97.91 EVR 15 0.0068–347 14.6 8.08 129.95 2.94 98.51 −1.94 394.3 116.3 [222]
58Ni +124 Sn −112.30 EVR+FF 15 0.00046–570 1.05 8.51 156.92 3.45 115.84 −2.18 6592 138.3 [223,224]
64Ni +124 Sn −117.51 EVR+FF 17 0.0008–605 1.71 7.86 154.02 2.59 135.63 −2.35 602.1 141.9 [223,224]

a fraction extend to the very low cross section region. For
medium- and heavy-mass systems, there are 35 such mea-
surements ranging from 16O +18 O to 64Ni +124 Sn as sum-
marized in Table 2. Among them are 13 systems which have
been studied by Siwek-Wilczynska et al. [214]. These are
indicated with a star in column 1. The fusion Q values,
the measured reaction channels (fusion-evaporation and/or
fusion-fission), the number of data points, and the cross sec-

tion range are listed in columns 2–5. We note that these 35
excitation functions all represent complete fusion. That is,
when there are contributions from fission, the data are from
the sum of measurements from fusion evaporation and fusion
fission. Column 6 gives the energy of the S-factor maximum
for those systems where a value has been determined in the
experiments.
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(a)

(b)

Fig. 56 Fusion cross sections, σ(E) and the corresponding S(E) fac-
tors for the systems 11B +197 Au [206] (panel a) and 28Si +64 Ni [162]
(panel b). See text for details

Columns 7–10 give the least-squares fit parameters, χ2,
Rg , Vg , and Wg obtained from the Gaussian formula Eq. 41.
The parameters A0 B0 from the logarithmic derivative L(E)

fits (see Sect. 4), are listed in columns 12 and 13, respectively.
The values χ2 are defined as:

χ2 = 1

N − M

N∑

i=1

((σi − σexp−i )/Δσexp−i )
2, (44)

where σi and σexp−i are calculated and experimental cross
sections, respectively; Δσexp are the experimental uncertain-
ties, and N , M are the number of experimental data points
and adjustable parameters, respectively. For the Gaussian for-
mula M = 3.

Well-developed experimental S-factor maxima are seen
in twelve systems for which the experimental values of Eexp

s

are given in column 6. Estimates of Es for most of the sys-
tems have also been obtained using the single-Gaussian test
distribution to fit the excitation function or Eq. 25,26 to repro-
duce the logarithmic derivative. The values of Es obtained
from the two extrapolation methods are very similar and in
good agreement also with the Eexp

s values derived directly

(a)

(b)

Fig. 57 Fusion cross sections, σ(E) and the corresponding S(E) fac-
tors for the systems 24Mg +30 Si [173,207] (panel a) and 12C +30 Si
[141,218] (panel b). See text for details

from the experimental data in the twelve systems mentioned
above.

Four systems, two with negative fusion Q values, 11B+197

Au and 28Si +64 Ni, and two with positive fusion Q values,
24Mg +30 Si and 12C +30 Si, are shown in Figs. 56 and 57,
respectively. Fusion cross sections are given by open circles
while S factors are shown by stars.

Several calculations are included in these figures. The
black solid curves (S.G.) represent results from the single-
Gaussian distribution, while the magenta solid curves are
derived from fits to the low energy L(E) data in the energy
region below the fusion barrier. Also included are the calcula-
tions from the Wong formula and CC calculations, using the
sudden model [123,124] or the adiabatic model [126,127],
as indicated. The inability of the Wong formula to reproduce
the sharp drop-off of the cross sectioin at the lowest energies
can be seen for all four systems.

By examining Table 2, Figs. 56 and 57, one observes that:
(1) The two empirical fits, using either the Gaussian test dis-
tribution or the logarithmic-derivative fit reproduce the exci-
tation function and the hindrance behavior at low energies
rather well. For the low cross section measurements, there
is no obvious preference for one approach over the other
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(a)

(b)

Fig. 58 Fusion cross sections, σ(E) and the corresponding S(E) fac-
tors, (panel a) and L(E) (panel b) for the system 40Ar +144 Sm [221]

in terms of reproducing the hindrance behavior. (2) The χ2

values, which are obtained over the full energy range from
the Gaussian distribution fits are better than the fit obtained
by using the Wong formula, and they are often much bet-
ter than what is obtained by Coupled-Channels calculations,
although Coupled-Channels calculations are often not per-
formed so detailed as a fitting process. (since the L(E)-data
fit only deals with the cross sections at low energies, we do
not calculate the χ2 value for that method), (3) The devia-
tions between the predictions for Es from the two recipes
are larger in cases where the measurements are less accurate.
That can be seen from values of Eg

s and El
s listed in Table 2.

For comparison, plots for 40Ar +144 Sm are shown in
Fig. 58. In this case, the measured excitation function is far
from reaching the energy region where the S-factor maxi-
mum is expected to appear. The extrapolations obtained by
using the two recipes (black and magenta curves) both predict
an S-factor maximum at a lower energy, consistent with the
expectation that there must be an S-factor maximum since
the fusion Q value of 40Ar +144 Sm is negative. However,
there are very big differences in the predictions in the lower
energy region from these two formulae due the shortage of
measured data.

7.6 Systematics of the Gaussian distribution parameters

The systematics the parameters A0 and B0 were already dis-
cussed in Sect. 6.

The parameters Rg, Vg and Wg , from the single-Gaussian
test distribution analysis exhibit a relatively smooth behavior
when plotted in Fig. 59 as functions of the Coulomb barrier,
given by

ZP ZT e
2/[1.44(A1/3

P + A1/3
T )] (MeV). (45)

Here Z p, Ap and ZT , AT are the nuclear charge and mass
numbers for the projectile and the target, respectively. The
barrier radius parameters Rg are shown in Fig. 59 panel a,
normalized to the value

1.44(A1/3
P + A1/3

T ) (fm). (46)

Figs. 59 panel b, panel c give the results of the average barrier
height Vg and the width parameter Wg of the test distribution
normalized to the respective Coulomb barrier, Eq. (45). These
parameters follow a general trend with small superimposed
fluctuations due to nuclear structure effects.

These systematics can be used to make first-order predic-
tions of fusion cross sections for unmeasured systems as done
e.g. for the system 12C+24 Mg in Ref. [17]. An example of a
predicted excitation function for fusion of 12C +24 Mg was
shown in Ref. [17] published in 2018. At that time, experi-
mental measurements had been performed only from 250–
1200 mb and 500–1000 mb by Daneshvar et al. [216] and
Gary et al. [217], respectively. These measurement ranges
are insufficient to obtain values of the three parameters in
Eq. (41).

The cross sections and S factors for the systems 16O+18 O
[87] and 12C +30 Si [141,218] had been measured and were
shown in Fig. 6, panel a and c of Ref. [17]. The solid curves in
panel a of that figure are the result of least-squares fits using
Eq. (41) for 12C +30 Si with parameters tabulated in Table 2.
There is an indication of an S-factor maximum for 12C+30 Si
at a c.m. energy of about 11 MeV, while for 16O +18 O no
maximum in the S factor can be seen in the measured energy
range. The interpolated values for the 12C +24 Mg system
obtained in Ref. [17] are Rg = 7.88, Vg = 11.50 and Wg =
0.91, with predicted cross sections shown by the red dashed
lines in panel b of that figure. As in the 12C +30 Si case,
a maximum of the S factor is predicted to occur at a c.m.
energy of about 9 MeV in Ref. [17]. Figure 60, including
the predictions based on the Gaussian distribution and the
logarithmic derivative, is taken from Ref. [17].

Recently, the fusion excitation function for the system
12C +24 Mg was measured at Legnaro National Laboratory
(LNL) using inverse kinematics at low energies [141]. An S-
factor maximum was seen with an energy of Es = 9.7 MeV.
The new measurements have been added in Fig. 60 panel b
(black squares) together with the two fits (green and black
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(a)

(b)

(c)

Fig. 59 Plots of the parameters Rg, Vg and Wg as function of the

Coulomb barrier Z1Z2e2/[1.44(A1/3
1 + A1/3

2 )] (MeV). In order to
reduce the strong system-dependence, the parameters are scaled by fac-
tors 1.44(A1/3

1 +A1/3
2 ) (fm) (Eq. (45)) and Z1Z2e2/[1.44(A1/3

1 +A1/3
2 )]

(MeV) (Eq. (46)). See text for details

curves). Although there is a slight change in the Gaussian
distribution fit which now exhibits an S-factor maximum at
Eg
s = 9.87 MeV, it is clear that the prediction of Ref. [17]

based on the data at higher energy and the systematics was
quite accurate.

7.7 Complications in studies of heavy systems

In the light and medium-mass systems discussed above,
there is little ambiguity about the identification of the com-
plete fusion process by the detection of evaporation residues
formed after the emission of a limited number of neutrons
and charged particles and followed by γ emission.

However, for reactions involving loosely-bound projec-
tiles, the assumption of complete fusion implied for most of
the systems discussed in this work does not hold. Sometimes
a substantial fraction of the incoming flux leads to incomplete
fusion reactions in which only a fraction of the projectile
combines with the target nucleus while the rest escapes the
nuclear attraction. Sophisticated coincidence experiments
are needed to determine the full kinematics of this process

(a)

(b)

(c)

Fig. 60 A reproduction of Fig. 6 of Ref. [17]: comparison for cross
sections and S factors (arbitrary units) for fusion of 12C +30 Si (a),
12C+24 Mg (b) and 16O+18O (c). The red-dashed curves in (b) are orig-
inal predictions obtained from Ref. [17]. The black open square, green
and white curves are the new measurements and two fits by including
the new data [174]

in order to separate complete and incomplete fusion events.
Recent studies addressing this situation are described in Refs.
[69,225]. For reactions involving loosely bound projectiles,
such as e.g. 6,7Li, one must therefore exercize caution in inter-
preting the measured evaporation residue excitation function.
The 7Li + 198Pt system, listed in Table 2, is one such example
[70].

Heavy systems also present complications in terms of
identifying complete fusion events. In reactions that reach
actinide and heavier systems, the fission decay branch can
become competitive with the particle evaporation channels
because of the reduction of the fission barrier when com-
pared to lighter systems. For some systems, e.g. 16O+208 Pb
[110], the complete fusion cross section is composed of an
evaporation and a fusion–fission branch. In this case, both
branches must be measured into the sub-barrier region and
only the resulting sum of the cross-sections represents a reli-
able measurement of the complete fusion process. This is
demonstrated for the 16O +208 Pb system in Fig. 61. Here
the cross sections for fusion-evaporation (upward pointing
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Fig. 61 Comparison of contributions from fusion evaporation (FE) and
fusion fission (FF) for system 16O+208 Pb [110]. Open circles represent
the total-fusion excitation function. Upward pointing triangles are from
fusion evaporation, while downward triangles represent fusion fission.
Stars represent the S(E) factor, while the dashed curves are calculations
coming from the single-Gaussian description

triangles) and fusion–fission (downward pointing triangles)
are shown to contribute substantially to the total fusion cross
section, especially below the center-of-mass energy of about
∼ 75 MeV.

The heaviest targets used in the reactions which are dis-
cussed in this article (see Table 2) are 208Pb, 197Au, and
198Pt. These, and neighboring nuclei, that may be popu-
lated via inelastic and few particle transfer reactions, have
liquid-drop model fission barriers at low spins in the range
of 13–17.5 MeV [226], which effectively suppresses the fis-
sion decay branch. For actinide targets with fission barriers
in the 5–7 MeV range, transfer reactions can populate exci-
tation energies above the fission barrier, and this sequential
fission branch can become a substantial contamination to the
complete fusion–fission cross section. Although the kine-
matics of fission fragments originating from these two fis-
sion processes provide some means of discrimination via the
so-called folding angle between the fragments, this method
of isolating fusion–fission events is not viable, especially at
deep sub-barrier energies where cross sections are tiny. A
clear discrimination would require measuring the charge, Z,
or mass, A, of both fission fragments. For a sufficiently heavy
projectile, the deficit in total charge or mass of the fragments
would signal that they came from a transfer-type reaction.
This kind of experiment is, in principle, possible, but it has,
to our knowledge, not been pursued to date.

In addition, a further complexity presents itself when using
relative heavy projectiles incident onto heavy targets. For
reaction partners with charge products Z1Z2 >1600, it is
well known that the quasi-fission process accounts for a sub-
stantial fraction of the total fission-like events. This type of
reactions is most clearly recognized by a violation of the frag-

ment mass and angle requirement for compound fission reac-
tions, namely the forward–backward symmetry of the angu-
lar distribution for any fragment mass bin (see Refs. [227–
229]). The forward–backward symmetry signals a complete
loss of memory of the incident orientation of the reaction
partners as expected if a completely-fused compound nucleus
was formed in the process. Although a fraction of the fission
fragments underlying this mass-angle distribution may abide
by the compound nucleus requirements, the two distribu-
tions are typically strongly overlapping such that no mean-
ingful separation can be achieved. It has also been shown
that even in cases where the mass-angle distributions seem
to exhibit the compound-nucleus characteristics, excessive
angular anisotropies [230] reveal the presence of a quasi-
fission component.

Because of these aspects of heavy-ion reactions in very
heavy systems, there are not many complete fusion data avail-
able covering a broad energy region, and our review for heavy
systems is therefore rather restricted. The heaviest system
included in Table 2 is 64Ni +124 Sn.

8 Summary and outlook

The process of heavy-ion fusion is a central theme in nuclear
reaction studies. It represents a complicated rearrangement of
nuclear matter from two individual nuclei into a single com-
bined fused compound nucleus. The inverse process, nuclear
fission, has of course played an even larger role over many
decades, both in terms of fundamental science as well as in
societal applications.

One may characterize the main focal points of the fusion
studies as follows: (1) 1960’s–1980, initial exploration of the
heavy-ion fusion reaction; (2) 1980-1991, studies of the sub-
barrier enhancement caused by coupled-channels effects and
an exploration of complete fusion limitations in very heavy
systems; (3) 1991-2002, studies of the distributions of fusion
barrier heights; (4) 2002–now, hindrance of the fusion cross
section at extreme sub-barrier energies.

This review is focused mainly on the discovery and study
of the deep subbarrier fusion hindrance, which was neither
foreseen nor recognized previously.

In this article, we have reviewed various representations
of the data which are useful in studying and deriving rele-
vant parameters for the subbarrier hindrance effect. The S-
factor representation is traditionally used in extrapolations of
experimental data into the very low energy region relevant
for stellar burning and explosions. However, it was for the
first time introduced for heavier systems in the analyses of
subbarrier fusion hindrance and it has become an essential
analysis tool in the field. In addition, the logarithmic deriva-
tive, L(E), of the energy-weighted cross section is also used
in many cases to explore the hindrance effect.
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The measurement of the tiny fusion cross sections (µb
→ pb) relevant for the present review poses severe exper-
imental challenges. This experimental study requires new
methods which have been developed at various laboratories
as reviewed in Sect. 2.

The wealth of new fusion data, that appeared over the last
decades, inspired the development of theoretical models and
methods used to extract pertinent information about the reac-
tion mechanism. The theoretical models have been discussed
in Sect. 3. The models range from simple classical fusion
(black disk) model, via the Wong model that includes the
effects of quantum mechanical barrier tunneling to sophis-
ticated coupled-channel models that include the effects of
inelastic and transfer channels on the fusion cross section.

A consequence of the channel coupling is an enhancement
of the cross section in the region around and below the static
fusion barrier. It is naturally described by multiple barriers
reflecting the perturbations to the classical barrier caused
by various couplings. A large number of studies using this
approach have been carried out and yielded a deeper under-
standing of the prevalent properties of the heavy-ion fusion
process.

However, the discovery of deep subbarrier fusion hin-
drance in 2002 [11–13] showed that there was an aspect
missing in the theory that manifested itself mainly at the
hard-to-reach low-energy region. Although this effect was
present in some of the earlier data, it had been missed in
the analysis. As newer experiments confirmed the existence
of this new phenomenon in many medium-mass systems, a
modification of the coupled-channels theories was required.
Two separate extensions of the coupled-channels formalism
were proposed that appear to reproduce the observed effect.
One, the sudden model, is based on the concept of a mod-
ification of the heavy-ion potential at distances where the
matter distributions of the two nuclei overlap leading to a
more shallow potential in this region [123,124]. The second
proposed model includes an adiabatic readjustment of the
coupling strength, which also appears to be able to reproduce
the experimental results [126,127]. At present, the question
of which model best captures the physics of the observed
effect is not settled. One may hope that further theoretical
and additional experimental work will be carried out in order
to arrive at a deeper understanding of this phenomenon.

In Sect. 4, we reviewed the discovery and evidence for
fusion hindrance, first seen in medium-heavy systems, but
subsequently also identified in lighter systems toward those
relevant for astrophysical systems. There, the influence on the
hindrance behavior arising from various couplings is demon-
strated, and it is shown that an S-factor maximum appears in
systems as light as 12C +24 Mg and 12C +30 Si.

As discussed in Sect. 5, it becomes an interesting question
whether this effect is present also in lighter systems, such as
those involved in astrophysical reaction networks. This is an

important point, because measurements in the energy region
relevant for these reactions are mostly impossible and one
has to rely on various extrapolation procedures to estimate
the reaction rate. Here we discuss the possibility of using
extrapolation methods developed for heavier systems also in
the lighter mass region. As shown, the difference can be quite
substantial. The 12C +12 C reaction is of special interest, but
presently available data are not yet able to settle this issue
in a satisfactory manner, partly because of the presense of
resonances in this low-energy region. However, hints of an S-
factor maximum at least in fusion of 16O+16 O and 12C+16 O
have been found.

As fusion hindrance was found because the excitation
functions cannot be described at low energies with standard
CC calculations using the Woods Saxon potential, but later
explained by the overlap of two colliding nuclei, a detailed
understanding of the reaction dynamics at the overlap will
be a main focus of future hindrance studies.

With the large number of reactions for which fusion cross
sections have been measured into the deep subbarrier region,
it is now possible to study the systematics of the fusion hin-
drance effect as presented in Sect. 6. The essential character-
istic is the center-of-mass energy, Es , at which the S factor
exhibits a maximum. This is summarized for many systems
in Table 1. We also discuss another option for recognizing
the subbarrier hindrance by comparing the data to coupled
channels calculations performed under various assumptions.

The coupled-channels approach leads to a distribution of
fusion barriers, which leaves an imprint on the fusion exci-
tation function. As shown by Rowley et al. [10] this barrier
distribution can be derived under a classical approximation
directly from the data by a double differentiation of the prod-
uct between energy and cross section.

An alternative approach, reviewed in Sect. 7, is to assume
a specific test-function Dtest (V ) representing the barrier dis-
tribution convoluted with the a barrier transmission function.
From this function one can calculate the fusion excitation
function for a comparison with the data. This approach was
originally suggested by Stelson et al. [215], and subsequently
used by Siwek-Wilczynska et al. [213,214] assuming a Gaus-
sian distribution, which leads to a closed form expression for
the fusion cross section

σ =
√

πR2W√
2E

[√
π Z erfc(−Z) + exp(−Z2)

]
.

It was found that for many systems this approach provides
an excellent description of the cross section, even down into
the deep subbarrier region. In fact, in many cases fits to the
data using this method are very useful and comparable (or
even better) to what can be achieved by the more sophisti-
cated coupled-channels method. It thus appears that the tail
of a Gaussian form of the convoluted distribution accurately
represents the physics of the problem in the subbarrier region.
We expect that this is caused by a sharper fall-off of the barrier
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transmission coefficient compared to those for standard ion-
ion potentials used in coupled channels, as originally pointed
out by Mişicu and Esbensen [123,124].

In Sect. 7, recent modifications of the Wong formula [27]
have been reviewed. Rowley and Hagino [212] pointed out
that the parameters in the Wong formula should be angular
momentum dependent, and suggested to numerically derive
the values of the relevant barrier parameters VE , RE , ωE .
Alternatively, Denisov et al. [18] developed a recipe by intro-
ducing a collision-energy dependence of the barrier curvature
in the Wong formula, which qualitatively reproduces the the
hindrance behavior in a simple way.

In conclusion, the observation of fusion hindrance has in
many ways revived the study of heavy-ion fusion reactions.
Since the effect only appears at very low cross sections, it
has given a strong incentive to pursue such measurements
and develop improved techniques to reach this cross section
level. Many aspects relating to the hindrance effect are still
unsettled and further efforts in both experiments and theory
are required in order to achieve a deeper understanding of
this phenomenon. An important question is whether fusion
hindrance plays a role in the light systems of astrophysi-
cal importance. This appears reasonable since the hindrance
effect is related to the overlap of nuclear matter, which occurs
in fusion reactions at extreme subbarrier energies, although
it may have manifestations that are different from what has
been observed in heavier systems. Some initial attempts to
reach lower fusion cross sections, e.g. for 12C+12 C as a cru-
cial reaction in explosive scenarios for massive stars, have
been undertaken using coincidence techniques [56,62,65].
Further developments along those lines are possible, but they
require a determined and dedicated effort to make substantial
progress.
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