Skip to main content
Log in

The muon pair production in the process \(e^{+}e^{-}\rightarrow e^{+}e^{-}\mu ^{+}\mu ^{-}\) through the two-photon mechanism at high energies: transverse momentum, rapidity and angular distributions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the muon pair production in the interaction between two quasi-real photons in \(e^+e^-\) collision. We calculate the total and differential cross section of the process \(\gamma \gamma \rightarrow \mu ^+\mu ^-\) at a beam energy of photons from 3 to 40 GeV in the center-of-mass and for different values of the muon transverse momentum, the muon rapidity and the muon angle. In the \(\gamma \gamma \rightarrow \mu ^+\mu ^-\) process we also take the contribution of the Box+Vertex correction+ Soft photon emission+Vacuum polarization diagrams. We also study the cross section of the \(e^+ +e^- \rightarrow e^+ + e^- +\mu ^+ + \mu ^-\) process as a function of the \(e^+ e^-\) center-of-mass energy \(\sqrt{s}\) in the region 5 GeV \(\le \sqrt{s} \le \) 209 GeV using the two-photon mechanism. The obtained results are in satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All necessary data is into this paper.]

References

  1. S.L. Glashow, Nucl. Phys. B 22, 579 (1961)

    Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    ADS  Google Scholar 

  3. A. Salam, Elementary Particle Theory (Stockholm, 1968)

  4. A. Salam, J.C. Ward, Phys. Lett. 13, 168 (1964)

    ADS  MathSciNet  Google Scholar 

  5. H. Baer et al., in Physics at LEP, vol. 1, ed. by J. Ellis, R. Peccei (1986), p. 297. CERN-86-02

  6. S. Kuhlman et al., Zeroth-Order Design Report for the Next Linear Collider, Report No. SLAC-474 (1996). arXiv:hep-ex/9605011

  7. N. Akasaka et al., JLC Design Study, KEK Report 97-1 (1997)

  8. R.D. Heuer et al., Technical Design Report of 500 GeV Electron Positron Collider with Integrated X-Ray Facility (DESY 2001-011, 2001)

  9. Physics Potential and Development of \(\mu ^+\mu ^-\) Colliders, AIP Conference Proceedings, ed. by D. Cline, vol. 441 (1997)

  10. B. Badelek et al., Int. J. Mod. Phys. A 19, 5097 (2004)

    ADS  Google Scholar 

  11. R.D. Heuer,et al., The TESLA Technical Design Report, p. III, DESY 2001-011, TESLA Report 2001-23, TESLA FEL 2001-05 (2001). arXiv:hep-ph/0106315

  12. B.Badelek et al.,The TESLA Technical Design Report, p. VI, Chap.1, DESY-2001-011, TESLA-2001-23, TESLA-FEL-2001-05 (2001). arXiv:hep-ex/0108012

  13. B.Badelek et al., International Linear Collider. Technical Design report (2007–2010–2013)

  14. M. Harrison, M. Ross, N. Walker, (2020). arXiv:1308.3726 [hep-ph]

  15. P. Bambade et al. (The ILC Collaborations), (2020). arXiv:1903.01629 [hep-ex]

  16. A. Robson et al. (The CLIC and CLICdp Collaborations), (2020). arXiv:1812.07987 [physics.acc-ph]

  17. P. Roloff et al. (The CLIC and CLICdp Collaborations), (2020). arXiv:1812.07986 [hep-ex]

  18. J. de Blas et al. (The CLIC Collaborations), CERN-2018-009-M, CERN-TH-2018-267 (2020). arXiv:1812.02093 [hep-ph]

  19. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rep. 15, 181 (1975)

    ADS  Google Scholar 

  20. D. Morgan et al., J. Phys. G Nucl. Part. Phys. 20, 1 (1994)

    Google Scholar 

  21. P.S. Isaev, Fiz. Elem. Chast. At. Yadra. 13, 82 (1982)

    Google Scholar 

  22. B. Adeva et al. (The L3 Collab.), Nucl. Instrum. Methods. A 289, 35 (1990)

  23. O. Adriani et al. (The L3 Collab.), Phys. Rep. 236, 1 (1993)

  24. V.E. Balakin, V.M. Budnev, I.F. Ginzburg, Pisma. Zh. Eksp. Teor. Fiz. 11, 559 (1970)

    Google Scholar 

  25. I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, Pisma. Zh. Eksp. Teor. Fiz. 34, 514 (1981)

    Google Scholar 

  26. I.F. Ginzburg, G.L. Kotkin, V.G. Serbo, V.I. Telnov, JETP Lett. 34, 491 (1981)

    ADS  Google Scholar 

  27. I.F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo, V.I. Telnov, Nucl. Instrum. Methods A219, 5 (1984)

    Google Scholar 

  28. V.I. Telnov, Nucl. Instrum. Methods A 472, 280 (2001). arXiv:hep-ex/0012047

  29. I. F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo, Nucl. Phys. B 228, 285 (1983) [Erratum: B243 (1984) 550]

  30. I.F. Ginzburg, Nucl. Instrum. Methods A355, 63 (1995)

    ADS  Google Scholar 

  31. H. Cheng, T.T. Wu, Phys. Rev. D 1, 3414 (1970)

    ADS  Google Scholar 

  32. J.H. Field, E. Pietarinen, K. Kajantie, Nucl. Phys. B 171, 377 (1980)

    ADS  Google Scholar 

  33. M. Klusek-Gawenda, A. Szczurek, Phys. Rev. C 82, 014904 (2010)

  34. M. Klusek-Gawenda, P. Lebiedowicz, O. Nachtmann, A. Szczurek, Phys. Rev. D 96, 094029(2017). arXiv:1708.09836 [hep-ph]

  35. O. Nachtmann, F. Nagel, M. Pospischil, A. Utermann, Eur. Phys. J. C 45, 679 (2006)

    ADS  Google Scholar 

  36. O. Nachtmann, F. Nagel, M. Pospischil, A. Utermann, Eur. Phys. J. C 46, 93 (2006)

    ADS  Google Scholar 

  37. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Phys. Rev. D 101, 034008 (2020). arXiv:1901.07788 [hep-ph]

  38. P. Lebiedowicz, O. Nachtmann, A. Szczurek, Phys. Rev. D 97, 094027 (2018)

  39. P. Lebiedowicz, M. Klusek-Gawenda, A. Szczurek, O. Nachtmann, Acta Phys. Polon. B Proc. Suppl. 12, 341 (2019). arXiv:1810.07284 [hep-ph]

  40. M. Dyndal, M. Klusek-Gawenda, M. Schott, A. Szczurek, (2002). arXiv:2002.05503 [hep-ph]

  41. P. Lebiedowicz, A. Szczurek, Phys. Rev. D 98, 053007 (2018). arXiv:1807.06069 [hep-ph]

  42. M. Luszczak, W. Schäfer, A. Szczurek, JHEP 1805, 064 (2018). arXiv:1802.03244 [hep-ph]

  43. K. Hencken, D. Trautmann, G. Baur, Phys. Rev. C 59, 841 (1999)

    ADS  Google Scholar 

  44. D.Yu. Ivanov, A. Schiller, V.G. Serbo, Phys. Rev. C 75, 034903 (2007)

  45. U.D. Jentschura, K. Henecken, V.G. Serbo, Eur. Phys. J. C 58, 281 (2008)

    ADS  Google Scholar 

  46. U.D. Jentschura, V.G. Serbo, Eur. Phys. J. C 64, 309 (2009)

    ADS  Google Scholar 

  47. A. Baltz, Phys. Rev. C 80, 034901 (2009)

  48. E.A. Kuraev, M.V. Galinskii, M.I. Levchuk, Phys. Part. Nucl. 31, 76 (2000)

    Google Scholar 

  49. E.A. Kuraev, M.V. Galinskii, M.I. Levchuk, Fiz. Elem. Chast. At. Yadra 31, 155 (2000)

  50. M. Demirci, A.I. Ahmadov, Phys. Rev. D 94, 075025 (2016)

  51. M. Demirci, Turk. J Phys. 43(5), 442–458 (2019)

    Google Scholar 

  52. M. Demirci, (2020). arXiv:2004.08834 [hep-ph]

  53. S.J. Brodsky, T. Kinoshita, H. Terazawa, Phys. Rev. D 4, 1532 (1971)

    ADS  Google Scholar 

  54. S.J. Brodsky, T. Kinoshita, H. Terazawa, Phys. Rev. Lett. 25, 972 (1970)

    ADS  Google Scholar 

  55. S. J. Brodsky, Int. J. Mod. Phys. A 20, 7306 (2005). arXiv:hep-ph/0404186

  56. S.J. Brodsky, P.M. Zerwas, Nucl. Instrum. Methods A 355, 19 (1995). arXiv:hep-ph/9407362

  57. S.J. Brodsky, Int. J. Mod. Phys. A 18, 2871 (2003). arXiv:hep-ph/0204197

  58. F. Low, Phys. Rev. 120, 582 (1960)

    ADS  Google Scholar 

  59. N. Arteaga-Romero, A. Jaccarini, P. Kessler, J. Parisi, Phys. Rev. D 3, 1569 (1971)

    ADS  Google Scholar 

  60. M. Köksal, A.A. Billur, A. Gutierrez-Rodriguez, M.A. Hernandez-Ruiz, Int. J. Mod. Phys. A 34, 1950076 (2019). arXiv:1811.01188 [hep-ph]

  61. M. Köksal, J. Phys. G 46, 065003 (2019). arXiv:1809.01963 [hep-ph]

  62. A.A. Billur, M. Köksal, A. Gutierrez-Rodriguez, Phys. Rev. D 96, 056007 (2017). arXiv:1702.03708 [hep-ph]

  63. A. Gutierrez-Rodriguez, M. Köksal, A.A. Billur, Phys. Rev. D 91, 093008 (2015). arXiv:1412.2094 [hep-ph]

  64. M. Köksal, Mod. Phys. Lett. A 29, 1450184 (2014). arXiv:1402.3112 [hep-ph]

  65. A.A. Billur, M. Köksal, Phys. Rev. D 89, 037301 (2014). arXiv:1306.5620 [hep-ph]

  66. A.A. Billur, M. Köksal, A. Gutierrez-Rodriguez, M.A. Hernandez-Ruiz, (2020). arXiv:1909.10299 [hep-ph]

  67. S.C. Inan, A.A. Billur, Phys. Rev. D 84, 095002 (2011)

  68. S. Atag, A.A. Billur, JHEP 1011, 060 (2010)

    ADS  Google Scholar 

  69. A. Senol, Phys. Rev. D 85, 113015 (2012). arXiv:1204.0467 [hep-ph]

  70. B. Sahin, J. Phys. G 36, 025012 (2009). arXiv:0808.0842 [hep-ph]

  71. Í. Sahin, S.C. Ínan, JHEP 0909, 069 (2009). arXiv:0907.3290 [hep-ph]

  72. S. Atag, E. Gürkanli, JHEP 1606, 118 (2016). arXiv:1512.03640 [hep-ph]

  73. S.C. Ínan, A.V. Kisselev, Eur. Phys. J. C 78, 729 (2018). arXiv:1805.01441 [hep-ph]

  74. S.C. Ínan, A.V. Kisselev, (2020). arXiv:1907.12824 [hep-ph]

  75. S.C. Ínan, Int. J. Mod. Phys. A 26, 3605 (2011)

    ADS  Google Scholar 

  76. Í. Sahin, S.C. Inan, JHEP 0909, 069 (2009). arXiv:0907.3290

  77. A.B. Arbuzov, V.V. Bytev, E.A. Kuraev, E. Tomasi-Gustafsson, YuM Bystritskiy, Phys. Part. Nucl. 41, 593 (2010)

    Google Scholar 

  78. M.I. Vysotsky, E.V. Zhemchugov, Phys. Usp. 62, 910 (2019). arXiv:1806.07238 [hep-ph]

  79. M.I. Vysotsky, E.V. Zhemchugov, (2020). arXiv:1812.02493 [hep-ph]

  80. N. Sonmez, Nucl. Phys. B 939, 233 (2018). arXiv:1805.06281 [hep-ph]

  81. G. Baur, K. Hencken, D. Trautmann, J. Phys. G 24, 1657 (1998)

  82. E.E. Boos, G.V. Jikia, Phys. Lett. B 275, 164 (1992)

    ADS  Google Scholar 

  83. V.I. Telnov, Nucl. Part. Phys. Proc. 273–275, 219 (2016)

    Google Scholar 

  84. S. Chatrchyan et al. (The CMS Collaboration), JHEP 1211, 080 (2012). arXiv:1209.1666 [hep-ex]

  85. S. Chatrchyan et al. (The CMS Collaboration), JHEP 1307, 116 (2013). arXiv:1305.5596 [hep-ex]

  86. G. Aad et al. (The ATLAS Collaboration), Phys. Lett. B 749, 242 (2015). arXiv:1506.07098 [hep-ex]

  87. M. Aaboud et al. (The ATLAS Collaboration), Phys. Lett. B 777, 303 (2018). arXiv:1708.04053 [hep-ex]

  88. S. Uehara et al. (The BELLE Collaboration), Int. J. Mod. Phys. Conf. Ser. 35, 1460396 (2014)

  89. T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. Lett. 102, 222002 (2009). arXiv:0902.2816 [hep-ex]

  90. D. Moricciani (The KLOE-2 Collaboration), EPJ Web Conf. 118, 01023 (2016)

  91. D. Babusci (The KLOE-2 Collab.), Int. J. Mod. Phys. Conf. Ser. 35, 1460395 (2014)

  92. P. Achard et al. (The L3 Collaboration), Phys. Lett. B 585, 53 (2004). arXiv:hep-ex/0402037

  93. R. Akers et al. (The OPAL Collaboration), Z. Phys. C 60, 593 (1993)

  94. H. Hayashii et al. (The TOPAZ Collaboration), Phys. Lett. B 279, 422 (1992)

  95. A. Imanishi et al. (The TOPAZ Collaboration), Nucl. Instrum. Methods A 269, 513 (1988)

  96. T. Kamae et al., Nucl. Instrum. Methods A252, 423 (1986)

    ADS  Google Scholar 

  97. R. Hayano et al., TOPAZ proposal of TRISTAN \(e^+e^-\) colliding experiment, EXP-002 (1983)

  98. P. Aarnio et al. (The DELPHI Collaboration), Nucl. Instrum. Methods A 303, 233 (1991)

  99. P. Aarnio et al. (The DELPHI Collaboration), Nucl. Instrum. Methods A 378, 57 (1996)

  100. G. Barbiellini et al., Phys. Rev. Lett. 32, 385 (1974)

    ADS  Google Scholar 

  101. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue, Zh Eksp, Teor. Phys. 108, 1164 (1995)

    Google Scholar 

  102. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue, JETP 81, 638 (1995). arXiv:hep-ph/9509405

  103. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue, Nucl. Phys. B 474, 271 (1996)

    ADS  Google Scholar 

  104. L.N. Lipatov, G.V. Frolov, Yad. Fiz. 13, 588 (1971)

    Google Scholar 

  105. L.N. Lipatov, G.V. Frolov, Sov. J. Nucl. Phys. 13, 333 (1970)

    Google Scholar 

  106. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue, Yad. Fiz. 60, 673 (1997)

  107. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue, Phys. At. Nucl. 60, 591 (1997)

    Google Scholar 

  108. G. Racah, Nuovo Cim. 13, 69 (1936)

    ADS  Google Scholar 

  109. G. Racah, Nuovo Cim. 14, 93 (1937)

    ADS  Google Scholar 

  110. L.D. Landau, E.M. Lifshitz, Phys. Z. der Sowietunion 6, 244 (1934)

    Google Scholar 

  111. V.N. Baier, V.S. Fadin, Zh Eksp, Teor. Fiz. 63, 761 (1972)

    Google Scholar 

  112. V.N. Baier , V.S. Fadin, Sov. Phys. JETP 36, 399 (1973)

  113. E.A. Kuraev, L.N. Lipatov, Yad. Fiz. 16, 1060 (1972)

    Google Scholar 

  114. E.A. Kuraev, L.N. Lipatov, Yad. Fiz. 20, 112 (1974)

    Google Scholar 

  115. V.N. Baier, V.S. Fadin, V.A. Khoze, E.A. Kuraev, Phys. Rept. 78, 293 (1981)

    ADS  Google Scholar 

  116. E.A. Kuraev, A. Schiller, V.G. Serbo, Phys. Lett. B 134, 455 (1984)

    ADS  Google Scholar 

  117. E.A. Kuraev, A. Schiller, V.G. Serbo, Nucl. Phys. B 256, 189 (1985)

    ADS  Google Scholar 

  118. E.A. Kuraev, A. Schiller, V.G. Serbo, D.V Serebryakova, Eur. Phys. J. C 4, 631 (1998). arXiv:hep-ph/9710420

  119. J. Blümlein, A. De Freitas, W. van Neerven, Nucl. Phys. B 855, 508 (2012). https://doi.org/10.1016/j.nuclphysb.2011.10.009. arXiv:1107.4638 [hep-ph]

    Article  ADS  Google Scholar 

  120. J. Blümlein, A. De Freitas, C. Raab, K. Schönwald, (2020). arXiv:2003.14289 [hep-ph]

  121. F.A. Berends, W.L. van Neerven, G.J.H. Burgess, Nucl. Phys. B 297, 429 (1988) [Erratum: Nucl.Phys.B304 (1988)921]

  122. F.A. Berends, P.H. Daverveldt, R. Kleiss, Nucl. Phys. B 253, 441 (1985)

    ADS  Google Scholar 

  123. F.A. Berends, P.H. Daverveldt, R. Kleiss, Nucl. Phys. B 253, 421 (1985)

    ADS  Google Scholar 

  124. F.A. Berends, P.H. Daverveldt, R. Kleiss, Comput. Phys. Commun. 40, 271 (1986)

    ADS  Google Scholar 

  125. F.A. Berends, P.H. Daverveldt, R. Kleiss, Comput. Phys. Commun. 40, 285 (1986)

    ADS  Google Scholar 

  126. F.A. Berends, P.H. Daverveldt, R. Kleiss, Comput. Phys. Commun. 40, 309 (1986)

    ADS  Google Scholar 

  127. J.A.M. Vermaseren, Nucl. Phys. B 229, 347 (1983)

    ADS  Google Scholar 

  128. J.A.M Vermaseren, Proc. Int. Workshop on \(\gamma \gamma \) collisions, Amiens (Springer, Heidelberg, 1980)

  129. L.D. Landau, E.M. Lifshitz, vol. 4 (Quantum Electrodynamics, Pergamon, 1982)

  130. M. Böhm, H. Spiesberger, W. Hollik, Fortschr. Phys. 34, 687 (1986)

    Google Scholar 

  131. G. ’t Hooft , M. Veltman, Nucl. Phys. B 153, 365 (1979)

  132. H.D. Politzer, Nucl. Phys. B 129, 301 (1977)

    ADS  Google Scholar 

  133. A.V. Radyushkin, Phys. Lett. 69B, 245 (1977)

    ADS  Google Scholar 

  134. H. Fritzsch, P. Minkowski, Phys. Lett. 73B, 80 (1978)

    ADS  Google Scholar 

  135. G. Altarelli, G. Parisi, R. Petronzio, Phys. Lett. 76B, 351 (1978)

    ADS  Google Scholar 

  136. G. Altarelli, G. Parisi , R. Petronzio, CERN-TH-2413 (1977)

  137. K. Kajantie, R. Raitio, Nucl. Phys. B 139, 72 (1978)

    ADS  Google Scholar 

  138. K. Kajantie, J. Lindfors, R. Raitio, Nucl. Phys. B 144, 422 (1978)

    ADS  Google Scholar 

  139. J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985)

    ADS  Google Scholar 

  140. V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 647, 275 (2002)

    ADS  Google Scholar 

  141. T. Hahn , M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

  142. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

    ADS  Google Scholar 

Download references

Acknowledgements

DJCL is very grateful to the Bogoliubov laboratory of Theoretical Physics (JINR) for hospitality and to CONICET-ARGENTINA for finnantial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Julio Cirilo-Lombardo.

Additional information

Communicated by Reinhard Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadov, A.I., Cirilo-Lombardo, D.J. The muon pair production in the process \(e^{+}e^{-}\rightarrow e^{+}e^{-}\mu ^{+}\mu ^{-}\) through the two-photon mechanism at high energies: transverse momentum, rapidity and angular distributions. Eur. Phys. J. A 57, 179 (2021). https://doi.org/10.1140/epja/s10050-021-00499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00499-4

Navigation