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Abstract Above the pseudocritical temperature Tc of chi-
ral symmetry restoration a chiral spin symmetry (a symme-
try of the color charge and of electric confinement) emerges
in QCD. This implies that QCD is in a confining mode and
there are no free quarks. At the same time correlators of oper-
ators constrained by a conserved current behave as if quarks
were free. This explains observed fluctuations of conserved
charges and the absence of the rho-like structures seen via
dileptons. An independent evidence that one is in a confining
mode is very welcome. Here we suggest a new tool how to
distinguish free quarks from a confining mode. If we put the
system into a finite box, then if the quarks are free one nec-
essarily obtains a remarkable diffractive pattern in the prop-
agator of a conserved current. This pattern is clearly seen
in a lattice calculation in a finite box and it vanishes in the
infinite volume limit as well as in the continuum. In contrast,
the full QCD calculations in a finite box show the absence of
the diffractive pattern implying that the quarks are confined.

1 Introduction

At temperatures between 100 and 200 MeV one observes in
QCD a smooth chiral symmetry restoration crossover: The
quark condensate drops from its practically zero temperature
value at T ∼ 100 MeV to the value close to zero at T ∼ 200
MeV [1,2]. Up to this crossover QCD thermodynamics is
well described by a gas of non-interacting mesons. Above
the crossover another physics regime emerges that is char-
acterized by a nearly perfect fluidity where there are no free
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quarks and gluons and QCD is still in the confining regime.1

What are the physical degrees of freedom here and how do
they explain that the system is in the liquid regime? Cer-
tainly it is not yet a quark–gluon–plasma (QGP) which is a
gas and where the degrees of freedom are truly free (i.e., at
most weakly interacting, not confined) quarks and gluons.

It is clear from the lattice data for even second order quark
and baryon number fluctuations that the free quark gas limit is
achieved only at very high temperatures [3]. The continuum
extrapolated screening masses for different meson channels
agree with the free quark gass estimates only at T > 5Tc for
scalar-pseudoscalar and at T > 3Tc for vector-pseudovector
channels [4].

On the other hand there are observables that behave as
if quarks were free particles soon above the pseudocritical
temperature of chiral symmetry restoration. For example,
the ratio of fourth and second cumulants of quark (baryon)
number and charge fluctuations approaches a free quark gas
value already at T ∼ 200 − 250 MeV [3,5] and is con-
sidered sometimes as “evidence of deconfinement”. Another
“evidence of deconfinement” is a nonobservation of the ρ-
like structures via dileptons in experiments. At the same time
it was established in lattice calculations of spatial and tem-
poral correlators [6–8] that QCD in the range Tc − 3Tc is
characterized by the chiral spin symmetry [9,10] which is
a symmetry of the color charge and of the chromoelectric
interaction.2 This is not a symmetry of the Dirac action and
hence inconsistent with free interactionless quarks. This sug-
gests that the degrees of freedom are the chirally symmetric
quarks bound into the color-singlet objects by the chromo-

1 In QCD with light quarks only one consistent definition of confine-
ment is known: Confinement is the absence of color states in the spec-
trum. Hence deconfinement should be accompanied by a free motion
of colored quarks and gluons.
2 This symmetry was reconstructed from a large hadron spectrum
degeneracy observed on the lattice upon artificial subtraction of the
near-zero modes of the Dirac operator at zero temperature [11,12].
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electric field. What are these objects?3 This symmetry was
observed in lattice calculations at zero baryon (quark) chem-
ical potential. It should also persist at a nonvanishing chem-
ical potential since the quark chemical potential in the QCD
action is manifestly chiral spin symmetric [13].

Both temporal and spatial meson correlators4 exhibit
this symmetry very clearly at Tc − 3Tc, which suggests a
chromoelectric confining interaction. The screening masses
extracted from the fit with the proper exp(−μz)/z asymp-
totics also demonstrate clear multiplets of the chiral spin
symmetry below 3Tc [16]. At the same time the correla-
tors of operators constrained by a conserved current are
very close to those calculated with free quarks [17]. The
latter circumstance explains some features of fluctuations of
conserved charges above Tc and why no ρ-like structures
are seen via dileptons. This intriguing behavior of the cor-
relators was a motivation for a conjecture of a deconfine-
ment in a SU (2)color subgroup5 of SU (3)color induced by a
SU (2)color - SU (2)isospin locking [17]. This would explain
both the chiral spin symmetry of the correlators and at the
same time their behavior in channels with conserved currents.
Because of the SU (2)color–SU (2)isospin locking the con-
served currents do not see the SU (3)color/SU (2)color part
of dynamics which is still confining. So while the correlators
of the conserved currents behave as if quarks were free, in
reality these quarks are still in the confining mode because
of the confinement in SU (3)color/SU (2)color .

Given this intriguing situation an independent evidence is
welcome that quarks in channels with conserved currents are
still in the confining mode, even though the respective corre-
lators are quite close to those derived with free quarks. This
question is the subject of the present paper. We demonstrate
that even if the correlators of conserved currents although
confined look like those derived for free quarks in the con-
tinuum, we can distinguish really free quarks from these free-
like behavior by putting the system into a finite box. If quarks
are really free, in a finite box this leads to a very specific
and bright interference pattern that does not exist in infinite
volumes or in the continuum. While we do observe such pat-
terns in a finite box in a free quark system, these patterns are
absent in full QCD calculations in a finite box. This allows
the conclusion that the quarks are in a confining mode. Hence
we have two independent and complementary evidences that
QCD is in the confining regime: the chiral spin symmetry of

3 Conditionally the regime in QCD above Tc but below 3Tc was named
a stringy fluid to emphasize the fact that the degrees of freedom are the
ultrarelativistic chirally symmetric quarks bound by the chromoelectric
field and the chromomagnetic effects are at least strongly suppressed.
4 Pioneering studies of spatial (screening) propagator are due to Ref.
[14]. In [15] lattice screening masses were compared with effective
theory approaches.
5 A general possibility of a deconfinement in a SU (M) subgroup of
SU (Nc) in different large Nc models was discussed in Ref. [18].

the correlators and the absence of very pronounced interfer-
ence patterns required by free quarks in a finite box on the
lattice.

2 Free quarks in a finite box

In Minkowski space the Feynman propagator of a Dirac
particle depending on the chronological order is either a
forward running particle (∼ exp(−i Et)) or a backward
running antiparticle (∼ exp(+i Et)). Upon a Wick rota-
tion to Euclidean space the forward running particle has
an ∼ exp(−Et) dependence while the backward running
antiparticle evolves with time as ∼ exp(+Et). If we put the
system into a finite box, e.g., on the lattice, then the rest frame
(p = 0) time-direction propagator of a free quark with the
mass m

C0(t) =
∑

x,y,z

〈ψ(x, y, z, t)ψ̄(0, 0)〉 (1)

has a C0(t) ∼ cosh(m(t − Nt/2)) dependence for periodic
boundary conditions (p.b.c.) along the time direction and a
C0(t) ∼ sinh(m(t − Nt/2)) form for antiperiodic boundary
conditions (a.b.c.).6

At nonzero temperature the temporal direction becomes
short compared to the spatial one. There are cases in which a
study of the propagators along the long spatial direction can
supply us with the information that cannot be obtained from
the temporal propagators along the short time direction. We
choose this direction to be z and study the following spatial
correlators:

Cs(z) =
∑

x,y,t

〈ψ(x, y, z, t)ψ̄(0, 0)〉. (2)

This spatial single quark propagator can be straightforwardly
calculated on a finite N 3

s × Nt lattice with given bound-
ary conditions. We choose antiperiodic boundary conditions
(a.b.c.) along the time direction, periodic ones (p.b.c.) along
the x, y axes and either periodic or antiperiodic along the
propagation direction z. The results for TrCs(z) obtained at
zero quark mass with the Wilson and overlap Dirac operators
[19] are shown in Fig. 1.

An effective “chirally symmetric mass” E for propagation
of a massless quark in z direction is very close to the lowest
Matsubara frequency π/Nt = π/8 and is determined by the
closest pole position 1/D(px = 0, py = 0, pz = iE, pt =
π/Nt ) of the Wilson-Dirac operator in momentum space

E = arcosh

(−3 + 2 cos π/Nt

−2 + cos π/Nt

)
. (3)

6 On a discrete lattice x, y, z, t should be discrete (nx , ny, nz, nt ); Nt
is the lattice size in t-direction.
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Fig. 1 A single quark massless propagator obtained on the 323 ×8 lat-
tice with Wilson and overlap actions in comparison with the cosh(E(z−
Ns/2)) and sinh(E(z − Ns/2)) at E = 0.37395. Note that propagators
obtained with Wilson and overlap actions coincide within 3 digits and
cannot be distinguished in the plot

The propagator obtained for a single quark with Wilson
or overlap Dirac action is very accurately described by
cosh(E(z − Ns/2)) for p.b.c. and by sinh(E(z − Ns/2))

for a.b.c.. This propagator can be interpreted as a superposi-
tion of a forward ( f ) running quark with the “mass” E and
of a backward (b) running antiquark with the same “mass”.
Symbolically the propagator can be written as

Cs(z)
p.b.c. ∼ exp(−Ez)+exp(−E(Ns − z)) ≡ f +b̄. (4)

For the a.b.c. the propagator is

Cs(z)
a.b.c. ∼ exp(−Ez)−exp(−E(Ns − z)) ≡ f −b̄. (5)

Having discussed the structure of a single quark prop-
agator in a finite box we next study propagators of quark
bilinears still keeping quarks to be noninteracting particles
(I.e., due to a pure Dirac Lagrangian without any gauge
fields.) The spatial correlators of the isovector bilinear oper-
ators OΓ (x, y, z, t) = ψ̄(x, y, z, t)Γ τ

2 ψ(x, y, z, t) with Γ

being out of a set of γ -matrices are

CΓ (z) =
∑

x,y,t

〈OΓ (x, y, z, t)OΓ (0, 0)†〉. (6)

The isovector fermion bilinears are named according to
Table 1.

A complete set of such propagators in the continuum
(in infinite volume) has been determined analytically in
Ref. [7]. There these correlators are given as superpositions
of the decaying exponents exp(−2πnz/Nt )/(2πnz/Nt ),
exp(−2πnz/Nt )/(2πnz/Nt )

2, . . . and terms with higher
Matsubara frequencies and represent the propagators of the
forward propagating “mesons” that are made from noninter-
acting quarks.

Table 1 Fermion isovector bilinears and their U (1)A and SU (2)L ×
SU (2)R transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs
over the components 1, 2, 4, i.e., x, y and t

Name Dirac structure Γ Abbreviation

Pseudoscalar γ5 PS
]

U (1)A

Scalar 1 S

Axial-vector γkγ5 A
]

SU (2)A

Vector γk V

Tensor-vector γkγ3 T
]

U (1)A

Axial-tensor-vector γkγ3γ5 X

In a finite box a quark propagator of a given flavor is rep-
resented as a sum (for p.b.c) or difference (for a.b.c.) of the
forward propagating quark and of the backward propagat-
ing antiquark. The same is true for the antiquark propagator,
that is a sum (or difference) of the forward propagating anti-
quark and of the backward propagating quark. Consequently
correlators of the bilinears should be superpositions of four
terms:

p.b.c. : ( f + b̄)( f̄ + b) = f f̄ + bb̄ + f b + b̄ f̄ , (7)

a.b.c. : ( f − b̄)( f̄ − b) = f f̄ + bb̄ − f b − b̄ f̄ . (8)

Note that the two terms ∼ f̄ f and ∼ b̄b represent the forward
and backward propagating meson-like system. The other two
terms ∼ f b and ∼ f̄ b̄ do not represent any meson-like sys-
tem. More precisely, they represent a quark–antiquark sys-
tem where the quark and the antiquark are shifted relative
to each other by a large distance Ns . These terms are neces-
sarily present in the correlators of the quark–antiquark bilin-
ears if quarks are free particles that do not interact. They
exist only in a finite box and vanish in the infinite vol-
ume limit or in the physical continuum. If we put the sys-
tem of free quarks into a finite box, then these “unphysi-
cal” terms must be observable since they interfere with the
“physical” meson-like amplitudes. The interference should
be clearly seen in cases when the “physical” and “unphysi-
cal” terms are of a similar magnitude and interfere destruc-
tively. Since the “unphysical” terms are very small one should
expect this destructive interference to be clearly visible only
when the “physical” terms are also very small. The numeri-
cal results for the propagators calculated with free noninter-
acting quarks [6] show that the largest slope of the decay
takes place with the operators Vt , At , Tx , Ty, Xx , Xy and
all other operators Vx , Vy, Ax , Ay, ... have smaller decay
rate.7 This suggests that the “physical” meson-like ampli-
tude becomes sufficiently small at large z for the operators
Vt , At , Tx , Ty, Xx , Xy and we can expect in this case well

7 Vt refers to the ψ̄(x, y, z, t)γ4
τ
2 ψ(x, y, z, t) operator, etc, see the

legend to the table.
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Fig. 2 Correlators of theVt andVx bilinears on a 323×8 lattice with the
overlap action with periodic (p.b.c., left panel) and antiperiodic (a.b.c.,
right panel) boundary conditions in z direction. The Vt correlator in the
left panel is negative for nz ∼ 14 − 18. The correlators are normalized
to 1 at nz = 1

visible interference effects of the “physical” and “unphysi-
cal” amplitudes.

The correlators calculated with the overlap action on the
323 × 8 lattice with the Vt operator are shown in Fig. 2. The
correlators of the At , Tx , Ty, Xx , Xy operators are similar.
We also show in the same figure the correlators of the Vx

operator that demonstrates a smaller decay rate.
We clearly see a typical diffractive structure for the corre-

lator of the Vt operator at large z and when p.b.c. are imposed
the correlator becomes negative for z ∼ 14 − 18. This was
first noted in Refs. [6,20] but remained unexplained. Now we
realize that this structure is the result of the destructive inter-
ference of the “physical” and “unphysical” amplitudes. It is
an immanent property of a system of free quarks in a finite
box. In contrast, the correlator of the Vx operator does not
show a diffractive structure because the “physical” terms in
this case are always essentially larger than the “unphysical”
ones.

How to check this picture of the destructive interference?
If we change from p.b.c. to a.b.c. one should expect a con-
structive interference of the “physical” and “unphysical”
terms. Hence the diffractive structure should disappear. This
is precisely what happens.

Numerical checks indicate that the diffractive structure
disappears exponentially upon increase of Ns (at fixed Nt ).
Hence it vanishes both in large lattice volumes as well as in
the continuum theory.

3 Comparison of the full QCD and free quarks
correlators in a finite box

We have established in the previous section that if quarks are
free, then the spatial correlators of the conserved currents
Vt , At and of some other operators exhibit on a finite lattice
remarkable diffractive patterns. These are a consequence of
the fact that for free quarks there are necessarily amplitudes
that represent a “meson-like” propagation, called “physi-
cal”, and “unphysical” amplitudes that do not correspond to
any meson-like system. These “physical” and “unphysical”
amplitudes interfere destructively. The “unphysical” ampli-
tudes vanish on the infinite lattice as well as in the continuum
and the diffractive pattern disappears.

At the same time the “unphysical” terms are much smaller
than the “physical” ones for another set of operators and the
diffractive pattern does not exist. These features are a solid
prediction of a free quark system put on a finite lattice.

In the continuum full QCD above Tc the spatial and tem-
poral correlators of the conserved currents are close to those
ones calculated with noninteracting quarks [17]. In reality
quarks cannot be free since these correlators are subject to
the chiral spin symmetry that is not a symmetry of the Dirac
action. Is there another means to decide that the quarks are
not free? The answer is affirmative. When we solve QCD at
high temperatures on the finite lattice if the quarks are not
confined (i.e., free), one should observe the diffractive pat-
tern as described above. If such a pattern is missing, then we
could safely conclude that the quarks are not free. This is
demonstrated below.

In Fig. 3 we show correlators normalized to 1 at nz = 1
built with the Vt , At , Tx , Xx operators calculated in NF = 2
QCD with the domain wall Dirac operator at physical quark
masses on 323 × 8 lattice at T = 380 MeV (2.2Tc) [6]. The
boundary conditions for quarks are a.b.c. in time direction
and p.b.c. in all spatial directions. The solid curves represent
the full QCD results while the dashed curves are correlators
calculated on the same lattice with the same Dirac operator
with free noninteracting quarks, i.e. computed with a trivial
gauge field configuration (U = 1). The free quark correlator
of the Vt operator corresponds to the results shown in Fig. 2.
It is rather obvious that the free quark results obtained with
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Fig. 3 Correlators of the Vt , At , Tx , Xx operators in full QCD at T=
380 MeV (∼ 2.2Tc) for 323 × 8 lattice (abbreviated as dressed) and
with non-interacting quarks (free) on the same lattice. From Ref. [6]

Fig. 4 Ratio of correlator of Vt operator in full QCD at T= 380 MeV
(∼ 2.2Tc) for 323 × 8 lattice (abbreviated as dressed) to Vt correlator
calculated with non-interacting quarks on the same lattice size (free)

the domain wall Dirac operator in Fig. 3 are similar to those
obtained with the overlap Dirac operator in Fig. 2. In both
cases we see a remarkable diffractive structure around nz ∼
12 − 20.

This diffractive structure is induced via a destructive
interference of the “physical” meson-like amplitudes with
the “unphysical” amplitudes that do not correspond to any
meson-like system. This structure necessarily exists on a
finite lattice if the quarks are free noninteracting particles.
In contrast, the full QCD results do not show this diffractive
pattern. The diffractive pattern is induced by the deep infrared
region, i.e., by large distances between quarks. Even though
the propagator of the conserved current Vt in full QCD is
rather close to the free quarks propagator at nz < 11, for the
ratio of both propagators see Fig. 4, it does not represent a
free quark system but describes a propagation of a meson-like
system with confinement. All “unphysical” terms that exist
in the case of the free quark system are killed by a confining

Fig. 5 Correlators of the PS, S, Vx , Ax , Tt , Xt operators in full QCD
at T= 380 MeV (∼ 2.2Tc) for 323 × 8 lattice (abbreviated as dressed)
and with non-interacting quarks (free) on the same lattice. From Ref.
[6]

gluonic interaction between quarks that are separated by a
large spatial distance. The fluctuations of conserved charges
are given by integrals of the correlator. Since the crucial devi-
ations of the free quark correlator from the QCD correlator
are seen only at very large distances (where the absolute value
of the correlators is suppressed by 5–6 orders of magnitude)
a sensitivity of the fluctuations of the conserved charge to the
deep infrared is only weak.

The propagator of the Vx operator, that is not constrained
by a current conservation, demonstrates the absence of the
diffractive structure both in full QCD as well as for free
quarks, see Fig. 5.

We summarize this section with the principal result of the
present paper. There are two independent evidences that a
system with quantum numbers of a conserved current is in a
confining mode above Tc. The first evidence are the very clear
patterns of the chiral spin symmetry both in spatial and tem-
poral correlators [6–8]. The second evidence, demonstrated
in the present paper, is the absence of the diffractive pattern
required by a system of free quarks.

4 Discussion and conclusions

We have demonstrated that on a finite lattice in a system
of free noninteracting quarks the spatial propagators of the
bilinear quark–antiquark operators exhibit in case of peri-
odic boundary conditions along the propagation direction a
diffractive pattern for operators that are constrained by a cur-
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rent conservation and for some other operators. This diffrac-
tive pattern is a consequence of a destructive interference
of the amplitudes that correspond to the propagation of a
meson-like system made of a quark and an antiquark with
amplitudes that do not describe any meson-like system. The
latter amplitudes arise exclusively due to a finiteness of a box
and vanish on an infinite lattice or in the continuum. The lat-
ter amplitudes as well as a diffractive pattern is an immanent
property of the free quark system in a finite lattice.

In QCD the correlators of conserved currents above a chi-
ral symmetry restoration crossover behave as if quarks were
free, i.e. the correlators of these currents calculated in QCD
are rather close to correlators obtained with free noninter-
acting quarks [17]. This explains why some cumulants of
fluctuations of conserved charges suggest a free quark gas-
like behavior very soon above Tc as well as absence of the
rho-like structures observed via dileptons in heavy ion colli-
sions. At the same time these correlators as well as another
ones are a subject to a chiral spin symmetry [9,10] at Tc−3Tc
[6–8]. This symmetry is not a symmetry of the Dirac action
and hence inconsistent with free noninteracting quarks. It is
a symmetry of the color charge in QCD and it indicates that
QCD is in the confining regime where the chromoelectric
interaction binds the chirally symmetric quarks into color-
singlet objects (“strings”) and a contribution of the chromo-
magnetic interaction is at least strongly suppressed.

An independent evidence confirming that the quark–
antiquark systems with a conserved current quantum num-
bers are indeed in the confining regime is supplied by QCD
on the lattice in a finite box. If the quarks are free, then there
must be a diffractive pattern described above that is induced
by quarks that are separated by a large space distance. In full
QCD calculations above Tc in a finite box such pattern is
not observed. It follows then that the quarks are not free and
confining chromoelectric dynamics kills all amplitudes that
do not correspond to propagating mesons.

Hence we have two independent and complementary evi-
dences of confinement in at Tc − 3Tc. These are the chiral
spin symmetry of correlators and the absence of a diffractive
structure required by free quarks in a finite box. This regime
we have conditionally called “stringy fluid” [7,13].

At temperatures above 3Tc the chiral spin symmetry
smoothly disappears [7] and correlators of all operators
approach correlators calculated with free quarks. This sug-
gests that eventually the color charge and electric confining
interaction is Debye screened within SU (3)color (cf., Ref.
[21,22]). Still the correlators of the conserved currents in a
finite box do not show the diffractive structure required by
really free quarks [7]. This indicates that there are no free,
noninteracting quarks and the system is still in the confining
regime (defining confinement as the absence of free quarks
and gluons.) The latter fact can be explained by the presence
of a weak magnetic confinement at very high temperatures.

It is known that at very high temperatures QCD is dimen-
sionally reduced to a weakly coupled 3-dimensional pure
magnetic theory [23]. Even though the theory is weakly cou-
pled, there is a pure magnetic weak “confining” interaction
that does not allow quarks to be completely free [21,24,25].
In this regime all properties of QCD should be close to the
quark–gluon–plasma regime.

We emphasize that the absence of a diffractive pattern in
full QCD spatial correlators evidences confinement, but it
cannot distinguish between the electric and magnetic con-
finement. Only the chiral spin symmetry observed in the
range Tc − 3Tc [7,8] does suggest that it is an electric con-
finement that drives properties of QCD in the stringy fluid
regime.
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