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Abstract We study the composition of nuclear matter at
sub-saturation densities, non-zero temperatures, and isospin
asymmetry, under the conditions characteristic of binary neu-
tron star mergers, stellar collapse, and low-energy heavy-ion
collisions. The composition includes light clusters with mass
number A ≤ 4, a heavy nucleus (56Fe), the Δ-resonances,
the isotriplet of pions, as well as the � hyperon. The nucle-
onic mean-fields are computed from a zero-range density
functional, whereas the pion-nucleon interactions are treated
to leading order in chiral perturbation theory. We show that
with increasing temperature and/or density the composition
of matter shifts from light-cluster to heavy baryon dominated
one, the transition taking place nearly independent of the
magnitude of the isospin. Our findings highlight the impor-
tance of simultaneous treatment of light clusters and heavy
baryons in the astrophysical and heavy-ion physics contexts.

1 Introduction

The formation of light clusters in dilute, warm nuclear matter
is of interest in astrophysics of binary neutron star mergers,
stellar collapse, as well as in heavy-ion physics. The details of
the matter composition are important for the accurate deter-
mination of transport coefficients appearing in dissipative
relativistic fluid dynamics as well as the neutrino Boltzmann
transport in various astrophysical scenarios. The clustering
phenomenon is also of great interest in nuclear structure cal-
culations (e.g. alpha-clustering) and heavy ion collisions in
laboratory experiments.

A great deal of effort during the last decade was focused
on the accurate determination of the composition of dilute
nuclear matter at finite temperatures and isospin asymmetry
within a range of methods based on the ideas of nuclear sta-
tistical equilibrium [1–36] and virial expansion for quantum
gases [37–40]. The appearance of clusters leads to a range of
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interesting phenomena, in particular α-condensation at low
temperatures [25,26,30,41–44].

In astrophysics, light clusters and their weak interactions
with neutrinos were studied in detail in the context of stel-
lar collapse and supernova physics [45–48]. The electroweak
interactions of leptons with baryonic matter are also of inter-
est in describing the transport in binary neutron star mergers,
in particular the bulk viscosity [49–52] and electrical con-
ductivity [53,54].

The formation of the heavy baryons in dense and cold
nuclear matter, in particular hyperonic members of the J 1/2+
baryonic octet in combinations with the non-strange mem-
bers of baryon J 3/2+ decouplet (Δ-resonances) has attracted
attention in recent years [55–64]. The relativistic density
functionals were successfully tuned to remove the tension
between the softening of the equation of state of dense matter
associated with the onset of the baryons and the astrophys-
ical observations of the massive neutron stars with masses
2M� [58–60].

The motivation of this work is to explore the interplay
between the clustering and heavy-baryon degrees of freedom
in dilute, finite-temperature nuclear matter. For this purpose
we set-up a model which includes both light nuclear clusters
with mass number A ≤ 4, a representative heavy nucleus
(56Fe) as well as the �-hyperon, the quartet of Δ-resonances,
and the isotriplet of pions π±,0. Previously, hyperons were
included in the finite temperature composition of matter in
stellar collapse and proto-neutron star studies [63,65,66].
Pions and pion condensation has been studied recently in
the stellar context in Refs. [66–69]. While the light nuclear
clusters have been accounted for in the low-density envelops
used in some models, a combined study of the clustering,
heavy baryons and pions is missing so far.

In this work, we extend the approach of Ref. [25] to include
heavy baryons and pions in the composition and the equation
of state of isospin asymmetrical nuclear matter. In addition to
the mean-field effects included in the previous study, we will
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treat also the Pauli-blocking effects on the binding energies of
the light clusters in an approximate manner. We will focus on
temperatures T ≥ 10 MeV, which is above the critical tem-
perature of Bose-Einstein condensation of α particles in the
clustered environment, see for further details [25,26,30,42–
44]. Indeed, low temperatures disfavor the heavy baryons in
low-density nuclear matter and the problem of α condensa-
tion is unaffected by their nucleation. While we include in
our composition a heavy nucleus, its effect will turn out to
be minor in the parameter range studied in this work.

The paper is organized as follows. Section 2 extends the
formalism of the quasiparticle gas model [25] to include
heavy baryons and pions. In Sect. 3 we present the numerical
results for the composition and equation of state of matter.
Section 4 provides a summary and an outlook.

2 Formalism

2.1 Thermodynamics

We consider matter composed of unbound nucleons, heavy
baryons, light nuclei (A ≤ 4), 56Fe and pions at temperature
T and baryon number density nB . We assume that the charge
density is fixed to a value YQ = nL/nB , where nL = (ne −
ne+)+(nμ−nμ+) where ne, ne+ , nμ and nμ+ are the number
densities of electrons, positrons, muons and anti-muons. The
thermodynamical potential of the system can be expanded
into a sum of contributions of constituents

Ω(μn, μp, T ) =
∑

j

Ω j (μ j , T ), (1)

where j runs over the all elements of the composition of
matter, specifically, j = A, Z for nuclei with mass num-
ber A and charge Z , j = n, p for neutrons and protons,
j = {Δ0,Δ+,Δ++,Δ−} for Δ-resonances, j = � for the
�-hyperon, and π0, π± for the isotriplet of pions. Here the
chemical potentials of the species μ j are functions of the
chemical potentials of neutrons and protons μn and μp in
“chemical” equilibrium with respect to weak and strong inter-
actions.

If a nucleus is characterized by mass number A and charge
Z its chemical potential is expressed as

μA,Z = (A − Z)μn + Zμp. (2)

For the chemical potentials of heavy baryons the following
relations hold

μ� = μΔ0 = μn = μB, (3)

μΔ− = 2μn − μp = μB − μQ, (4)

μΔ+ = μp = μB + μQ, (5)

μΔ++ = 2μp − μn = μB + 2μQ, (6)

where we introduced the baryon number chemical potential
μB and the charge chemical potential μQ = μp − μn . The
chemical potentials of the pions obey the following relations

μπ0 = 0, (7)

μπ+ = μp − μn, (8)

μπ− = μn − μp. (9)

The baryon number density and the charge neutrality condi-
tions are given by the relations

nB = nn + n p +
∑

c

Acnc

+nΔ++ + nΔ+ + nΔ− + nΔ0 + n�, (10)

nBYQ = n p +
∑

c

Zcnc

+2nΔ++ + nΔ+ − nΔ− + nπ+ − nπ− , (11)

where the c-summation goes over the densities of deuteron
(d), triton (t), 3He (h), α-particle and 56Fe nucleus. The
latter nucleus is considered below in its ground state, i.e., the
states that are excited at finite temperatures are neglected.
The inclusion of these states will act to enhance the fraction
of this particular nucleus or other heavier nuclei in matter,
should they be included in the composition. Equations (10)
and (11) determine the two unknown chemical potentials μn

and μp at any temperature T for fixed values of nB and YQ .
The thermodynamical potential for each species can be

expressed through the densities

Ω j (μ j , T ) = −V
∫ μ j

−∞
dμ′

j n j (μ
′
j , T ), (12)

where n j (μ
′
j , T ) is the number density of species j , V is the

volume.
In the stellar context, the matter is charge neutral, the posi-

tive charge of baryons being neutralized by leptons (electrons
and muons). The lepton thermodynamic potential is given by

ΩL = −
∑

l=e,μ

glT
∫

d3k

(2π)3 ln
[
f −1
l (−El(k) + μl)

]
, (13)

where the index l sumes of electrons e and muons μ (τ -
leptons can be neglected), gl = 2 is the degeneracy factor,

the lepton energy is given by El =
√
k2 + m2

l , where ml is
the lepton mass and μl their chemical potential and fl stands
for the lepton Fermi distribution function. The lepton density
is obtained then as nl = ∂ΩL/∂μl . At finite temperatures a
small fraction of positrons may appear: their thermodynam-
ical potential is obtained from Eq. (13) by interchanging the
sign of the electron chemical potential. To obtain the full
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thermodynamical potential of matter in astrophysical con-
texts one needs to take into account, in addition, the thermo-
dynamical potential of neutrinos and anti-neutrinos. For any
fixed flavor it has the same form as Eq. (13), the only differ-
ence being the degeneracy factor gν = 1 (as implied by the
Standard Model) and vanishingly small neutrino mass.

Having computed partial contributions Ω j , the thermody-
namic quantities can be obtained from the thermodynamic
potential Eq. (1) for nuclear systems and from the sum of
Eqs. (1) and (12) in the charge neutral stellar systems. In par-
ticular, we recall that the pressure and the entropy are given
by

P = −Ω

V
, S = −∂Ω

∂T
. (14)

2.2 Computing densities

We now turn to the computation of the partial densities of
constituents. This can be done in a unified manner for quasi-
particles, resonances, and clusters using the real-time finite
temperature Green’s function (hereafter GF) formalism. The
density of species j are directly related to the following GFs

iG<
j (x1, x2) = ∓〈ψ†

j (x2)ψ j (x1)〉, (15)

iG>
j (x1, x2) = 〈ψ j (x1)ψ

†
j (x2)〉, (16)

where ψ
†
j (x1) and ψ j (x1) are the creation and annihila-

tion operators of a species j at the space-time point x1, the
upper sign here and below refers to fermions, the lower –
to bosons. The time-arguments of the GF are located on dif-
ferent branches of the Schwinger-Keldysh time-contour with
t2 < t1 in (15) and t2 > t1 in (16). The Fourier transforms of
GFs in (15) and (16) with respect to the argument x1 − x2 are
related to the occupation numbers and the spectral function
S j (ω, p) as

− iG<
j (ω, p) = ±S j (ω, p) f (ω), (17)

iG>
j (ω, p) = S j (ω, p)[1 ∓ f (ω)], (18)

where f j (ω) is either Bose or Fermi distribution function
depending on the spin of the j-species. From Eqs. (17) and
(18) in follows that

iG>
j (ω, p) − iG<

j (ω, p) = S j (ω, p). (19)

At this point it is convenient to establish the connection to
the advanced (A) and retarded (R) GFs

[
GR/A

j (ω, p)
]−1 = ω − ε p − R/A(ω, p), (20)

where ε p the energy of particle in the non-interacting theory
and R/A(ω, p) are the retarded/advanced self-energies that

are commonly evaluated in the equilibrium theory. If we use
the identity

G>
j (ω, p) − G<

j (ω, p) = GR
j (ω, p) − GA

j (ω, p), (21)

the spectral function takes the form

S j (ω,p) = Γ j (ω,p)
[
ω − E j (ω,p)

]2 + Γ 2
j (ω,p)/4

, (22)

where E j (ω, p) is the quasiparticle energy and Γ j (ω, p) =
−2Im j (ω, p) is the spectral width. The quasiparticle
energy is given by

E j (ω, p) = p2

2m j
+ E0

j + Re  j (ω, p) − μ j , (23)

where m j is the mass, E0
j is the vacuum binding energy

of the nucleus j = (A, Z), which vanishes for baryonic
quasiparticles. From the definition (15) it follows that

n j = −ig j

∫
dωd p
(2π)4 G

<
j (ω, p), (24)

where g j is the degeneracy factor.
Thus, we have obtained a closed set of equations which

consists of Eqs. (10) and (11) for the two unknowns μn and
μp at fixed nB , YQ and T , whereby the densities of con-
stituents are computed from Eqs. (17), (22) (23) and (24).
These equations still contain unspecified self-energies of the
constituents, which depend on the modeling of the interac-
tions in the system. We turn now to this problem.

2.3 Self-energies

We assume that in the dilute limit of interest the unbound
baryons are well-defined quasiparticles and the imaginary
part of their self-energy vanishes; this implies that their spec-
tral function is a delta-function

S j (ω, p) = 2πδ(ω − ε p, j − ReR/A
j (ω, p)), (25)

where

ε p, j = p2

2m∗
j

− μ j (26)

with m∗
j and μ j being the effective mass and the chemical

potential. Furthermore, the nucleon self-energy is approxi-
mated by the effective masses of neutrons m∗

n and protons
m∗

p which depend on the baryon and charge density (or nB

and YQ) but are independent of temperature. In the numerical
work, we use the Skyrme functional parametrization given by
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Eq. (15) of Ref. [70] for that purpose. The spectral functions
of the light clusters are approximated also by their quasipar-
ticle limit

S j (ω,p) = 2πδ

(
ω − p2

2M
− E0

j − Re j + μ j

)
, (27)

where E0
j is the vacuum binding energy of cluster j , Re j is

its self-energy. The effective mass of a cluster is constructed
as M = (A−Z)m∗

n+Zm∗
p. Finally, for the � hyperon and Δ-

resonances we use again Eq. (25) with their vacuum masses
and neglect the narrow (118 MeV) width of the Δ-resonance
and self-energy corrections. With these approximations the
energy integral in Eq. (24) is trivial and one is left with the
momentum phase-space integration. In the case of pions, we
include the leading contribution to the pion self-energy in
chiral perturbation theory [68,71], which arises from their
coupling to neutrons and protons, specifically Eq. (3.4) and
(3.5) in Ref. [71].

The binding energies of clusters are functions of density
and temperature in general. The nuclear environment influ-
ences the binding energies through phase space occupation
(Pauli-blocking). To take this into account, we use the results
of the solutions of in-medium two-body Bethe-Salpeter and
three-body Faddeev equations in dilute nuclear matter given
in Ref. [72]. These solutions are fitted by the following pro-
cedure: (a) first we determine the critical value of the inverse
temperature β for which a cluster disappears via the for-
mula: βcr

[
MeV−1

] = 0.07835 + 0.00185 (n0/nB), where
n0 = 0.16 fm−3, which is assumed to be universally inde-
pendent of A andYQ , and (b) the in-medium binding energies
Bj (nB, T ) are obtained via a linear fit given by

Bj (nB, T ) = E0
j

[
1 − β

βcr(n0/nB)

]
. (28)

Then the spectral function (25) takes the form

S j (ω, p) � 2πδ

(
ω − p2

2M
− Bj + μ∗

j

)
, (29)

where any contribution to the self-energy beyond the modifi-
cations of the binding energy is energy and momentum inde-
pendent and, thus, can be absorbed in the chemical potential
μ∗

j .

3 Results

The system of Eqs. (10) and (11) was solved simultaneously
for unknown chemical potentials μn and μp at fixed temper-
ature T , baryon number density nB and charge fraction YQ .
We consider two values of the latter parameter YQ = 0.1,

Fig. 1 Dependence of the mass fractions of the particles in dilute
nuclear matter on temperature at constant density nB/n0 = 10−2. The
top and lower panels correspond to charge fractions YQ = 0.4 and 0.1.
The left and right panels correspond to the cases containing nucleons
and light clusters only and the full composition, respectively. The com-
position includes neutrons and protons (solid lines), deuterons (short-
dashed), triton and helium (long-dashed), α-particles (dash-dotted), Δ

resonances (dash-double-dot), �-hyperon (dash-triple-dot), and pions
(double-dash-dot). The mass fraction of 56Fe is not visible on the fig-
ure’s scale

which is characteristic to binary neutron star mergers, and
YQ = 0.4 which is characteristic to stellar collapse.

Figure 1 shows the mass fraction X j = A jn j/nB , where
A j is the mass number of a constituent, as a function of
temperature in cases (a) nucleons and clusters only and (b)
nucleons, clusters, heavy baryons and pions, for YQ = 0.1
and 0.4 at fixed nB/n0 = 10−2, where n0 = 0.16 fm−3

is the nuclear saturation density. The mass fraction of 56Fe
is not visible on figure’s scale. It is seen that nucleons are
the dominant component at all temperatures, but there is
a change in the composition of matter with respect to the
remaining constituents with increasing temperature. For tem-
peratures T ≥ 30 MeV the dominant mass fraction is in the
heavy baryons, whereas at lower temperatures the clusters
are the dominant component. Note also that the inclusion of
heavy baryons and pions reduces the isospin asymmetry in
the neutron and proton components and, as a consequence,
the helion and triton abundances are much closer to each
other in this case. A previous study of hyperon abundances
at finite temperatures in Ref. [28] finds that the hyperon frac-
tion exceeds 10−4 at density nB/n0 = 10−2 for temperatures
T ≥ 40 MeV. According to Fig. 1 this occurs in our model
for T ≥ 20 MeV. This difference may be a consequence
of different treatment of nuclear interactions and different
compositions allowed in the models. Ref. [27] finds that �

hyperon fraction stays below 10−7 for temperatures up to
14 MeV in the inhomogeneous “pasta” phases of supernova
matter independent of the value of YQ , which is consistent
with present results.
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Fig. 2 Dependence of the mass fractions of the particles in dilute
nuclear matter on density for T = 30 MeV. The top and lower panels
correspond to charge fraction YQ = 0.4 and 0.1 and the left and right
panels correspond to the cases containing only nucleons and light clus-
ters and the full composition, respectively. The composition includes
neutrons and protons (solid lines), deuterons (short-dashed), triton and
helium (long-dashed), α-particles (dash-dotted), Δ resonances (dash-
double-dot), �-hyperon (dash-triple-dot), and pions (double-dash-dot).
In the right figure, the clusters disappear for nB/n0 ≥ 9×10−2 (shaded
area) due to the Pauli-blocking of the phase-space. The mass fraction
of 56Fe is not visible on the figure’s scale

Fig. 3 Same as in Fig. 2 but for T = 10 MeV

Figures 2 and 3 show the mass fractions mass fraction X j

at two fixed temperatures T = 30 MeV and T = 10 MeV
and varying density. It is seen that the abundances of the
nucleons, heavy baryons, and pions are insensitive to the
density, whereas the cluster abundances increase as the den-
sity increases. In other words, the increase in the nucleonic
density at a fixed temperature is accommodated by the sys-
tem by increasing the number of the light clusters, whereas
the fractions of neutrons and protons remain constant in a
wide density range. Since the heavy baryon fraction are deter-
mined by their “chemical” equilibrium with respect to neu-
trons and protons via the relations (3)–(6), their fractions

Fig. 4 Pressure as a function of normalized density nB/n0 for tem-
perature values (in MeV) T = 20 (solid lines), 30 (long-dashed), 40
(short-dashed), and 50 (dash-doted). The upper panels correspond to
YQ = 0.4 and the lower ones - to YQ = 0.1. The composition in panels
is as in Fig. 1

stay constant with the density as well. The same applies
also to pion fractions, which are likewise related to pro-
ton and neutron concentrations via Eqs. (8) and (9). The
reduction of isospin asymmetry among neutrons and protons
mentioned above is seen here as well. Note that the Pauli-
blocking at T = 30 MeV is ineffective within the density
range considered, but its effect is seen in the right panels
of Fig. 3 corresponding to T = 10 MeV. It is seen that
nB/n0 � 0.1 the clusters abruptly disappear as a conse-
quence of Bj (nB, T ) → 0 and there appears a jump in the
density of nucleons. Note that our Pauli blocking factor does
not dependent on the momentum of the cluster with respect
to the medium. In general, it does, so that the phase space
vanishes with increasing the density more smoothly: the clus-
ters with the lower-momenta are eliminated first, while those
with high-momenta remain intact. It is also seen that the pion
mass fraction undergoes at the same point an abrupt change,
clearly visibly for YQ = 0.1. Finally, note that at this temper-
ature, the heavy baryon fractions are too low to be relevant.
To assess if there is a phase transition (and if so, to find its
order) a detailed study of the thermodynamic functions of
matter at the point of the dissolution of clusters is needed. In
a similar study of Ref. [6], which used non-linear fits to the
binding energies of clusters, the transition is found to be less
abrupt.

Figure 4 shows the pressure as a function of the normalized
density for temperature values T = 20, 30, 40, and 50 MeV
for two values of charge fraction YQ = 0.1 and 0.4. The main
effect caused by the onset of heavy baryons and pions is the
more symmetric appearance of the nucleonic component for
YQ = 0.1, already observed in Fig. 2, which leads to pressure
values that are similar to those for the case YQ = 0.4.
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4 Summary and outlook

The composition of warm dilute nuclear matter was com-
puted including simultaneously light clusters with A ≤ 4,
a representative heavy nucleus (56Fe), heavy baryons (�’s
and Δ’s) and pions. We find that with increasing temper-
ature the mass fraction shifts from light clusters to heavy
baryons, whereby the nucleons remain the dominant com-
ponent within the parameter range considered. The heavy
nucleus 56Fe does not play a significant role at tempera-
tures T ≥ 10 MeV, but is known to suppress strongly the
abundances of light clusters at low temperatures of the order
1 MeV [25,44]. The addition of heavy baryons and pions
makes the nucleonic component more isospin symmetric and,
as a consequence, the cluster abundances become less sen-
sitive to the value of the isospin asymmetry. At low tem-
peratures T � 10 MeV, the phase-space occupation strongly
suppresses the cluster abundances for densities nB/n0 ≥ 0.1
due to the Pauli blocking, as expected.

The rich composition of matter in the parameter range
considered may have interesting implications in astrophysics
of compact star mergers, stellar collapse as well as heavy-
ion collisions. The transport studies of hadronic matter and
its coupling to leptons in these contexts need to include the
additional degrees of freedom shown to be important in the
composition of matter.
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