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Abstract We consider the problem of including Λ hyper-
ons into the ab initio framework of nuclear lattice effective
field theory. In order to avoid large sign oscillations in Monte
Carlo simulations, we make use of the fact that the number
of hyperons is typically small compared to the number of
nucleons in the hypernuclei of interest. This allows us to use
the impurity lattice Monte Carlo method, where the minor-
ity species of fermions in the full nuclear Hamiltonian is
integrated out and treated as a worldline in Euclidean pro-
jection time. The majority fermions (nucleons) are treated as
explicit degrees of freedom, with their mutual interactions
described by auxiliary fields. This is the first application of
the impurity lattice Monte Carlo method to systems where
the majority particles are interacting. Here, we show how
the impurity Monte Carlo method can be applied to com-
pute the binding energies of the light hypernuclei. In this
exploratory work we use spin-independent nucleon–nucleon
and hyperon–nucleon interactions to test the computational
power of the method. We find that the computational effort
scales approximately linearly in the number of nucleons. The
results are very promising for future studies of larger hyper-
nuclear systems using chiral effective field theory and realis-
tic hyperon–nucleon interactions, as well as applications to
other quantum many-body systems.

1 Introduction

Hypernuclei are bound states of one or two hyperons together
with a core composed of nucleons. They extend the nuclear
chart into a third dimension, augmenting the usual two
dimensions of proton number and neutron number. We will
use the notation Y for a Λ or � hyperon and N for a nucleon.

a e-mail: epja@hiskp.uni-bonn.de (corresponding author)

Due to the scarcity of direct hyperon–nucleon (Y N ) and
hyperon–hyperon (YY ) scattering data, these unusual forms
of baryonic matter play an important role in pinning down
the fundamental baryon–baryon forces. This requires on the
one hand an effective field theory (EFT) description of the
underlying forces, as pioneered in Refs. [1,2], and on the
other hand a numerically precise and consistent method to
solve the nuclear A-body problem, such as nuclear lattice
EFT (NLEFT) [3,4]. For calculations combining these chi-
ral EFT forces at LO and NLO [5,6] with other many-body
methods, see e.g. Refs. [7–12].

In view of the success of NLEFT in the description of
nuclear spectra and reactions, it seems natural to extend this
method to hypernuclei. However, this is not quite straight-
forward. While one can extend the four spin-isospin degrees
of freedom comprising the nucleons to include the Λ and
� states [13], this has not been done because there is no
longer an approximate symmetry such as Wigner’s SU(4)
symmetry [14] that protects the Monte Carlo (MC) simula-
tions against strong sign oscillations when using auxiliary
fields.1 The physics of hypernuclei therefore requires a dif-
ferent approach, and in this paper we show how the compu-
tational problems are solved using the impurity lattice Monte
Carlo (ILMC) method.

The ILMC method was introduced in Ref. [16] in the
context of a Hamiltonian theory of spin-up and spin-down
fermions, and applied to the intrinsically non-perturbative
physics of Fermi polarons in two dimensions in Ref. [17].
The ILMC method is particularly useful for the case where
only one fermion (of either species) is immersed in a “sea” of
the other species. Within the standard auxiliary field Monte

1 In the SU(3) limit of equal up, down and strange quark masses, such
a spin-flavor symmetry might be restored [15], but this limit is far from
the physical world.
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Carlo method, such an extreme imbalance would lead to
unacceptable sign oscillations in the Monte Carlo probability
weight. In the ILMC method, the minority particle is “inte-
grated out”, resulting in a formalism where only the major-
ity species fermions appear as explicit degrees of freedom,
while the minority fermion is represented by a “worldline” in
Euclidean projection time. The spatial position of this world-
line is updated using Monte Carlo updates, while the inter-
actions between the majority fermions are described by the
auxiliary field formalism [4].

Here, we apply the ILMC method to the inclusion
of hyperons into NLEFT simulations. We identify the Λ

hyperon as the minority species, which we represent by a
worldline in Euclidean time. This Λ worldline is treated as
immersed in an environment consisting of some number of
nucleons. We focus on the Monte Carlo calculation of the
binding energy of light hypernuclei, by means of a simpli-
fied Y N interaction, consisting of a single contact interac-
tion, tuned to a best description of the the empirical binding
energies of the s-shell hypernuclei with A = 3, 4, 5.2 For
the NN interaction, we use a simple leading order interac-
tion similar to that described in Ref. [18]. We benchmark our
ILMC results against Lanczos calculations of transfer matrix
and exact Euclidean projection calculations with initial/final
states and number of time steps that match the ILMC calcula-
tions. We note that our Monte Carlo method is free from any
approximation about the nodal structure of the many-body
wave function. This is the first application of such uncon-
strained Monte Carlo simulations to hypernuclei.

This paper is organized as follows. In Sect. 2, we present
the path integral formalism for our system of nucleons and
one hyperon. We first write the nucleon–nucleon interaction
first without auxiliary fields and then with auxiliary fields.
In Sect. 3 we present the equivalent system using normal-
ordered transfer matrices. In Sect. 4, we derive the impu-
rity worldline formalism for the chosen Y N interaction, and
introduce the concept of the “reduced” transfer matrix opera-
tor, which acts on the nucleons only. In Sect. 5, we discuss the
Monte Carlo updating of the hyperon worldline and the auxil-
iary fields, which encode the interactions between nucleons.
In Sect. 6, we present results for the ground state energies of
the s-shell nuclei and hypernuclei. In Sect. 7, we conclude
with a discussion of future improvements and applications of
the impurity lattice Monte Carlo method to hypernuclei and
other quantum many-body systems.

2 We are well aware of the importance of the ΛN -�N transition. How-
ever, we choose a simple starting point for this exploratory study and
will consider more realistic interactions in a later publication.

2 Path integral formalism

We develop the ILMC formalism following Ref. [16], who
considered a system of spin-up and spin-down fermions, with
a contact interaction which operates between fermions of
opposite spin. The situation here is completely analogous, we
have one majority species, the nucleons, and one impurity,
the Λ. As usual in NLEFT, we consider positions on a spatial
lattice denoted by n and lattice spacing a. We also assume
that Euclidean time has been discretized, such that slices of
the Euclidean time are denoted by nt with temporal lattice
spacing at . The partition function can be expressed in terms
of the Grassmann path integral

Z =
∫ ⎡

⎢⎣ ∏
n,nt

s=N ,Y

dζs(n, nt )dζ ∗
s (n, nt )

⎤
⎥⎦ exp(−S[ζ, ζ ∗]),

(1)

where the subscripts N refer to all nucleon spin and isospin
components and Y refers to all hyperon spin components.
In this study we consider only Λ hyperons. In future work
we will also consider � hyperons or account for their influ-
ence via three-baryon interactions involving a Λ and two
nucleons. We also make the simplifying assumption that the
hyperon–nucleon and nucleon–nucleon interaction are spin-
independent and neglect Coulomb interactions. Because of
the spin-independent interaction and the fact that we have
only one Lambda hyperon, from this point onward we can
restrict our attention to only one spin component of the
hyperon.

Assuming that the exponent of the Euclidean action in
Eq. (1) is treated by a Trotter decomposition, we find

S[ζ, ζ ∗] ≡
∑
nt

{
St [ζ, ζ ∗, nt ] + SY [ζ , ζ ∗, nt ]

+ SN [ζ , ζ ∗, nt ] + SY N [ζ, ζ ∗, nt ]
+ SNN [ζ, ζ ∗, nt ]

}
, (2)

where the component due to the time derivative is

St [ζ, ζ ∗, nt ] ≡
∑

n,s=N ,Y

ζ ∗
s (n, nt )

× [ζs(n, nt + 1) − ζs(n, nt )], (3)

while SY and SN describe the kinetic energies of the hyperons
and nucleons, respectively. Further, SY N provides the Y N
interaction, and SNN the NN interaction, which we shall
consider next.
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2.1 The hyperon–nucleon interaction

For the hyperons, we take for simplicity the lowest-order
(unimproved) kinetic energy

SY [ζ, ζ ∗, nt ] ≡ 6h
∑
n

ζ ∗
Y (n, nt )ζY (n, nt )

− h
∑
n

3∑
l=1

ζ ∗
Y (n, nt )[ζY (n + êl , nt )

+ ζY (n − êl , nt )], (4)

with

h ≡ αt

2mY
, (5)

where mY is the hyperon mass, and we have defined αt ≡
at/a as the ratio of temporal and spatial lattice spacings.

The Y N interaction is given by

SY N [ζ, ζ ∗, nt ] ≡ αtCY N

∑
n

ρN (n, nt )ρY (n, nt ), (6)

where

ρN (n, nt ) ≡
∑
i, j

ρi, j (n, nt ) ≡
∑
i, j

ζ ∗
i, j (n, nt )ζi, j (n, nt ),

(7)

and

ρY (n, nt ) ≡ ζ ∗
Y (n, nt )ζY (n, nt ), (8)

are nucleon and hyperon densities, respectively, with spin i =
0, 1 (up, down) and isospin j = 0, 1 (proton, neutron). The
tuning of the coupling constant CY N is discussed in Sect. 6.

Note that this is a simplified version of the pionless EFT
calculation of Ref. [19], which also included a three-body
interaction at LO. Such an interaction is sub-leading in chiral
EFT approaches (such as NLEFT). See also the recent work
in Ref. [20].

2.2 The nucleon–nucleon interaction

For the kinetic energy of the nucleon degrees of freedom, we
likewise use the lowest-order expression

SN [ζ, ζ ∗, nt ] ≡ 3αt

mN

∑
n

ρN (n, nt )

− αt

2mN

∑
n

3∑
l=1

[
ρN (n,n + êl , nt )

+ ρN (n,n − êl , nt )

]
, (9)

where

ρN (n,n′, nt ) ≡
∑
i, j

ζ ∗
i, j (n, nt )ζi, j (n

′, nt ), (10)

ρN (n, nt ) ≡ ρN (n,n, nt ), (11)

and mN is the nucleon mass. Here, the êl are unit vectors in
lattice direction l.

The Wigner SU(4)-symmetric part of the leading-order
(LO) NN interaction of Refs. [21–23] is used for the present
work. This is an approximate symmetry [14] of the low-
energy nucleon–nucleon interactions, where the spin and
isospin degrees of freedom of the nucleons can be rotated
as four components of an SU(4) multiplet. We have

SNN [ζ, ζ ∗, nt ] ≡ αtCNN

2

∑
n,n′,n′′

ρs
N (n′, nt ) fsL

(n′ − n)

× fsL
(n − n′′)ρs

N (n′′, nt ), (12)

where

ρs
N (n, nt ) ≡

∑
i, j

ζ
sNL∗
i, j (n, nt )ζ

sNL
i, j (n, nt ), (13)

is the smeared nucleon density, and the (local) smearing func-
tion fsL is defined as

fsL
(n) ≡ 1 for |n| = 0,

≡ sL for |n| = 1,

≡ 0 otherwise, (14)

and the (non-locally) smeared Grassmann fields are given by

ζ
sNL
i, j (n, nt ) ≡ ζi, j (n, nt ) + sNL

∑
|n′|=1

ζi, j (n + n′, nt ), (15)

and

ζ
sNL∗
i, j (n, nt ) ≡ ζ ∗

i, j (n, nt ) + sNL

∑
|n′|=1

ζ ∗
i, j (n + n′, nt ), (16)

where the values of the parameters CNN , sL and sNL used for
the present work are discussed in Sect. 6 (see also Ref. [18]
for a full treatment).

For the NN interaction we can reduce the expressions
quadratic in the nucleon densities using the relation
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exp

(
−αtCNN

2
ρ̃2

)

= 1√
2π

∫ ∞

−∞
dφ e− φ2

2 exp
(√

−αtCNN φρ̃
)

, (17)

where

ρ̃ ≡
∑
n′

fsL
(n − n′)ρs

N (n′, nt ), (18)

for each lattice site (n, nt ), such that φ(n, nt ) is treated as
a scalar auxiliary (Hubbard-Stratonovich) field. The NN
action then becomes

exp(−SNN [ζ, ζ ∗, nt ])
=

∫ ∏
n

[
dφ(n, nt )√

2π
e− 1

2 φ2(n,nt )
]

exp(−SφN [ζ, ζ ∗, nt ]),
(19)

for Euclidean time slice nt , where

SφN [ζ, ζ ∗, nt ] = −
√

−αtCNN

×
∑
n,n′

φ(n, nt ) fsL
(n − n′)ρs

N (n′, nt ), (20)

for CNN < 0.
In the ILMC calculations, the path integral over the aux-

iliary field φ is evaluated using either local Metropolis algo-
rithm updates or global lattice updates using the hybrid
Monte Carlo (HMC) algorithm. See Ref. [18] for more details
on efficient Monte Carlo algorithms.

3 Transfer matrix formalism

Derivations of Feynman rules are usually easier to perform
in the Grassmann formalism. However, actual NLEFT calcu-
lations are performed using the transfer matrix Monte Carlo
method. As noted in Ref. [16], the Grassmann and trans-
fer matrix operator formulations are connected by the exact
relationship

Tr
{ : fNt−1[as(n), a†

s′(n
′)] : · · · : f0[as(n), a†

s′(n
′)] : }

=
∫ [ ∏

n,nt
s=N ,Y

dζs(n, nt )dζ ∗
s (n, nt )

]

exp

(
−

∑
nt

St [ζ, ζ ∗, nt ]
)

×
Nt−1∏
nt=0

fnt
[
ζs(n, nt ), ζ

∗
s′(n

′, nt )
]
, (21)

where f is an arbitrary function, a†
s and as denote creation

and annihilation operators for the fermion degrees of free-
dom, and the colons signify normal ordering. Using this iden-
tity, we can write the partition function in Eq. (1) as

Z = Tr(M̂Nt ), (22)

where M̂ is the (normal-ordered) transfer matrix operator.
We can use Eq. (21) to define the full transfer matrix oper-

ator as

M̂ = : exp(−αt Ĥ) : . (23)

with Hamiltonian

Ĥ ≡ Ĥ N
0 + ĤY

0 + ĤNN + ĤY N . (24)

We now go through each of these terms. The nucleon kinetic
energy term is

Ĥ N
0 ≡ 3

mN

∑
n

ρ̂N (n)

− 1

2mN

∑
n

3∑
l=1

[
ρ̂N (n,n + êl) + ρ̂N (n,n − êl)

]
,

(25)

with

ρ̂N (n,n′) ≡
∑
i, j

a†
i, j (n)ai, j (n

′), (26)

ρ̂N (n) ≡ ρ̂N (n,n). (27)

The hyperon kinetic energy term is

Ĥ N
0 ≡ 3

mY

∑
n

ρ̂Y (n)

− 1

2mY

∑
n

3∑
l=1

[
ρ̂Y (n,n + êl) + ρ̂Y (n,n − êl)

]
,

(28)

with

ρ̂Y (n,n′) ≡
∑
i, j

a†
Y (n)aY (n′), (29)

ρ̂Y (n) ≡ ρ̂Y (n,n). (30)

The NN interaction is

ĤNN = CNN

2
:
∑

n,n′,n′′
ρ̂s
N (n′) fsL

(n′ − n)

× fsL
(n − n′′)ρ̂s

N (n′′) :, (31)
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with

ρ̂s
N (n) ≡

∑
i, j

a
sNL†
i, j (n)a

sNL
i, j (n), (32)

and the operators a
sNL†
i, j (n) and a

sNL
i, j (n) are defined in terms of

the (non-locally) smeared annihilation and creation operators

a
sNL
i, j (n) ≡ ai, j (n) + sNL

∑
|n′|=1

ai, j (n + n′), (33)

and

a
sNL†
i, j (n) ≡ a†

i, j (n) + sNL

∑
|n′|=1

a†
i, j (n + n′). (34)

The Y N interaction is

ĤY N = CY N

∑
n

ρ̂N (n)ρ̂Y (n). (35)

When rewriting the nucleon-nulceon interaction with aux-
iliary fields, the partition function takes the form

Z =
∫ ∏

n,nt

[
dφ(n, nt )√

2π
e− 1

2 φ2(n,nt )
]

Tr[M̂ (Nt−1) · · · M̂ (0)],

(36)

where

M̂ (nt ) ≡ : exp(−αt Ĥ
(nt )) :, (37)

with

Ĥ (nt ) ≡ Ĥ N
0 + ĤY

0 + Ĥ (nt )
φN + ĤY N , (38)

and

Ĥ (nt )
φN = −

√
−αtCNN

×
∑
n,n′

φ(n, nt ) fsL
(n − n′)ρ̂s

N (n′, nt ). (39)

4 Impurity worldlines and reduced transfer matrices

We now integrate out the hyperon degree of freedom and
derive a “reduced” transfer matrix operator /̂M , which acts
on the nucleon degrees of freedom only. Let us consider the
transfer matrix between time slices nt and nt + 1. Let |n〉
represent the state with the hyperon at lattice site n. We first

consider the case when the hyperon hops from lattice site n
to n ± êl . We then have

〈n ± êl |M̂ (nt )|n〉 = /̂M
(nt )
n±êl ,n (40)

where /̂M
(nt )
n±êl ,n is the reduced transfer matrix operator acting

on only the nucleons with

/̂M
(nt )
n±êl ,n = h : exp(−αt Ĥ

(nt )
n±êl ,n

) :, (41)

where

Ĥ (nt )
n±êl ,n

= HN
0 + ĤY

0 + Ĥ (nt )
φN . (42)

Next we consider the case when the hyperon remains at
lattice site n between time slices nt and nt +1. We then have

〈n|M̂ (nt )|n〉 = /̂M
(nt )
n,n , (43)

where the reduced transfer matrix is

/̂M
(nt )
n,n = (1 − 6h) : exp(−αt Ĥ

(nt )
n,n ) :, (44)

with

Ĥ (nt )
n,n = HN

0 + ĤY
0 + Ĥ (nt )

φN + CY N

1 − 6h
ρ̂N (n) + · · · . (45)

The ellipses refers to terms with higher powers of ρ̂ and
additional factors of αt . These are lattice artifacts that dis-
appear in the limit αt → 0. They are needed to cancel the
higher-order powers of the CY N term when expanding the
exponential in Eq. (44) beyond the linear term. In the full
transfer matrix such terms vanish upon normal ordering of
the hyperon field since we have only one hyperon in our sys-
tem. However, when we integrate out the hyperon worldline,
such terms no longer vanish since the hyperon is no longer a
dynamical field.

In our simulations here we drop all such higher-order
terms from our ILMC simulations. This choice constitutes a
redefinition of our starting interaction to include some small
higher-body interactions between the hyperon and more than
one nucleon. Since we will take αt to be very small, the most
important induced higher-body interaction is a small three-
body interaction. The three-body interaction has the form

ĤY NN = − αtC
2
Y N

2(1 − 6h)

∑
n

ρ̂N (n)ρ̂N (n)ρ̂Y (n), (46)

We see explicitly that this term is a lattice artifact that disap-
pears when αt → 0.
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5 Monte Carlo calculation

We now describe how ILMC calculations are performed
using the Projection Monte Carlo (PMC) method. Let us first
assume that the impurity has been fixed at a given spatial
lattice site, and that no “hopping” of the impurity occurs dur-
ing the Euclidean time evolution. We shall then relax this
constraint, and discuss a practical algorithm for updating the
configuration of the hyperon worldline.

5.1 Stationary impurity

For a stationary hyperon impurity, the reduced transfer matrix
is given by Eq. (44), and for the purposes of the PMC calcu-
lation, we define the Euclidean projection amplitude

Z jk(Nt ) ≡ 〈ψ j | /̂M
Nt |ψk〉, (47)

for a product of Nt Euclidean time slices, where j and
k denote different initial cluster states. As usual, this is
expressed as a determinant of single-particle amplitudes,
which gives

Z jk(Nt ) = det M jk
p×p, (48)

where

M jk
p×p =

⎛
⎜⎜⎜⎝

〈φ0, j | /̂M
Nt |φ0,k〉 〈φ0, j | /̂M

Nt |φ1,k〉 · · ·
〈φ1, j | /̂M

Nt |φ0,k〉 〈φ1, j | /̂M
Nt |φ1,k〉 · · ·

...
...

. . .

⎞
⎟⎟⎟⎠ , (49)

for p nucleons. By means of the projection amplitudes (48),
we construct

[M̂a(Nt )]qq ′ ≡
∑
q ′′

Z−1
qq ′′(Nt )Zq ′′q ′(Nt + 1), (50)

which is known as the “adiabatic transfer matrix”. If we
denote the eigenvalues of (50) by λi (Nt ), we find

λi (Nt ) = exp(−αt Ei (Nt + 1/2)), (51)

such that the low-energy spectrum is given by the “transient”
energies

Ei (Nt + 1/2) = − log(λi (Nt ))

αt
, (52)

at finite temporal lattice spacing at . For the case of a single
trial cluster state with p nucleons, Eq. (48) reduces to

Z(Nt ) = det M00
p×p, (53)

for the case of a single trial state. The ground-state energy is
obtained from

E0(Nt + 1/2) = − log(Z(Nt + 1)/Z(Nt ))

αt
, (54)

in the limit Nt → ∞, where the exact low-energy spec-
trum of the transfer matrix will be recovered. Note that the
argument Nt + 1/2 is conventionally assigned to the tran-
sient energy computed from the ratio of projection ampli-
tudes evaluated at Euclidean time steps Nt + 1 and Nt .

As an example, for the hypertriton we have p = 2 nucle-
ons after the impurity hyperon has been integrated out. We
start the Euclidean time projection with a single initial trial
cluster state ( j = k = 0) consisting of a spin-up proton and
a spin-up neutron. As there are no terms that mix spin or
isospin, the other components of each single-particle state
are set to zero, and remain so during the PMC calculation.
For the spatial parts of the nucleon wave functions, we may
choose, for example, the zero-momentum state

|φ0,0〉 = |φ1,0〉 = 〈0, 0, 0〉, (55)

in the notation of Ref. [16], which denotes plane-wave
orbitals in a cubic box. In principle, we may also choose
any other plane-wave state with non-zero momentum (see
Table 1 of Ref. [16]), or any other more complicated trial
state. For the heavier nuclei, it is indeed better to choose an
initial state where the nucleons are clustered together. In this
case we sum over all possible translations of the cluster in
order construct an initial state with zero total momentum.

5.2 Hopping impurity

If the hyperon impurity is allowed to hop between nearest-
neighbor sites (from one Euclidean time slice to the next), the
Euclidean projection amplitude becomes a sum over hyperon
worldline configurations. This gives

Z jk(Nt ) ≡
∑

n0,...,nNt

〈ψ j | /̂M
Nt

{n j }|ψk〉, (56)

where the product

/̂M
Nt

{n j } ≡ /̂MnNt
,nNt−1

/̂MnNt−1,nNt−2
. . . /̂Mn2,n1

/̂Mn1,n0
, (57)

is expressed in terms of the reduced transfer matrices (44)
and (41). Here, n j denotes the spatial position of the hyperon
impurity (which has been integrated out) on time slice j . The
expressions for the projection amplitude and determinant are
generalized to

123



Eur. Phys. J. A (2020) 56 :248 Page 7 of 10 248

Z jk(Nt ) =
∑

n0,...,nNt

det M jk
p×p, (58)

where

M jk
p×p =

⎛
⎜⎜⎜⎝

〈φ0, j | /̂M
Nt

{n j }|φ0,k〉 〈φ0, j | /̂M
Nt

{n j }|φ1,k〉 · · ·
〈φ1, j | /̂M

Nt

{n j }|φ0,k〉 〈φ1, j | /̂M
Nt

{n j }|φ1,k〉 · · ·
...

...
. . .

⎞
⎟⎟⎟⎠ ,

(59)

such that the determinant is now to be computed over all
possible hyperon wordline configurations.

We note that the worldline configuration is to be updated
stochastically using a Metropolis algorithm. Thus, proposed
changes in the impurity worldline are accepted or rejected
by importance sampling with |Z j j (Nt )| as the probabil-
ity weight function. Here, j denotes one of the initial trial
nucleon cluster states.

5.3 Worldline updates

The updating of the impurity worldline is handled in two
steps: The generation of a new proposed worldline, and a
Metropolis accept/reject step to determine whether to use the
generated worldline. For this work, the worldline W (n, nt )
is a function of only the lattice site n and the Euclidean time
step nt , and is equal to 1 where the impurity is present, and 0
at all other lattice points. From the expressions of the reduced
transfer matrices, the worldline at two adjacent time steps,
W (n′, nt ) andW ′(n′, nt+1) must obey the relation |n−n′| ≤
1. For an illustration of the impurity (hyperon) worldline, see
Fig. 1.

For the non-interacting worldline, we can generate new
configurations from the free probabilities, as determined
from the reduced transfer matrices. In this case, Ph = h is
the hopping probability, and Ps = (1−6h) is the probability
to remain stationary. When initializing the worldline at the
beginning of the MC simulation, we may start from a config-
uration where the worldline is completely stationary (“cold
start”) or one where the worldline either hops or remains sta-
tionary at each time step according to the probabilities Ph
and Ps (“warm start”).

At the beginning of every sweep through the lattice, we
propose a new worldline to use for that sweep. This is done
by taking the previous worldline and choosing a random time
at which we cut the worldline and regenerating it either in the
forwards and backwards time direction. The new worldline is
then accepted or rejected using a Metropolis accept or reject
condition to preserve detailed balance associated with the
absolute value of the amplitude.

space

E
uc

lid
ea

n 
tim

e

Λ

Fig. 1 Illustration of the hyperon worldline. In the reduced transfer
matrix formalism, the hyperon has been “integrated out”, and the inter-
action between the hyperon and the nucleons is mediated by an effective
“background field” generated by the hyperon worldline

6 Results

For the results presented in what follows, we use a spatial lat-
tice spacing a = 1/(100 MeV) and temporal lattice spacing
of at = 1/(300 MeV). The non-local smearing parameter
is chosen to be sNL = 0.2, and the local smearing parame-
ter is set to sL = 0.0. Since we only consider s-shell nuclei
and hypernuclei in this study, the local attraction provided
by sL for heavier nuclei is not needed [21]. The coupling
constant CNN is set to −7.5 × 10−6 MeV−2, and this com-
bination of parameters yields a nucleon–nucleon scattering
length aNN = 6.86 fm and effective range rNN = 1.77 fm.
The scattering length and effective range are calculated using
Lüscher’s finite volume method [24], as described in the
Appendix of Ref. [25]. We find that these parameters pro-
duce good results for the average S-wave phase shifts as
well as the three- and four-nucleon binding energies. The
exact transfer matrix calculation of the three-nucleon sys-
tem and the Monte Carlo calculation of the four-nucleon
system are both described in the following paragraphs. As
stated previously, in this study the spin-dependent terms of
the nucleon–nucleon interaction are not accounted for.

For the Y N interaction, we set CY N according to the best
overall fit to the light hypernuclei. Fitting to the Λ sepa-
ration energies for 3

ΛH, 4
ΛH/He, and 5

ΛHe, we find CY N =
−1.6 × 10−5 MeV−2. This gives aY N = −0.45 fm for the
scattering length and rY N = −0.45 fm for the effective range.
In Table 1, we present benchmark calculations of the ILMC
results for 3

ΛH in comparison with exact transfer matrix cal-
culations. We show the results for the energy as a function of
Euclidean projection time.
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Table 1 ILMC results for the energy of 3
ΛH versus Euclidean time in

comparison with exact transfer matrix results for periodic box length
15.8 fm

Nt t (MeV−1) ILMC (MeV) Exact (MeV)

50 0.1667 −1.0878 (6) −1.0878

100 0.3333 −1.4598 (9) −1.4590

150 0.5000 −1.6778 (11) −1.6760

200 0.6667 −1.7975 (13) −1.7966

250 0.8333 −1.8630 (17) −1.8614

300 1.0000 −1.8971 (18) −1.8954

Table 2 Exact transfer matrix results for 2H, 3
ΛH, and the separation

energy BΛ versus periodic box length

L (fm) 2H (MeV) 3
ΛH (MeV) BΛ (MeV)

15.8 −1.651 −1.932 0.281

17.8 −1.460 −1.712 0.252

19.7 −1.332 −1.569 0.237

21.7 −1.245 −1.474 0.228

23.7 −1.186 −1.410 0.224

25.6 −1.146 −1.368 0.222

27.6 −1.118 −1.339 0.221

29.6 −1.100 −1.319 0.220

We see that the agreement is quite good. The initial/final
nucleon trial states for these calculations are taken to be
spatially constant functions, which correspond to single-
particle states of zero momentum in a periodic cubic box. The
hyperon initial/final wave function is also taken be a constant
function. Since we use a constant initial/final state wave func-
tion for the hyperon, the initial/final positions for the hyperon
worldline are irrelevant in the Monte Carlo updating process.
These exact transfer matrix calculations include the induced
three-baryon interaction described in Eq. (46).

In Table 2, we present exact Lanczos transfer matrix calcu-
lations of the ground state of 2H, 3

ΛH, and separation energy
BΛ, as a function of periodic box length. In this work, we also
present the exact Lanczos transfer matrix calculation wher-
ever it is computationally possible and using Monte Carlo
for cases where it is not. Given the extremely small Λ sep-
aration energy, it is necessary to go to very large volumes
in order to remove finite volume artifacts. Interestingly, BΛ

is found to be relatively constant with the periodic box size
L . This suppression of the finite volume dependence is an
indication that the asymptotic normalization coefficient of
the hypertriton wave function is small [26,27].

In Fig. 2, we present ILMC results for the 4
ΛH/He energy

versus Euclidean time. These calculations use a periodic box
size of L = 15.8 fm with up to Nt = 300 Euclidean time
steps. In order to extract the ground state energy, we use the
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Fig. 2 ILMC results for the 4
ΛH/He energy versus Euclidean projection

time in a periodic box size of L = 15.8 fm. We extract the ground state
energy using an exponential ansatz for the asymptotic time dependence

extrapolation ansatz

E(t) = E0 + c exp(−ΔEt), (60)

which takes into account the residual dependence of the first
excited state that couples to our initial/final states. For this
calculation, we use an initial/final state where the nucleon
states have a spatially decaying exponential form with respect
to the nucleus center of mass, while the initial/final hyperon
wave function is a constant function. It suffices to have an
initial/final state with some overlap with the ground state
wave function, and we find that these choices work very well.

In Fig. 3, we show lattice Monte Carlo (LMC) results
for the 4He energy versus Euclidean time. As there are no
hyperons in this system, these are auxiliary field Monte Carlo
calculations without impurity worldlines. These calculations
use a periodic box size of L = 9.9 fm with up to Nt = 150
Euclidean time steps. In order to extract the ground state
energy, we again use the exponential ansatz in Eq. (60). For
this calculation, we again use an initial/final state where the
nucleons have a spatially-decaying exponential form with
respect to the nucleus center of mass.

In Fig. 4, ILMC results are shown for the 5
ΛHe energy

versus Euclidean time. These calculations use a periodic box
size of L = 9.9 fm with up to Nt = 250 Euclidean time steps.
We again use the exponential ansatz from Eq. (60) to extract
the ground state energy. Similar to the 4

ΛH/He calculation,
here we use an initial/final state where the nucleons have
a spatially decaying exponential form with respect to the
nucleus center of mass, while the initial/final hyperon wave
function is a constant function.

In Table 3, we present the lattice results for all of the s-shell
nuclei and hypernuclei. The exact transfer matrix results are
shown without error bars, while the ILMC and LMC results
are shown with error bars that take into account stochastic
errors and extrapolation errors. There is also a residual sys-
tematic error due to finite volume effects. For a box size of
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Fig. 3 LMC results for the 4He energy versus Euclidean projection
time in a periodic box size of L = 9.9 fm. We extract the ground state
energy using an exponential ansatz for the asymptotic time dependence
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Fig. 4 ILMC results for the 5
ΛHe energy versus Euclidean time in a

periodic box size of L = 9.9 fm. We extract the ground state energy
using an exponential ansatz for the asymptotic time dependence

L = 29.6 fm, the finite volume error on 2H is 0.04 MeV, and
the estimated finite volume error for 3

ΛH is also � 0.04 MeV.
As both corrections are in the same direction (with more
binding at finite volume), the resulting finite volume error on
the separation energy is < 0.002 MeV.

For a box size of L = 15.8 fm, the finite volume error
on 3H/He is � 0.10 MeV, and the estimated finite volume
errors for 4

ΛH/He are also � 0.10 MeV. For a box size of
L = 9.9 fm, the finite volume error on 4He is � 1.5 MeV, and
the estimated finite volume errors for 4

ΛH/He are � 2.0 MeV.
For the comparison with the experimental results, we aver-

age over Wigner SU(4) and Λ spin components where data
exists. We see that while the Bexp

Λ is larger than the exper-
imental values for 3

ΛH and 5
ΛHe, the separation is smaller

than experimental value for 4
ΛH/He. This is an indication that

there are deficiencies in our very simple treatment of the Y N
and NN interactions. However, this serves as a good start-
ing point for determining the essential features of the Y N
interactions needed to describe the structure and properties
of hypernuclei.

Table 3 Summary of lattice results (exact transfer matrix, ILMC and
LMC) for the energies of light nuclei and hypernuclei, and for separation
energies. Comparisons with experimental separation energies are given
where such data exists. These comparisons are averaged over Wigner
SU(4) and Λ spin components. For the case of 4

ΛH/He, we average over
the 0+ and 1+ separation energies for 4

ΛH and 4
ΛHe weighted by number

of spin components. More data can be found in the review Ref. [33]

Nucleus L (fm) E (MeV) BΛ (MeV) Bexp
Λ (MeV)

2H 29.6 −1.100 – –
3
ΛH 29.6 −1.319 0.220 0.13 (5) [28–30]
3H/He 15.8 −8.725 – –
4
ΛH/He 15.8 −9.19 (5) 0.46 (5) 1.39 (4) [28–32]
4He 9.9 −25.698 (9) – –
5
ΛHe 9.9 −29.66 (6) 3.96 (6) 3.12 (2) [28–30]

7 Discussion

We have shown, as a proof of principle, how state-of-the-art
NLEFT calculations can be extended to include hyperons.
As the number of hyperons in realistic hypernuclei is small
(typically one or two) relative to the number of nucleons,
we have applied the ILMC method whereby the hyperon
“impurity” is integrated out and represented by a hyperon
“worldline”, the position of which is updated during the MC
calculation. Effectively, the standard NLEFT calculations for
nucleons are augmented by a “background field” induced
by the hyperon worldline. We have benchmarked the ILMC
method by presenting preliminary MC results for the s-shell
hypernuclei, using a simplified interaction similar to pionless
EFT.

One of the most promising aspects of this work is the
fact that the ILMC simulations scale very favorably with the
number of nucleons. We have found that nearly all of the com-
putational effort is consumed in calculating single-nucleon
amplitudes as a function of the auxiliary field. As this part
of the code scales linearly with the number of nucleons, it
should be possible to perform calculations of hypernuclei
with up to one hundred or more nucleons. We note also that
the particular set of interactions that we have used here can
also be directly applied to studying the properties of a bosonic
impurity immersed in a superfluid Fermi gas. By modifying
the included P-wave interactions of the impurity, we would
also be able to describe the properties of an alpha particle
immersed in a gas of superfluid neutrons. The possible appli-
cations of this method clearly go well beyond hypernuclear
structure calculations and have general utility for numerous
quantum many-body systems.

Returning to hypernuclear systems, the obvious next
extension of this work is to include spin-dependent Y N inter-
actions. The importance of the spin-dependence of the Y N
interaction can be seen clearly in the splittings between the

123



248 Page 10 of 10 Eur. Phys. J. A (2020) 56 :248

0+ and 1+ states in 4
ΛH and 4

ΛHe [34]. One should also
include explicit ΛN -�N transitions, see e.g. Ref. [35], as
well as one-meson exchange interactions that would put the
Y N interaction in the same EFT formalism [5,6] as currently
used for the NN interaction in NLEFT [23].

The number of adjustable parameters in the Y N interac-
tion will then increase. The most natural approach, in line
with the treatment of the NN interaction, would be to fit
such parameters to ΛN scattering phase shifts. However,
due to the paucity of such data (especially at low energies),
we expect to need at least the hypertriton binding energy
as an additional constraint, as it is also done in continuum
chiral EFT, see e.g. Ref. [6]. As the effects of ΛN -�N tran-
sitions are included, it may be necessary to use further empir-
ical data on other light hypernuclei to constrain the relevant
LECs. A further extension concerns the extension to S = −2
hypernuclei, which on the one hand would involve the YY
interactions [36–38] and on the other hand a modified ILMC
algorithm for two interacting worldlines. Work along these
lines is underway.
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