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Abstract We extend our recent analyses of the nuclear vec-
tor, axial-vector and pseudoscalar currents and derive the
leading one-loop corrections to the two-nucleon scalar cur-
rent operator in the framework of chiral effective field theory
using the method of unitary transformation. We also show
that the scalar current operators at zero momentum trans-
fer are directly related to the quark mass dependence of the
nuclear forces.

1 Introduction

The first principles description of nuclei, nuclear matter and
reactions is one of the great challenges in contemporary
physics with applications ranging from low-energy searches
for physics beyond the Standard Model (SM) to properties
of neutron stars and neutron star mergers. The currently
most efficient and feasible approach along this line relies
on the application of suitably tailored effective field theo-
ries (EFTs). In particular, an extension of chiral perturbation
theory to multi-nucleon systems [1,2], commonly referred
to as chiral EFT, has been applied over the last two decades
to derive nuclear forces at high orders in the EFT expan-
sion in harmony with the spontaneously broken approxi-
mate chiral symmetry of QCD [3,4]. See Refs. [5,6] for
the most accurate and precise chiral two-nucleon interac-
tions at fifth order and Refs. [7–11] for a collection of review
articles describing the current state-of-the-art in chiral EFT
for nuclear forces and selected applications. In parallel with
these developments, current operators describing the interac-
tions of nuclear systems with external vector, axial-vector and
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pseudoscalar sources needed to study electroweak reactions
driven by a single photon- orW /Z -boson exchange have been
worked out completely through fourth order in the heavy-
baryon formulation of chiral EFT with pions and nucleons
as the only dynamical degrees of freedom, see Refs. [12,13]
for the pioneering studies by Park et al., Refs. [14–17] for
our calculations using the method of unitary transformation
[18–20] and Refs. [21–24] for an independent derivation by
the Jlab-Pisa group in the framework of time-ordered pertur-
bation theory. A direct comparison of the expressions for the
current operators derived by different group is hindered by
their scheme dependence. However, at least for the two-pion
exchange axial-vector currents, our results [16] appear to be
not unitarily equivalent to the ones of the Pisa-Jlab group
[23], see Ref. [25] for a detailed discussion of the box dia-
gram contribution. We further emphasize that off-shell con-
sistency of the electroweak operators derived by our group
[14–17] and the corresponding (unregularized) two- [26,27]
and three-nucleon forces [28,29] has been verified explicitly
by means of the corresponding continuity equations in Refs.
[16,17].

In this work we extend our earlier studies [14–17] and
investigate the two-nucleon scalar current operators. Specif-
ically, we consider the two-flavor QCD Lagrangian in the
presence of external vector, axial-vector, scalar and pseu-
doscalar sources vμ(x), aμ(x), s(x) and p(x), respectively:

L = L0
QCD + q̄γ μ(vμ + γ5aμ)q − q̄(s − iγ5 p)q, (1.1)

where q denotes the doublet of the up and down quark
fields, while L0

QCD is the chirally invariant Lagrangian with
massless up- and down-quarks. Throughout this work, we
employ the SU(2) formulation of chiral EFT as done in our
calculations of nuclear forces [5,27–34] and current opera-
tors [14–17]. The external sources are represented by Her-
mitian 2×2 matrices in the flavor space, and the original
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QCD Lagrangian is restored by setting vμ = aμ = p = 0,
s = diag(mu, md). Here and in what follows, we assume
exact isospin symmetry with mu = md ≡ mq . Embedded
in the SM, the interactions between quarks and the external
vector and axial-vector sources are probed in electroweak
reactions involving hadrons or nuclei. Low-energy nuclear
systems are nowadays commonly described by solving the
many-body Schrödinger equation with the nuclear forces
derived in chiral EFT [3,4,7]. An extension to electroweak
processes with nuclei requires the knowledge of the corre-
sponding nuclear current operators defined in terms of the
functional derivatives of the effective nuclear Hamiltonian
in the presence of external fields with respect to vμ(x) and
aμ(x) [16]. For the vector, axial-vector and pseudoscalar
sources, the corresponding expressions are already available
up to fourth chiral order [14–17]. In this work we focus on
the response of nuclear systems to the external scalar source
s(x) and thus set vμ = aμ = p = 0. While the scalar cur-
rents cannot be probed experimentally within the SM due
to the absence of scalar sources, they figure prominently in
dark matter (DM) searches in a wide variety of DM models
such as e.g. Higgs-portal DM and weakly-interacting mas-
sive particles (WIMPs), see [35–39] for recent review arti-
cles. For example, the dominant interactions of a spin-1/2
Dirac-fermion DM particle χ with the strong sector of the
SM is given by the Lagrangian

Lχ = χ̄χ
(∑

i

cimi q̄i qi + cG αsG
a
μνG

μν a
)
, (1.2)

where i denotes the flavor quantum number, Ga
μν is the gluon

field strength, αs is the strong coupling constant and the
couplings ci (cG ) determine the strength of the interaction
between χ and quarks of flavor i (gluons). Notice that the
contributions from coupling to heavy quarks (charm, bottom
and top) can be integrated out [40] and the sum in Eq. (1.2)
can thus be taken only over the light quark flavors by replac-
ing the coupling constants ci , cG with the corresponding
effective ones. Thus, the scalar nuclear currents derived in
our paper can be used to describe the interactions of nuclei
with DM particles emerging from their isoscalar coupling to
the up- and down-quarks ∝ (cu + cd).

Apart from their relevance for DM searches, the scalar
currents are intimately related to quark mass dependence of
hadronic and nuclear observables. For example, the pion-
nucleon σ -term, σπN , corresponds to the isoscalar scalar
form factor of the nucleon at zero momentum transfer times
the quark mass and determines the amount of the nucleon
mass generated by the up- and down-quarks. Its value has
been accurately determined from the recent Roy-Steiner-
equation analysis of pion-nucleon scattering accompanied
with pionic hydrogen and deuterium data to be σπN =
(59.1 ± 3.5) MeV [41,42]. For the status of lattice QCD
calculations of σπN see Ref. [43]. As pointed out, however,

in Ref. [44], there is relation between the σ -term and the S-
wave πN scattering lengths that so far has not been checked
for the lattice calculations. Nuclear σ -terms and scalar form
factors of light nuclei have also been studied in lattice QCD,
albeit presently at unphysically large quark masses [45,46].
Interestingly, the scalar matrix elements were found in these
studies to be strongly affected by nuclear effects (in contrast
to the axial-vector and tensor charges), which indicates that
scalar exchange currents may play an important role. Last
but not least, as will be shown below, the scalar isoscalar
currents are directly related to the quark mass dependence
of the nuclear forces, a subject that gained a lot of attention
in the EFT community in connection with ongoing lattice
QCD efforts in the multibaryon sector [47–55], a conjectured
infrared renormalization group limit cycle in QCD [56,57],
searches for possible temporal variation of the light quark
masses [58,59] and anthropic considerations related to the
famous Hoyle state in 12C [60–63].

Clearly, nuclear scalar currents have already been stud-
ied before in the framework of chiral EFT, see e.g. [64–71].
For the two-nucleon currents, only the dominant contribu-
tion at the chiral order Q−2 stemming from the one-pion
exchange has been considered so far. Here and in what fol-
lows, Q ∈ {Mπ/�b, p/�b} denotes the chiral expansion
parameter, Mπ is the pion mass, p refers to the magnitude of
three-momenta of external nucleons, while �b denotes the
breakdown scale of the chiral expansion. For a detailed dis-
cussion of the employed power counting scheme for nuclear
currents see Ref. [16]. The two-body scalar current is sup-
pressed by just one power of the expansion parameter Q
relative to the dominant one-body contribution. Such an
enhancement relative to the generally expected suppression
of (A + 1)-nucleon operators relative to the dominant A-
nucleon terms by Q2 can be traced back to the vertex struc-
ture of the effective Lagrangian and is not uncommon. For
example, one- and two-nucleon operators contribute at the
same order to the axial charge and electromagnetic current
operators, see Table II of Ref. [16] and Table 1 of Ref. [17],
respectively. For the scalar operator, the relative enhance-
ment of the two-body terms is caused by the absence of
one-body contributions at the expected leading order Q−4,
see e.g. Table III of Ref. [16] for the hierarchy of the pseu-
doscalar currents. The first corrections to the scalar current
appear at order Q−2 from the leading one-loop diagrams
involving a single-nucleon line [66]. This relative enhance-
ment of the two-body contributions might be responsible for
the pattern found in the recent lattice QCD studies [45,46],
where strong nuclear effects were reported. Notice, however,
that a conclusive statement is only possible once similar stud-
ies at physical quark masses will be available. In this paper
we derive the subleading contributions to the two-nucleon
scalar isoscalar current operators at order Q0. While the one-
body current is not yet available at the same accuracy level,
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using empirical information on the scalar form factor of the
nucleon from lattice QCD instead of relying on its strict chi-
ral expansion may, in the future, provide a more reliable and
efficient approach. Alternatively, one can use the dispersion
theory of the single-nucleon scalar form factor [72,73]. A
similar strategy is, in fact, commonly used in studies of elec-
tromagnetic processes, see e.g. [74,75] and Ref. [76] for a
recent example. Concerning the two-nucleon scalar-isoscalar
current, there appear only two additional short-range param-
eters at order Q0, which can be fixed in the studies of chiral
extrapolations of the nuclear forces. Once they are known, it
would be interesting to extend the studies of dark matter scat-
tering of light nuclei [70] with the improved scalar-isoscalar
current operator.

Our paper is organized as follows. In section 2, we
briefly describe the derivation of the current operator using
the method of unitary transformation and provide explicit
expressions for the leading (i.e. order-Q−2) and subleading
(i.e. order-Q0) two-body contributions. Next, in section 3,
we establish a connection between the scalar currents at zero
momentum transfer and the quark mass dependence of the
nuclear force. The obtained results are briefly summarized in
section 4, while some further technical details and the some-
what lengthy expressions for the two-pion exchange contri-
butions are provided in appendices A and B.

2 Two-nucleon scalar operators

The derivation of the nuclear currents from the effective chi-
ral Lagrangian using the method of unitary transformation
is described in detail in Ref. [16]. The explicit form of the
effective Lagrangian in the heavy-baryon formulation

Leff = L(2)
π + L(4)

π + L(1)
πN + L(2)

πN + L(3)
πN + L(0)

NN + L(2)
NN

(2.1)

can be found in Refs. [77] and [78] for the pionic and pion-
nucleon terms, respectively. The relevant terms in LNN will
be specified in section 2.4. As already pointed out above, for
the purpose of this study we switch off all external sources
except the scalar one, s(x). To derive the scalar currents con-
sistent with the nuclear potentials in Refs. [26–29,31,32] and
electroweak currents in Refs. [14–17], we first switch from
the effective pion-nucleon Lagrangian to the corresponding
Hamiltonian H [s] using the canonical formalism and then
apply the unitary transformationsUOkubo,Uη andU [s]. Here
and in what follows, we adopt the notation of Ref. [16]. In
particular, the Okubo transformations UOkubo [18] is a “min-
imal” unitary transformation needed to derive nuclear forces
by decoupling the purely nucleonic subspace η from the
rest of the pion-nucleon Fock space in the absence of exter-
nal sources. However, as found in Refs. [31], the resulting

nuclear potentials ηU †
OkuboHUOkuboη, with η denoting the

projection operator onto the η-space, are non-renormalizable
starting from next-to-next-to-next-to-leading order (N3LO)
Q4.1 To obtain renormalized nuclear potentials, a more gen-
eral class of unitary operators was employed in Refs. [31,32]
by performing additional transformationsUη on the η-space.
The explicit form of the “strong” unitary operators UOkubo

and Uη up to next-to-next-to-leading order (N2LO) can be
found in Refs. [28,29,31,32]. Nuclear currents can, in prin-
ciple, be obtained by switching on the external classical
sources in the effective Lagrangian, performing the same
unitary transformations UOkuboUη as in the strong sector,
and taking functional derivatives with respect to the external
sources. However, similarly to the above mentioned renor-
malization problem with the nuclear potentials, the current
operators obtained in this way can, in general, not be renor-
malized. A renormalizable formulation of the current opera-
tors requires the introduction of an even more general class
of unitary transformation by performing subsequent η-space
rotations with the unitary operators, whose generators depend
on the external sources. In Refs. [16] and [17], such additional
unitary operators U [aμ, p] and U [vμ], subject to the con-
straints U [aμ, p]aμ=p=0 = U [vμ]vμ=0 = η, are explicitly
given up to N2LO. Notice that such unitary transformations
are necessarily time-dependent through the dependence of
their generators on the external sources. This, in general,
induces the dependence of the corresponding current oper-
ators on the energy transfer and results in additional terms
in the continuity equations [16]. We now follow the same
strategy for the scalar currents and introduce additional η-
space unitary transformations U [s], U [s]s=mq = η, in order
to obtain renormalizable currents. The most general form of
the operator U [s] at the chiral order we are working with is
given in appendix A and is parametrized in terms of four real
phases αs

i , i = 0, . . . , 3. The nuclear scalar current is defined
via

S(k) =
∫

d4x exp (−ik · x) δ

δs(x)

∣∣∣∣
s=mq

×
[
U †[s]U †

ηU
†
OkuboH [s]UOkuboUηU [s]

+
(
i

∂

∂t
U †[s]

)
U [s]

]
, (2.2)

see [16] for notation. While all the phases remain unfixed,
they do not show up in the resulting expressions for the
nuclear current given in the following sections. To the order
we are working, we therefore do not see any unitary ambi-
guity.

1 The chiral expansion of the nuclear forces starts with the order Q0

(LO).
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Fig. 1 Diagram that leads to
the dominant contribution of the
2N scalar isoscalar current
operator S(Q−2)

2N . Solid, dashed
and wiggly lines denote
nucleons, pions and external
scalar sources, in order. Solid
dots denote the leading-order
vertices from the effective
Lagrangians L(2)

π and L(1)
πNN

2.1 Contributions at order Q−2

The chiral expansion of the 2N scalar isoscalar current starts
at order Q−2. The dominant contribution is well known to
emerge from the one-pion exchange diagram shown in Fig. 1
and has the form

S(Q−2)
2N = − g2

AM
2
π

4F2
πmq

�q1 · �σ1 �q2 · �σ2(
M2

π + q2
1

) (
M2

π + q2
2

)τ 1 · τ 2 , (2.3)

where gA and Fπ are the nucleon axial-vector coupling and
pion decay constants, respectively, and �qi = �p ′

i − �pi denotes
the momentum transfer of nucleon i . Further, �σi (τ i ) refer
to the spin (isospin) Pauli matrices of nucleon i . Here and
in what follows, we follow the notation of our paper [16].
In terms of the Fock-space operator Ŝ2N, the expressions we
give correspond to the matrix elements

〈 �p ′
1 �p ′

2|Ŝ2N| �p1 �p2〉 =: (2π)−3

δ(3)( �p ′
1 + �p ′

2 − �p1 − �p2 − �k )S2N , (2.4)

where �pi ( �p ′
i ) refers to the initial (final) momentum of

nucleon i , �k is the momentum of the external scalar source
and the nucleon states are normalized according to the nonrel-
ativistic relation 〈 �p ′

i | �pi 〉 = δ(3)( �p ′
i − �p ). Finally, we empha-

size that the dependence of the scalar currents on mq , which

is renormalization-scale dependent, reflects the fact that in
our convention, the external scalar source s(x) couples to the
QCD density q̄q rather than mqq̄q. Thus, only the combi-
nation mq Ŝ2N(k) is renormalization-scale independent. This
is completely analogous to the pseudoscalar currents derived
in Ref. [16], and we refer the reader to that work for more
details.

2.2 One-pion-exchange contributions at order Q0

Given that the first corrections to the pionic vertices are sup-
pressed by two powers of the expansion parameter and the
absence of vertices in L(2)

πN involving the scalar source and a
single pion, the first corrections to the two-nucleon current
appear at order Q0. In Fig. 2 we show all one-loop one-
pion-exchange diagrams of non-tadpole type that contribute
to the scalar current at this order. Similarly, the correspond-
ing tadpole and tree-level diagrams yielding nonvanishing
contributions are visualized in Fig. 3.

It should be understood that the diagrams we show here
and in what follows do, in general, not correspond to Feyn-
man graphs and serve for the purpose of visualizing the
corresponding types of contributions to the operators. The
meaning of the diagrams is specific to the method of unitary
transformation, see [16] for details. Using dimensional reg-
ularization, replacing all bare low-energy constants (LECs)
li and di in terms of their renormalized values l̄i and d̄i as
defined in Eq. (2.118) of [16], and expressing the results in
terms of physical parameters Fπ , Mπ and gA, see e.g. [15],
leads to our final result for the static order-Q0 contributions
to the 2N one-pion-exchange scalar current operators:

Fig. 2 Non-tadpole one-loop one-pion-exchange diagrams contributing to S(Q0)
2N . For notation, see Fig. 1

Fig. 3 One-pion-exchange tadpole and tree-level diagrams that contribute to S(Q0)
2N . Filled squares denote the vertices from L(3)

πN and L(4)
π propor-

tional to the low-energy constants di and li , respectively. For remaining notation, see Fig. 1
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S(Q0)
2N: 1π = �q1 · �σ1

q2
1 + M2

π

[
�q2 · �σ2

(
o1(k)

q2
2 + M2

π

+ o2(k)

)

+�k · �σ2

(
o3(k) + q2

2o4(k)
)]

+ 1 ↔ 2 , (2.5)

where the scalar functions oi (k) are given by

o1(k) = gAM2
π

128π2F4
πmq

[
64π2d̄18F

2
π M

2
π + gAk

2l̄4

−gAL(k)
(

2k2 + M2
π

)
+ gA

(
k2 + M2

π

) ]
,

o2(k) = gAM2
π

64π2F4
πmq

[
32π2F2

π

(
2d̄16 − d̄18

) − gAl̄4

−4g3
AL(k)

(
k2 + 3M2

π

)

k2 + 4M2
π

]
,

o3(k) = − gAM2
π

128π2F4
πk

2mq

×
[

128π2d̄16F
2
πk

2 + g3
A

(
−k2 + M2

π

)

+2gAk
2 − 4gAL(k)

k2 + 4M2
π

((
2g2

A + 1
)
k4

+
(

5g2
A + 4

)
k2M2

π + g2
AM

4
π

) ]
,

o4(k) = − g4
AM

2
π

128π2F4
πk

2mq

k2 + 4M2
π (1 − L(k))

k2 + 4M2
π

, (2.6)

and the loop function L(k) is defined as

L(k) =
√
k2 + 4M2

π

k
ln

(√
k2 + 4M2

π + k

2Mπ

)
. (2.7)

Finally, apart from the static contributions, we need to
take into account the leading relativistic corrections emerg-
ing from tree-level diagrams with a single insertion of the
1/m-vertices from the Lagrangian L(2)

πN . Given our standard
counting scheme for the nucleon mass m ∼ �2

b/Mπ , see
e.g. [16], these contributions are shifted from the order Q−1

to Q0. However, the explicit evaluation of diagrams emerg-
ing from a single insertion of the 1/m-vertices into the one-
pion-exchange graph in Fig. 1 leads to a vanishing result.
Given the relation between the scalar current operator and
the nuclear forces discussed in section 3, this observation
is consistent with the absence of relativistic corrections in
the (energy-independent formulation of the) nuclear forces
at next-to-leading order.

Last but not least, there are no contributions proportional
to the energy transfer k0 which may appear from the explicit
time dependence of the unitary transformations in diagrams
shown in Fig. 2.

Fig. 4 Two-pion-exchange diagrams contributing to S(Q0)
2N . For nota-

tion, see Fig. 1

2.3 Two-pion-exchange contributions

We now turn to the two-pion exchange contributions. In
Fig. 4, we show all diagrams yielding non-vanishing results
for the scalar current operator with two exchanged pions. The
final results for the two-pion exchange operators read

S(Q0)
2N: 2π = τ 1 · τ 2

[�q1 · �σ1�k · �σ2t1 + t2
] + �q1 · �σ1 �q2 · �σ2t3

+�q2 · �σ1 �q1 · �σ2t4+�q1 · �σ1 �q1 · �σ2t5+�σ1 · �σ2t6 + 1 ↔ 2 ,

(2.8)

where the scalar functions ti (k, q1, q2) are expressed in terms
of the three-point function. Their explicit form is given in
appendix B. Notice that the (logarithmic) ultraviolet diver-
gences in the two-pion exchange contributions are absorbed
into renormalization of the LECs from L(2)

NN described in the
next section.

2.4 Short-range contributions

Finally, we turn to the contributions involving short-range
interactions. In Fig. 5, we show all one-loop and tree-level
diagrams involving a single insertion of the contact inter-
actions that yield non-vanishing contributions to the scalar
current. The relevant terms in the effective Lagrangian have
the form [32,47]

L(0)
NN = −CS

2
(N †N )2 + 2CT N

†SμNN †SμN ,

L(2)
NN = −DS

8
〈χ+〉(N †N )2+ DT

2
〈χ+〉N †SμNN †SμN+. . .

(2.9)

where N is the heavy-baryon notation for the nucleon field
with velocity vμ, Sμ = −γ5[γμ, γν]vν/4 is the covariant
spin-operator, χ+ = 2B

(
u†(s + i p)u† + u(s − i p)u

)
, B,

CS,T and DS,T are LECs2, 〈. . .〉 denotes the trace in the
flavor space, u = √

U , and the 2×2 matrix U collects the

2 Since the symbols CS,T are commonly used to denote the Mπ -
dependent coefficients accompanying the momentum-independent con-
tact operators in the NN potential, we follow here the convention of Ref.
[47] and use CS,T to denote the corresponding bare LECs entering the
effective Lagrangian.
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Fig. 5 Loop diagrams with
contact interactions contributing

to S(Q0)
2N . Solid dots denote

vertices from L(1)
πN , L(2)

π or

L(0)
NN . Vertices from L(2)

NN are
denoted by filled squares. For
remaining notation see Fig. 1

pion fields. Further, the ellipses refer to other terms that are
not relevant for our discussion of the scalar current operator.

The total contribution of the diagrams of Fig. 5 can, after
renormalization, be written in the form

S(Q0)
2N: cont = �σ1 · �σ2s1(k) + �k · �σ1�k · �σ2s2(k) + s3(k)

+ 1 ↔ 2 , (2.10)

with the scalar functions si (k) defined by

s1(k) = − M2
π

8π2F2
πmq

[
2g2

ACT − 4π2 D̄T F
2
π

+ g2
ACT L(k)

(
3k2 + 4M2

π

)

k2 + 4M2
π

]
,

s2(k) = 3g2
ACT M2

π

8π2F2
πk

2mq

k2 − 4M2
π (L(k) − 1)

k2 + 4M2
π

,

s3(k) = M2
π

16π2F2
πmq

[
g2
ACT + 8π2 D̄S F

2
π

−2g2
ACT L(k)

(
3k2 + 8M2

π

)

k2 + 4M2
π

]
. (2.11)

The renormalized, scale-independent LECs D̄S , D̄T are
related to the bare ones DS , DT according to

Di = D̄i + βNN
i

F4 λ + βNN
i

16π2F4 ln

(
Mπ

μ

)
, (2.12)

with the corresponding β-functions given by

βNN
S = 1

2

(
1 + 6g2

A − 15g4
A + 24F2g2

ACT

)
,

βNN
T = 1

4

(
1 + 6g2

A − 15g4
A + 48F2g2

ACT

)
, (2.13)

and the quantity λ defined as

λ = μd−4

16π2

(
1

d − 4
+ 1

2

(
γE − ln 4π − 1

))
, (2.14)

where γE = −�′(1) � 0.577 is the Euler constant, d the
number of space-time dimensions andμ is the scale of dimen-
sional regularization. Clearly, the CT -independent parts of
the β-functions emerge from the two-pion exchange contri-
butions discussed in the previous section.

Notice that the LECs CS , CT , D̄S and D̄T also contribute
to the 2N potential. However, experimental data on nucleon-

nucleon scattering do not allow one to disentangle the Mπ -
dependence of the contact interactions and only constrain the
linear combinations of the LECs [47]

CS = CS + M2
π D̄S, CT = CT + M2

π D̄T . (2.15)

The LECs D̄S and D̄T can, in principle, be determined once
reliable lattice QCD results for two-nucleon observables such
as e.g. the 3S1 and 1S0 scattering lengths at unphysical (but
not too large) quark masses are available, see Refs. [63] and
references therein for a discussion of the current status of
research along this line.

Last but not least, we found, similarly to the one-pion
exchange contributions, no 1/m-corrections and no energy-
dependent short-range terms at the order we are working.
Notice further that the loop contributions to the contact inter-
actions are numerically suppressed due to the smallness of
the LEC CT as a consequence of the approximate SU(4)
Wigner symmetry [79,80].

3 Scalar current at zero momentum transfer

If the four-momentum transfer kμ of the scalar current is
equal zero, one can directly relate the current to the quark-
mass derivative of the nuclear Hamiltonian. To see this, we
first rewrite the definition of the scalar current in Eq. (2.2) in
the form

S(0) =
[(∫

d4x
δ

δs(x)

∣∣∣∣
s=mq

U †[s]
)

, Heff

]

+U †
ηU

†
Okubo

∫
d4x

δH [s]
δs(x)

∣∣∣∣
s=mq

UOkuboUη, (3.1)

where the nuclear Hamiltonian Heff is defined as

Heff = U †
ηU

†
OkuboH [mq ]UOkuboUη (3.2)

and the unitary transformation U [s] satisfies by construction

U [mq ] = 1. (3.3)
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Notice that the last term in the brackets in Eq. (2.2) vanishes
for k0 = 0. On the other hand, we obtain

∂Heff

∂mq
=

[(
∂

∂mq
U †

ηU
†
Okubo

)
UOkuboUη, Heff

]

+U †
ηU

†
Okubo

∂H [mq ]
∂mq

UOkuboUη . (3.4)

Given the trivial relation
∫

d4x
δ

δs(x)

∣∣∣∣
s=mq

Heff [s] = ∂

∂mq
Heff [mq ] , (3.5)

the right-most terms in Eqs. (3.1) and (3.4) are equal, and we
obtain the relation

S(0) = ∂Heff

∂mq
+

[(∫
d4x

δ

δs(x)

∣∣∣∣
s=mq

U †[s]
)

−
(

∂

∂mq
U †

ηU
†
Okubo

)
UOkuboUη, Heff

]
. (3.6)

At the order we are working both commutators in this equa-
tion vanish (independently of the choice of unitary phases)
leading to

S(0) = ∂Heff

∂mq
+ O(Q1). (3.7)

In appendix C we demonstrate the validity of Eq. (3.7) for the
two-nucleon potential at NLO, see Ref. [47] for the calcula-
tion of the quark mass dependence of nuclear forces using
the method of unitary transformation.

It is important to emphasize that on the energy shell,
i.e. when taking matrix elements in the eigenstates |i〉 and | f 〉
of the Hamiltonian Heff corresponding to the same energy,
all contributions from the commutator in Eq. (3.6) vanish
leading to the exact relation

〈 f |S(0)|i〉 =
〈
f

∣∣∣∣
∂Heff

∂mq

∣∣∣∣i
〉
. (3.8)

For eigenstates |�〉 corresponding to a discrete energy E ,
Heff |�〉 = E |�〉, the Feynman-Hellmann theorem allows
one to interpret the scalar form factor at zero momentum
transfer in terms of the eigenenergy slope with respect to the
quark mass:

〈�|mqS(0)|�〉 = mq
∂E(mq)

∂mq
. (3.9)

In particular, for |�〉 being a single-nucleon state at rest, the
expectation value on left-hand side of Eq. (3.9) is nothing but
the pion-nucleon sigma-term

〈�|mqS(0)|�〉 = mq
∂mN (mq)

∂mq
≡ σπN , (3.10)

and for an extension to resonances |R〉, see e.g. Ref. [81].

4 Summary and conclusions

In this paper we have analyzed in detail the subleading con-
tributions to the nuclear scalar isoscalar current operators
in the framework of heavy-baryon chiral effective field the-
ory. These corrections are suppressed by two powers of the
expansion parameter Q relative to the well-known leading-
order contribution, see Eq. (2.3). They comprise the one-
loop corrections to the one-pion-exchange and the lowest-
order NN contact interactions as well as the leading two-
pion exchange contributions. No three- and more-nucleon
operators appear at the considered order. While the two-pion
exchange terms do not involve any unknown parameters, the
one-pion exchange contribution depends on a poorly known
πN LEC d̄16 related to the quark mass dependence of the
nucleon axial coupling gA. It can, in principle, be determined
from lattice QCD simulations, see [82,83] for some recent
studies. The short-range part of the scalar current depends
on two unknown LECs which parametrize the quark-mass
dependence of the derivative-less NN contact interactions.
In principle, these LECs can be extracted from the quark-
mass dependence of, say, the NN scattering length, see Refs.
[47–49,51,53–55] for a related discussion. Finally, we have
explicitly demonstrated that the scalar current operator at
vanishing four-momentum transfer is directly related to the
quark-mass dependence of the nuclear force. The results
obtained in our work are relevant for ongoing DM searches
and for matching to lattice QCD calculations in the few-
nucleon sector, see e.g. [45,46] for recent studies along this
line.

It is important to emphasize that our calculations are
carried out using dimensional regularization. For nuclear
physics applications, the obtained expressions for the scalar
current operator need to be regularized consistently with the
nuclear forces, which is a nontrivial task, see Refs. [7,84]
for a discussion. Work along these lines using the invariant
higher derivative regularization [85] is in progress.
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Appendix A: Additional unitary transformations

At the order we are working, the general structure of the
unitary operator U [s] can be written as

U [s] = exp

( 3∑
i=0

Ssi − h.c.

)
= 1 +

3∑
i=0

Ssi − h.c.

+O
((
Ssi

)2
)
, (A.1)

where

Ss0 = αs
0ηS

(2)
0,2λ

2 1

E2
π

H (2)
2,2η,

Ss1 = αs
1ηS

(2)
0,2λ

2 1

E2
π

H (1)
2,1λ1 1

Eπ

H (1)
2,1η,

Ss2 = αs
2ηS

(2)
0,2λ

2 1

Eπ

H (1)
2,1λ1 1

E2
π

H (1)
2,1η,

Ss3 = αs
3ηH

(1)
2,1λ1 1

Eπ

S(2)
0,2λ

1 1

E2
π

H (1)
2,1η. (A.2)

Here and in what follows, we use the notation of Ref. [16].
Furthermore, S(κ)

n,p denotes an interaction from the Hamilto-
nian with a single insertion of the scalar current s(x)−mq

3,
n nucleon and p pion fields. The superscripts κ refer to the
inverse mass dimension of the corresponding coupling con-
stant given by

κ = d + 3

2
n + p + cv + ca + 2cp + 2cs − 4 , (A.3)

where d, n and p denote the number of derivatives or pion
mass insertions at a given vertex, number of nucleon and
pion fields, respectively. Further, cv , ca , cp and cs refer to
the number of external vector, axial-vector, pseudoscalar and
scalar sources, in order.

3 Note that the forces and currents are calculated at s(x) = mq . In
order to ensure the restriction U [s ≡ mq ] = 1 for the employed addi-

tional unitary transformations, the interaction operator S(2)
0,2 has to be

proportional to s(x) − mq .

Appendix B: Two-pion exchange contributions to the
scalar current

The scalar functions ti (q1, q2, k), i = 1, . . . , 6, with qi ≡
|�qi | and k ≡ |�k| entering the expression (2.8) for the two-pion
exchange current are given by

mq t1 = g4
AM

2
π

128π2F4
π k

2 − g4
AM

4
π L(k)

32π2F4
π k

2
(
k2 + 4M2

π

) ,

mq t2 = −
(
g2
A − 1

)
M2

π

8F4
π

( (
g2
A − 1

)
k2q2

1q
2
2

4
(
(�q1 · �q2)2 − q2

1q
2
2

)

+ (
3g2

A + 1
)
M2

π + 2g2
Aq

2
1

)
i I (4; 0, 1; q1, 1; k, 1; 0, 0)

− M2
π L(q1)

256π2F4
π

(
(�q1 · �q2)2 − q2

1q
2
2

)

×
(

− g4
A(

4M2
π + q2

1

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

)

×
(

2k8 (
8M4

π + 3M2
πq

2
1

) − k6 (
M4

π

(
52q2

1 + 64q2
2

)

+M2
π

(
19q4

1 + 36q2
1q

2
2

) + 4q4
1q

2
2

)

+k4 (
M4

π

(
60q4

1 + 52q2
1q

2
2 + 96q4

2

)

+ M2
π

(
21q6

1 + 35q4
1q

2
2 + 64q2

1q
4
2

)

+5q4
1q

2
2

(
q2

1 + 2q2
2

))

+k2Q2−
(
M4

π

(−28q4
1 + 12q2

1q
2
2 + 64q4

2

)

+ M2
π

(−9q6
1 + 5q4

1q
2
2 + 44q2

1q
4
2

)

+q4
1q

2
2

(
q2

1 + 8q2
2

)) + Q6−
(
4M4

π

(
q2

1 − 4q2
2

)

+M2
π

(
q4

1 − 10q2
1q

2
2

) − 2q4
1q

2
2

))

− 2g2
A

(
k4 − k2 (

q2
1 + 2q2

2

) − q2
2 Q

2−
) + q2

1

(
k2 − Q2−

))

− M2
π L(k)

512π2F4
π

(
(�q1 · �q2)2 − q2

1q
2
2

)
(

− g4
A(

k2 + 4M2
π

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

)

×
(

5k10M2
π + k8 (

20M4
π − 46M2

πq
2
1 − 7q2

1q
2
2

)

+2k6q2
1

(−92M4
π + M2

π

(
37q2

1 + q2
2

) + 15q2
1q

2
2

)

+2k4 (
52M4

πq
2
2

(
q2

1 + 3q2
2

) + M2
π

(
83q4

1q
2
2 − 23q6

1

)

−8q6
1q

2
2 + 8q4

1q
4
2

) − 4k2M2
πq

4
1 Q

2−
(
58M2

π − q2
1 + 27q2

2

)

+4M2
πq

4
1 Q

2−
(
16M2

π

(
q2

1 − 3q2
2

) + q4
1 − 2q2

1q
2
2

) )

+8g2
A

(
2q2

1q
2
2 + q2

2 �q1 · �q2 − (�q1 · �q2)
2) − 2k2 �q1 · �q2

)

−
(
g2
A + 1

)2
M2

π

128π2F4
π

,

mq t3 = 3i g4
A I (4; 0, 1; q1, 1; k, 1; 0, 0)M2

π (�q1 · �q2)
2

8F4
π

(
q2

1q
2
2 − (�q1 · �q2)2

)

+ 3g4
AM

2
πq

2
1q

2
2

(
k2 +Q2−

)
L(q1)�q1 · �q2

64π2F4
π

(
q2

1q
2
2 − (�q1 · �q2)2

) (
q2

1q
2
2

(
k2 +4M2

π

)−4M2
π (�q1 · �q2)2

)

+ 3g4
AM

2
π L(k)

64π2F4
π

(
1

k2 + 4M2
π

− q2
1q

2
2

(
k4 − Q4−

)

4
(
q2

1q
2
2 − (�q1 · �q2)2

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

)
)

,

mq t4 = mq t3 + 3i g4
A I (4; 0, 1; q1, 1; k, 1; 0, 0)M2

π (q2
1q

2
2 − (�q1 · �q2)

2)

8F4
π

(
q2

1q
2
2 − (�q1 · �q2)2

) ,

mq t5 = 3g4
AM

2
πq

2
2 L(k)

(−k6M2
π + k4

(
3M2

π Q
2+ + 2q2

1q
2
2

) − 3k2M2
π Q

4− + M2
π Q

4−Q2+
)

64π2F4
π

(
k2 + 4M2

π

) (
q2

1q
2
2 − (�q1 · �q2)2

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

)

− 3g4
AM

2
πq

2
1q

4
2

(
k2 − Q2−

)
L(q2)

64π2F4
π

(
q2

1q
2
2 − (�q1 · �q2)2

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

)

− 3i g4
A I (4; 0, 1; q1, 1; k, 1; 0, 0)M2

πq
2
2 �q1 · �q2

4F4
π

(
q2

1q
2
2 − (�q1 · �q2)2

)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. A (2020) 56 :240 Page 9 of 11 240

− 3g4
AM

2
πq

2
1q

4
2

(
k2 + Q2−

)
L(q1)

64π2F4
π

(
q2

1q
2
2 − (�q1 · �q2)2

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

) ,

mq t6 = − 3g4
AM

2
π L(k)

(−k6M2
π + k4

(
3M2

π Q
2+ + 2q2

1q
2
2

) − 3k2M2
π Q

4− + M2
π Q

4−Q2+
)

128π2F4
π

(
k2 + 4M2

π

) (
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

)

+ 3g4
AM

2
πq

2
1q

2
2

(
k2 + Q2−

)
L(q1)

64π2F4
π

(
q2

1q
2
2

(
k2 + 4M2

π

) − 4M2
π (�q1 · �q2)2

) , (B.1)

where Q2± ≡ q2
1 ± q2

2 . Here, the scalar function I (d :
p1, ν1; p2, ν2; p3, ν3; 0, ν4) of the four-momenta pi is
defined in terms of the integrals

I (d : p1, ν1; p2, ν2; p3, ν3; 0, ν4)

=
∫

ddl

(2π)d

3∏
j=1

1

[(l+ p j )2 − M2
π +iε]ν j

1

[v · l+iε]ν4
.

(B.2)

For the case at hand with p0
i = 0 and ν1 = ν2 = ν3 = 1 and

ν4 = 0, it is a standard three-point function with only pionic
propagators. Its explicit form is given by

I (4 : 0, 1; q1, 1; k, 1; 0, 0) = i

16π2

∫ 1

0
dt

∫ t

0
dy

× 1

C

1

(y − y1)(y − y2)
, (B.3)

with

y1 = D

2C
+

√
D2 + 4AC

4C2 , y2 = D

2C
−

√
D2 + 4AC

4C2 ,

(B.4)

and A = M2 + q2
1 (1 − t)t , B = −2�q1 · �q2, C = q2

2 and
D = 2�q1 · �q2 +q2

2 + t B. For �k = 0, the three-point function
reduces to a two-point function

I (4 : 0, 1; q1, 1; k, 1; 0, 0)
∣∣�k=0 = − i

8π2

L(q1)

4M2
π + q2

1

. (B.5)

Two-pion-exchange contribution to the scalar current reduces
in this case to

mqS
(Q0)
2N:2π

∣∣�k=0

= M2
π

64π2F4
π

(
4M2

π + q2
1

)
[

L(q1)

4M2
π + q2

1

(
6g4

A

(
4M2

π + q2
1

)

×
(
q2

1 �σ1 · �σ2 − q1 · �σ1q1 · �σ2

)

+
(

16M4
π

(
−8g4

A + 4g2
A + 1

)

+8M2
πq

2
1

(
−10g4

A + 5g2
A + 1

)

+q4
1

(
−11g4

A + 6g2
A + 1

))
τ 1 · τ 2

)

−1

2

(
4M2

π

(
15g4

A − 2g2
A + 1

)

+q2
1

(
1 − 2g2

A + 17g4
A

))
τ 1 · τ 2

]
. (B.6)

Fig. 6 Short-range tadpole
diagram which gives an
additional contribution in the
Hamiltonian formalism

We will use this expression in appendix C to demonstrate the
validity of Eq. (3.7).

Appendix C: Scalar current at zero momentum transfer

In this appendix we demonstrate the validity of Eq. (3.7).
The quark mass dependence of the NLO nuclear force has
been extensively discussed in [47]. The explicit expressions
for effective potential at NLO

VOPE + V TPE + V cont (C.1)

can be found in Eqs. (2.82), (2.83) and (2.84) of that paper.
The authors of [47] used the unitary transformation technique
to derive the nuclear force. Due to the appearance of the time-
derivative-dependent Weinberg-Tomozawa interaction, there
appears an additional derivativeless two-pion-four-nucleon-
field vertex in the Hamiltonian [32], that leads to the tadpole
diagram shown in Fig. 6 which was not considered in Ref.
[47]. It generates an additional logarithmic contribution:

δV cont = τ 1 · τ 2M̃2
π

64F4
ππ2 ln

(
M̃π

Mπ

)
. (C.2)

Here, we use the same notation as in Ref. [47] with M̃π

denoting the pion mass at an unphysical quark mass value
and Mπ denoting the physical pion mass. At NLO, we have

VNLO = VOPE + V TPE + V cont + δV cont. (C.3)

Taking derivative of the nuclear force in the quark mass is
equivalent to taking derivative in M̃2

π ,

∂VNLO

∂mq
= 2B

∂VNLO

∂ M̃2
π

∣∣∣∣
M̃π=Mπ

= M2
π

mq

∂VNLO

∂ M̃2
π

∣∣∣∣
M̃π=Mπ

.

(C.4)

Applying this operator to Eqs. (2.82), (2.83) and (2.84) of
[47] and to Eq. (C.2) of that paper we obtain

∂VOPE

∂mq

= τ 1 · τ 2 �σ1 · �q �σ2 · �q M2
πgA

4mq F2
π

(
gA − 4d̄18M2

π

(q2 + M2
π )2

+ 1

8F2
ππ2(q2 + M2

π )
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×
(

3g3
A + gAl̄4 + 32F2

ππ2(d̄18 − 2d̄16
)))

,

∂

∂mq

(
V TPE + V cont + δV cont

)

= M2
π L(q)

4mq F4
ππ2

(
g4
AM

4
πτ 1 · τ 2

(q2 + 4M2
π )2 + g2

A

8(q2 + 4M2
π )

×(
4(g2

A − 1)M2
πτ 1 · τ 2

−3g2
A(�σ1 · �q �σ2 · �q + 4M2

π �σ1 · �σ2)
)

+ 1

16

(
6g4

A �σ1 · �σ2 + (1 + 6g2
A − 11g4

A)τ 1 · τ 2
))

+ g4
AM

4
πτ 1 · τ 2

16mq F4
ππ2(q2 + 4M2

π )
+ M2

π

384mq F4
ππ2

×
(

384F4
ππ2 D̄S + 70g4

A − 4g2
A(36F2

πCT + 5)

−2 + �σ1 · �σ2(384F4
ππ2 D̄T + 35g4

A

−2g2
A(5 + 72F2

πCT ) − 1)
)

. (C.5)

It is important to emphasize that in Ref. [47], the short-
range LECs D̄S and D̄T have been shifted to absorb all
momentum-independent contributions generated by the two-
pion-exchange. The corresponding shifts for D̄S and D̄T are
given by

D̄S → D̄S − 1 + g2
A + 4g4

A

48F4
ππ2 ,

D̄T → D̄T − 1 + g2
A(1 − 36F2

πCT ) + 4g4
A

96F4
ππ2 . (C.6)

Performing the same shifts in the scalar current and using
L(0) = 1 and Eq. (B.5) we indeed verify:

S(Q−2)
2N (k = 0) + S(Q0)

2N (k = 0) = ∂VOPE

∂mq
,

S(Q0)
2N:2π (k = 0) + S(Q0)

2N:cont(k = 0)

= ∂

∂mq

(
V TPE + V cont + δV cont

)
. (C.7)
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