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Abstract Low-energy data on the three charge states in
γ p → K+(Σπ) from CLAS at JLab, on K− p → π0π0Λ

and π0π0Σ from the Crystal Ball at BNL, bubble chamber
data on K− p → π−π+π±Σ∓, low-energy total cross sec-
tions on K− induced reactions, and data on the K− p atom are
fitted with the BnGa partial-wave-analysis program. We find
that the data can be fitted well with just one isoscalar spin-1/2
negative-parity pole, the Λ(1405), and background contribu-
tions. In a fit with one isocsalar state, the Λ(1405) structure
can be determined as a dominantly SU(3) singlet state. A fit
with two isoscalar singlet states, with imposed properties of
the low-mass state, is, however, also not incompatible with
data.

1 Introduction

The Λ(1405)1/2− resonance—here written as Λ(1405)—
has been discussed controversially since its discovery in
1961 [1]: Dalitz et al. considered the Λ(1405) as a quasi-
bound molecular state of the K̄ N system [2,3]. Tripp et
al. [4] determined the relative signs of K̄ N → πΣ transition
amplitudes for Σ(1385), Λ(1405) and Λ(1520), and iden-
tified Λ(1405) and Λ(1520) as mainly SU(3) singlet states.
In quark models, Λ(1405) and Λ(1520) are interpreted as
qqq resonances in which one of the quarks is excited to
the p state forming a spin-doublet of states with a dominant
SU(3)-singlet structure [5]. Later, Kaiser, Waas and Weise
constructed an effective potential from a chiral Lagrangian,
and the Λ(1405) emerged as quasi-bound state in the K̄ N and
πΣ coupled-channel system [6]. Oller and Meissner [7] stud-
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ied the S-wave K̄ N interactions in a relativistic chiral unitary
approach based on a chiral Lagrangian. The Lagrangian was
obtained from the interaction of the SU(3) octet of pseu-
doscalar mesons and the SU(3) octet of stable baryons. In
their coupled-channel approach, they found two isoscalar
resonances below 1450 MeV, at 1379.2 MeV as a mainly
(96%) singlet state and at 1433.7 MeV as a mainly (76%)
octet state, and one isovector resonance at 1444.0 MeV. The
authors of Ref. [8] suggested that the two Λ∗ poles as well
as a third state at 1680 MeV are combinations of the sin-
glet state and the two octet states expected in the 8 ⊗ 8 into
1 ⊕ 8s ⊕ 8a ⊕ 10 ⊕ 10 ⊕ 27 decomposition. They inter-
preted the first wider state (at 1390 MeV in their analysis) as
mainly singlet (53%), a second and a third state at 1426 MeV
and 1680 MeV as mainly (69% and 78%, respectively) octet
states. The isovector sector was found to be much more sen-
sitive to the details of the coupled-channel approach [8].
Based on the approach used in [7], two poles were found at
1401 MeV and 1488 MeV [8], based on [9], one state was
found at 1580 MeV. Here the other isovector state disap-
peared for dynamical reasons. The Σ resonances were inter-
preted as isovector companions of the isoscalar states. The
findings presented in [7,8] were confirmed in a number of
further studies. Here we quote a few recent papers [10–20].
A survey of the literature and a discussion of the different
approaches can be found in Ref. [21].

In quark models [22–25], three isoscalar J P = 1/2− res-
onances are expected below 1.9 GeV. Λ(1405) is interpreted
as the (mainly) SU(3) singlet state. The pole positions of the
four-star Λ(1670) 1/2− and of the three-star Λ(1800)1/2−
are found about 160 MeV above N (1535)1/2− and
N (1650)1/2−, respectively. The former two states are com-
monly identified with the two expected (mainly) octet
states [24]. The Σ(1620)1/2− resonance is interpreted as
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the isospin partner of Λ(1670)1/2− and Σ(1750)1/2− as
the isospin partner of Λ(1800)1/2−. This interpretation
is supported in a study of the spectrum of hyperon reso-
nances [40,41]. The SU(3) symmetry of the quark model is
thus experimentally confirmed. An assignment of the three
resonances at 1380 MeV, 1426 MeV, and 1680 MeV to the
quark model states with spin-parity 1/2−, instead of the
Λ(1405)1/2−, Λ(1670)1/2−, and Λ(1800)1/2−, would be
at variance with the quark model.

Several baryon resonances that can be generated dynami-
cally like N (1440) 1/2+, N (1535)1/2−, Δ(1700)3/2− are
interpreted in [22–25] as quark-model states. With the iden-
tification of the negative-parity Λ resonances as outlined
above, one of the two low-mass Λ states and the low-mass
Σ state in [8,9] cannot be interpreted as quark-model states:
the two states are supernumerous (and not required in the
analysis presented here). Based on Regge phenomenology,
the authors of Ref. [26] argue that the narrow state at about
1430 MeV fits into the common pattern of a linear Regge tra-
jectory of known three-quark hyperons possibly indicating
its three-quark nature. The wider state below ≈1400 MeV is
speculated to be a pentaquark or of molecular nature.

The two-pole structure of the Λ(1405) region is not
uncontested. All work before [7] assumed a single pole in
this region. Later, HADES data on the reaction p + p →
Σ+ + π− + K+ + p were successfully fitted with a single
Λ(1405) at 1380 MeV [27]; it was shown that the peak can-
not be assigned to Σ(1385). This result was criticized in a
subsequent reanalysis [28] where the mass was determined
to 1405+11

− 9 MeV. The CLAS collaboration studied the three
charge states in the reaction γ p → K+Σπ [29] that pro-
vide precise information on the Λ(1405) line shape. Its spin
and parity were determined in [30], until then taken from the
quark model. The data were fitted in [29], the best fit was
achieved with two low-mass isovector states (Σ∗’s) and one
isoscalar state Λ(1405). A reanalysis of these data showed
that the data are also compatible with a standard single-pole
Λ(1405) [31]. Dong, Sun and Pang [32] solved the Bethe–
Salpeter equation in an unitary coupled-channel ansatz taking
relativistic effects and off-shell corrections into account. In
their model, the authors found that the off-shell corrections
are very important. Without these, the authors reproduced the
two-pole structure. Yet one pole disappeared when the off-
shell corrections were switched on, and only one Λ(1405)

survived. This contradicts [15,33]; in their ansatz, off-shell
effects were found to be small and two poles were present.
Revai [34,35] suggests that the two-pole structure is a conse-
quence of the on-shell factorization approximation; without
this approximation, only one pole was found. This conjecture
was critized very recently by Bruns and Cieplý [36]. Myint
et al. [37] used a chiral model and found two poles in the
Λ(1405) region. The peak structure in the data was assigned

to a single pole, while the second one provided a contin-
uum background amplitude affecting the shape of the peak,
but that pole was not interpreted as genuine resonance. We
mention a study of the ratio of Λ(1405) and Σ(1385) in the
photoproduction reactions γ p → K+Λπ0 and K+Σ±π∓
[38].

Direct experimental evidence for the presence of two poles
in the Λ(1405) region has been reported in Ref. [39]. The
CLAS collaboration studied electroproduction of this res-
onance by studying the reaction e− p → e−K+(pπ0)π−
with the pπ0 mass being compatible with Σ+ and with
four-momentum transfers ranging from −t = 0.5 to 4.5
GeV2. The data were shown for two subsets with 1.0 <

Q2 < 1.5 GeV2 and 1.5 < Q2 < 3.0 GeV2. The latter
data were fitted with two incoherent Breit–Wigner functions
with Σπ as only decay channel. The masses optimized at
1.368 ± 0.004 GeV and 1.423 ± 0.002 GeV (statistical fit
errors only). A possible Σ(1385)3/2+ contribution was esti-
mated to be small. The low-t data set was not fitted simulta-
neously, and seem not describable with the same assump-
tions. Also the related chain e− p → e−K+(pπ−)π0—
which avoids possible Σ(1385)3/2+ contaminations—has
not been investigated.

This work is part of a comprehensive study of the low-
mass hyperon spectrum. In [40,41], we present a fit to exist-
ing data on K− p induced reactions, evaluate the statisti-
cal evidence of contributing resonances, and report Breit–
Wigner parameters and branching ratios as well as the prop-
erties of resonances at their poles. In [42], the resulting spec-
trum wil be compared to quark model predictions. In [43],
we shall explore the power of photoproduction to improve
our knowledge on hyperons.

In this paper we present a partial wave analysis of data
covering the Λ(1405) region. The data include the low-mass
part of the Σπ system in the reaction γ p → K+Σπ from
JLab [29], data on the reaction K− p → π0π0Σ0 from BNL
[44] and bubble chamber data on K− p → π−π+π±Σ∓
[45], differential cross sections for K− p → K− p and
K− p → K̄ 0n from [46], and the low-mass range for
K− p → πΣ [47], total cross section measurements [48–
51], ratios of K− p capture rates [52,53], and the recent exper-
imental results on the energy shift and width of kaonic hydro-
gen atoms constraining the K− p S-wave scattering length
[54,55]. In spite of the large amount of data, data on K− p
interactions with a spin-polarized proton target are still miss-
ing. Hence the resulting scattering amplitudes remain model-
dependent. Within the BnGa ansatz, the data are fully com-
patible with just one isoscalar resonance and conveniently
chosen background amplitudes. A solution with two low-
mass isoscalar poles describes the data with similar preci-
sion.
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2 Formalism

In this section the basic features of the dispersion integration
method are considered for the scattering amplitude. We start
from the K -matrix method. This approximation extracts the
leading singularities, it is a very popular approach in par-
tial wave analyses. The pole and threshold singularities of
the partial wave amplitude are taken into account, and the
amplitude automatically satisfies unitarity. Here we describe
the dynamical amplitude without the angular momentum ten-
sors needed for non-vanishing angular momenta. The full
amplitude is discussed in Matveev et al. [40]. We emphasize
that the constraints from the symmetry-breaking pattern of
low-energy QCD are not taken into account.

Although the K -matrix amplitude is an analytic func-
tion in the complex plane, it neglects left-hand singulari-
ties of the partial wave amplitude. Near thresholds, the K -
matrix approach generates false kinematical singularities that
need to be suppressed by imposing new assumptions. As
a result, the K -matrix approach is not reliable in the low-
energy region: this was clearly demonstrated in the analysis
of the ππ S-wave scattering amplitude near the ππ thresh-
old [56,57].

2.1 Spectral integral equation for the K -matrix amplitude

The K -matrix approach was introduced to satisfy directly the
unitarity condition which is very important for an analysis
of reactions near the unitarity limit. The S-matrix for the
transition between the initial and the final state can be written
as

S =
(
I + i ρ̂ K̂

) (
I − i ρ̂ K̂

)−1 = I + 2i ρ̂ K̂
(
I − i ρ̂ K̂

)−1
.

(1)

Here, ρ̂ is a diagonal matrix describing the phase volumes and
K̂ is a real matrix that describes resonant and non-resonant
contributions.

For the partial wave amplitude A(s) one obtains

Â = K̂
(
I − i ρ̂ K̂

)−1 = K̂ + K̂ i ρ̂ K̂ + K̂ i ρ̂ K̂ i ρ̂ K̂ + . . .

(2)

This equation can be also rewritten as

Â = Â i ρ̂ K̂ + K̂ . (3)

The factor (I − i ρ̂ K̂ )−1 describes the rescattering in the final
state, it is inherent not only for scattering amplitudes but also
for production amplitudes.

The elements of the K -matrix are parameterized as a sum
of resonant terms (first-order poles) and non-resonant con-

tributions:

Ki j =
∑
α

g(α)
i g(α)

j

M2
α − s

+ fi j . (4)

This form is defined by the symmetry condition and the con-
dition that the scattering amplitude has pole singularities of
the first order.

This approach allows us to distinguish between “bare” and
“dressed” particles: due to rescattering, the bare particles,
with poles on the real-s axis, are transformed into particles
dressed by a “coat” of mesons. In the K -matrix approach we
deal with a “coat” formed by real particles. The contribution
of virtual particles is included in the main part of the loop
diagram, B(s), discussed below, and is taken into account
effectively by the renormalization of mass and couplings.

Let us discuss hadron–hadron scattering and the produc-
tion amplitudes using the dispersion-relation (or spectral
integral) technique. We write for the K -matrix amplitude
a spectral integral equation that is an analog of the Bethe–
Salpeter equation [59] for the Feynman technique. The spec-
tral integral equation for the transition amplitude from the
channel a to channel b is given by

Aab(s) =
∫

ds′

π

Aaj (s, s′)
s′ − s − iε

ρ j (s
′)K j b(s

′, s) + Kab(s).

(5)

Here, ρ j (s′) is a diagonal matrix of the phase volumes,
Aaj (s, s′) the off-shell amplitude and K j b(s, s′) the off-shell
elementary interaction. The term −iε indicates that the inte-
gration is carried out in the complex plane just below the real
axis.

The standard way of transforming Eq. (5) into a K -matrix
form is the extraction of the imaginary and principal parts
of the integral. The principal part has no singularities in the
physical region and can be omitted (or taken into account by
a renormalization of the K -matrix parameters):
∫

ds′

π

Aaj (s, s′)
s′ − s − iε

ρ j (s
′)K j b(s

′, s)

= P
∫

ds′

π

Aaj (s, s′)
s′ − s

ρ j (s
′)K j b(s

′, s)

+i Aaj (s, s)ρ j (s)K j b(s) → i Aaj (s, s)ρ j (s)K j b(s),

(6)

where
∫
p is the principal-value integral. We thus obtain the

standard K -matrix expression (3).
One of the easiest ways to take into account the real part of

the integral in Eq. (6) (the so-called dispersion corrections)
is to assume that the amplitude and the K -matrix have a
trivial dependence on s′. Such a case corresponds, e.g., to a
parameterization of the resonant couplings and non-resonant
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K -matrix terms by constants and to a regularization of the
integral in Eq. (6) that depends on the scattering channel only
by subtraction at a fixed energy. In this case we obtain

∫
ds′

π

Aaj (s, s′)
s′ − s − iε

ρ j (s
′)K j b(s

′, s)

= Aaj (s, s)Re B(s)K j b(s, s)

+i Aaj (s, s)ρ j (s)K j b(s) (7)

where

Re B(s) = P
∫ Λ ds′

π

ρ j (s′)
s′ − s

(8)

and Λ is a cutoff parameter. And for the transition amplitude
we obtain

A = K
(
I − Re BK̂ − i ρ̂ K̂

)−1

S =
(
I − Re BK̂ + i ρ̂ K̂

) (
I − Re BK̂ − i ρ̂ K̂

)−1
. (9)

This approach provides a correct continuation of the
amplitude below thresholds. The B-matrix is calcualted
approximately using a D matrix.

2.2 The D-matrix approach

As we discussed above, the K -matrix approach can be con-
sidered as an effective way to calculate an infinite sum of
rescattering diagrams from the spectral integral equation. The
rescattering diagrams can be divided into K -matrix blocks
which describe a transition from one channel into another
one. Thus the rank of the K -matrix is defined by the number
of the channels taken into account explicitly. The key issue of
the K -matrix approach is a factorization of vertices and loop
diagrams. The factorization is automatically fulfilled for the
imaginary part, and in many cases a contribution from the
real part is neglected. When the vertices have a non-trivial
energy dependence, the real part cannot be separated from
the K -matrix block and another approach should be used to
calculate the amplitude. The most straightforward idea is to
extract blocks which describe a transition from one “bare”
state to another one. Then factorization is automatically ful-
filled for the pole terms.

Let us introduce the block Dαβ which describes a transi-
tion between the bare state α (but without the propagator of
this state) and the bare state β (with the propagator of this
state included). For such a block one can write the following
equation:

Dαβ = Dαγ

∑
j

B j
γ δdδβ + dαβ (10)

Or, in the matrix form, D̂ = D̂ B̂d̂ + d̂ = d̂(I − B̂d̂)−1

Here, the d̂ is a diagonal matrix of the propagators

d̂ = diag

(
1

M2
1 − s

,
1

M2
2 − s

, . . . ,
1

M2
N − s

)

where N is the number of resonant terms. The elements of
the B̂-matrix are equal to

B̂αβ =
∑
j

B j
αβ =

∑
j

∞∫

(m1 j+m2 j )
2

ds′

π

gR(α)
j ρ j (s′,m1 j ,m2 j )g

L(β)
j

s′ − s − i0
. (11)

The gR(α)
j and gL(α)

j are right and left vertices for a transition

from the bare state α to the channel j . The function B j
ab

depends on initial, intermediate and final states and allows us
to introduce for every transition a specific energy dependence
and regularization procedure.

For the resonance transition the right and left vertices are
the same:

gR(α)
j = gL(α)

j = g(α)
j (12)

The scattering amplitude between channels i and j which are
taken into account in the rescattering has the form

Ai j = g(α)
i D̂βγ g

(γ )

j . (13)

In the case of a single resonance we obtain the equation

Ai j = g(1)
i g(1)

j

M2 − s

⎛
⎜⎝1 −

∑
k
Bk

11

M2 − s

⎞
⎟⎠

−1

= g(1)
i g(1)

j

M2−s−∑
k
Bk

11

.

(14)

The elements of the B j
αβ can be calculated using a sub-

traction procedure:

B j
αβ(s) = B j

αβ(M2
j ) + (s − M2

j )

×
∞∫

(m j+mBj )
2

ds′ g
(α)
j ρ j (s′,m j ,mBj )C j (s′,m j ,mBj )g

(β)
j

π (s′ − s − iε)(s′ − M2
j )

.

(15)

Here, the subtraction constants B j
αβ(M2

j ) are set to zero.
For an S-wave amplitude, the terms ρ j (s′,m j ,mBj ) and

C j (s′,m j ,mBj ) are equal to

ρ(s) = 2|k|√
s

mBj + k0Bj

2mBj
,
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C j (s
′,m j ,mBj ) =

√
1.5

1 + |k|2 , (16)

where |k| is the relative momentum and k0Bj is the baryon
energy in the center-of-mass system.

In the fit to the K− p elastic and charge-exchange cross
sections, amplitudes for P-wave partial waves with isospin
quantum numbers zero and one are included. These waves
are found to be small; they are considered to be a background
here. The P-wave contributions are included in the form of
a Breit–Wigner amplitude with a subthreshold mass. The D-
wave is represented by one relativistic Breit–Wigner ampli-
tude at about 1520 MeV.

2.3 Fit to photoproduction data

The leading singularity in reactions with a resonance in a
three-body final state is given by the resonance pole. The next
leading singularity is a triangle singularity which develops
when one particle from the resonance decay interacts with
the third particle. The full process can be described by a P-
vector amplitude. In the K -matrix approach it has the form

Aa = P̂b ( Î − i ρ̂ K̂ )−1
ba . (17)

The vector P̂ is parameterized in the form

Pb =
∑
α

G(α)g(α)
b

M2
α − s

(18)

where Mα , g(α)
a are the mass and decay couplings of the res-

onance α into two-particle final state. The production of the
resonance is described by the couplings G(α) which could
be functions of energy. In the case of a narrow resonance,
the G(α) can be approximated by a constant; we choose it as
a complex number. Its phase describes effectively contribu-
tions from complicated processes such as triangle singular-
ities. In photoproduction reactions, the G(α) depend on the
partial wave which is produced in the γ p channel.

Here, the reaction γ p → K+(Σπ) is considered. The
photon energy is high and a wide range is covered. The
dynamics of the initial state is unknown. Hence all partial
waves up to J P = 7/2± are taken into account. For the
γ p system in J = 1/2, one helicity amplitude contributes,
while for J > 1/2, two helicity amplitudes contribute. In
each of the eight partial waves, we allow for two Breit–
Wigner amplitudes with free masses and widths and complex
couplings to the isobars. However, we describe not only the
Λ(1405) region but fit the full mass range of the Σπ system,
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hence the helicity amplitudes and the Breit–Wigner mass and
width are determined from a larger data set than discussed
here.

2.4 Λ( 1
2
−
) and Σ( 1

2
−
) partial waves parameterizations

We are interested in the amplitude behavior in the region
from the πΣ threshold to

√
s ∼ 1.5 GeV. Hence both I =

0 and I = 1 amplitudes could contain one or two poles.
The fit should tell us where the poles of the amplitudes are
located. The Λ( 1

2
−
) amplitude is described by a five-channel

amplitude with possible decays to π−Σ+, π0Σ0, π+Σ−,
K− p and K 0n. The constructed amplitudes take into account
isotopic mass differences (threshold positions) but neglect
Coulomb interactions. From pion scattering off protons we
know that Coulomb interference with the hadronic amplitude
is important only in the very forward region, a region for
which, at present, no data exist.

3 Fits to the data

The mass of Λ(1405) falls below the K− p threshold. In
K− p induced reactions only the high-mass part of Λ(1405)

can be produced. An important role for the study of Λ(1405)

is hence provided by the CLAS results on γ p → K+Σ+π−,
K+Σ0π0, and K+Σ−π+ [29] where the full Λ(1405) shape
can be studied. Figures 1 (left) and 2 (left) show selected
two-dimensional mass distributions: Mπ−K+ versus Mπ−Σ+
and MK+Σ− versus Mπ+Σ− for a γ p invariant mass in the
2400–2600 MeV range. In both figures, a vertical band is
seen at MΣ+π− or MΣ−π+ ≈ 1.52 GeV: the Λ(1520). At low
masses, a broad enhancement due to Σ(1385) and Λ(1405)

is seen which both decay into Σ±π∓. A horizontal band
in Fig. 1 is evidence that we have K ∗ production. The K ∗
band interferes with Σ(1385), Λ(1405), and Λ(1520). The
resonances K ∗, Σ(1385) and Λ(1520) are described by rel-
ativistic Breit–Wigner amplitudes.

In Fig. 2 (left), the MK+Σ− invariant mass is plotted
against MΣ−π+ . There are no longer striking horizontal
bands which would indicate Σ−K+ resonances. There is
also no K+π+ band that would show up as a band in the
counterdiagonal.

The data were fitted event by event in a likelihood fit.
The center and right subfigures in Figs. 1 and 2 show the
χ2 per bin for events in which the data exceed the fit and
for events in which the fit exceeds the data. The total χ2 of
the fit to the full data set covering the W range from 1800 to
2800 MeV is moderate: it is 41,320 for 16,076 cells. However,
no significant pattern is seen in the difference plots. Hence
we believe the fit to be acceptable.

Figure 3 shows the two Σ±π∓ mass distributions and
the BnGa fit. The Λ(1520) resonance is clearly seen. The
low-mass structure contains contributions from Λ(1405) and
from Σ(1385). The result of the fit was then used to pre-
dict the Σ0π0 mass distribution for events from γ p →
K+Σ0π0. Data and prediction are shown in Fig. 4. The fit
identifies the two components reliably; the prediction for the
π0Σ0 mass distribution is very good: this distribution con-
tains no Σ(1385) since the decay Σ(1385) → π0Σ0 is
forbidden.

Before the CLAS data became available, the full Λ(1405)

mass distribution was accessible from old bubble chamber
data on K− p → π−π+π±Σ∓ [45]. The Λ(1405) was
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Fig. 4 The π0Σ0 mass distribution [29] is given as weighted number
of events per 5 MeV. The data are not included in the fit, the prediction
is represented by (red) dots

observed in the K− p→π−Σ+(1670)3/2−,Σ+(1670)3/2−
→ π+Λ(1405) cascade, with Λ(1405)1/2− → π± Σ∓. In
the fit, a ≈ 25% fraction of Σ0(1385) was admitted. The data
are well reproduced by our fit with χ2/(Ndata − Nparam.) =
3.3/(12 − 7) (see Fig. 5).

The Crystal Ball collaboration at BNL studied the reac-
tions K− p → π0π0Λ and K− p → π0π0Σ0 [44]. The
events were fitted maximizing the likelihood in an event-by-
event fit. The fit assumed that the reactions proceed via for-
mation of Λ(1600)1/2+, Λ(1670)1/2− and Λ(1690) 3/2−
or via Σ(1660)1/2+ and Σ(1670)3/2−. These resonances
have several decay chains leading to the final states studied
at BNL (see, e.g., [40,41]).

Figure 6 shows the π0Λ and π0Σ0 invariant mass dis-
tributions and the fit. In the π0Λ distribution, the Σ(1385)

dominates the reaction, a peak in the π0Σ0 mass distribution
provides evidence for Λ(1405). The data are well reproduced
by the fit. The BNL data had been fit by the authors of Magas
et al. [60]. The fit describes qualitatively the π0Σ0 mass
projection and the total cross section. The authors conclude
that the data are compatible with two poles in the Λ(1405)

region.
K− p scattering starts at 1432 MeV, above the nomi-

nal mass of Λ(1405). Nevertheless, kaon-induced reactions
provide significant constraints on the I (J P ) = 0(1/2−)-

1320 1340 1360 1380 1400 1420 1440 14600

20

40

60

80

100

120

140

160

180

200

)(MeV)+Σ-πM(

Number of events

Fig. 5 Σ+π− mass projection from the reaction K− p →
π−π+π∓Σ± for events with Mπ+π±Σ∓ compatible with
Σ(1670)3/2− [45]. Shown is the number of events per 10 MeV

amplitude. Figure 7 shows the differential cross section for
K− p → K− p and K− p → K̄ 0n from [46] in selected bins
of the invariant mass. The data are reasonably well described
even though the fit underestimates the low-energy elastic
cross section. This is enforced by the strong-interaction width
of the K− p atom (see below) which we insist in the fit to be
described by the global fit. At 1524 MeV, the angular distri-
bution reveals the dominance of Λ(1520) in this mass region.
The underestimation of the total cross section could be due
to an additional resonance that we might miss in our anal-
ysis. Fits based on Effective Field Theories describe these
data with better precision. We imposed a second low-mass
isoscalar resonance with mass and width compatible with
the results from Refs. [12,13]. The fit to the elastic scattering
data improved significantly, the CLAS data were described
with less accuracy (see Sect. 4.2).

Figure 7 also shows the differential cross section for
K− p → π+Σ−, K− p → π0Σ0, and K− p → π−Σ+
in the low-energy region [47]. Data on these reactions cov-
ering the full Λ(1520) range do not exist but the influence of
this resonance is clearly seen in the lowest-mass bin covering
the 1532 to 1540 MeV mass range. This data is decisive for
the interpretation of the Λ(1405) as (mainly) SU(3) singlet
or octet state.

Figure 8 shows the total cross sections for K− p induced
reactions: K− p → K− p, K− p → K̄ 0n, K− p → π0Λ,
K− p → π+Σ−, K− p → π0Σ0, K− p → π−Σ+ [48–
51]. The data are restricted to the low-mass region, with
K− laboratory momentum Plab < 300 MeV, where the P-
wave scattering amplitude can be neglected. Note that the fit
curve for the elastic scattering total cross section is rather
determined by the differential cross section of the data from
[46] and hardly influenced by the data on the total cross sec-
tion.
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Fig. 6 The Crystal Ball data on K− p → π0π0Λ (left) and K− p → π0π0Σ0 (right) [44] shown as black data points. One pole solution is
presented as histogram (red)

The fits are constrained by properties of the K− p system
at rest. The SIDDHARTA experiment at DAΦNE determined
the energy shift and width of the 1S level of the kaonic hydro-
gen atom [54,55]. The values (Eq. (20a)) are related to the
K− p scattering length via the modified Deser-type formula
[61]:

ΔE − iΓ/2 = −2α3μ2
caK− p

[
1 − 2aK− pαμc(ln α − 1)

]
,

(19)

where α � 1/137 is the fine-structure constant, μc is the
reduced mass and aK− p the scattering length of the K− p
system. From Refs. [52,53], we take decay ratios listed in
Eqs. (20b)–(20d). The quantities listed in Eqs. (20) are com-
pared to the fit in Table 1. We have

ΔE − iΓ/2 = (283 ± 42) − i(271 ± 55) eV (20a)

γ = ΓK− p→π+Σ−

ΓK− p→π−Σ+
= 2.38 ± 0.04, (20b)

Rn = ΓK− p→π0Λ

ΓK− p→neutral
= 0.189 ± 0.015 (20c)

Rc = ΓK− p→π±Σ±

ΓK− p→inelastic
= 0.664 ± 0.011. (20d)

Below we discuss two solutions with different pole struc-
tures. In our one-pole solution the isoscalar amplitude is
described by a one-pole D-matrix amplitude that depends on
two real coupling constants (gπΣ and gKN) and a bare mass
value M . In our two-pole solution, we have D-matrix ampli-

tude with two poles. The Σ( 1
2
−
) amplitude has two poles and

three decay channels, so we have a three-channel amplitude
that depends on eight fit parameters. For K− p scattering,
we allow for a small P-wave contribution. The P-wave is
described by one isoscalar and one isovector subthreshold
pole, both with two coupling constants.

The production mechanism of the reaction γ p → K+Σπ

is not known. We describe the initial state by two Breit–
Wigner amplitudes in each partial wave for J P = 1/2±,
3/2±, 5/2±, and 7/2± and free coupling constants for their
decays into Σ(1385)K̄ , Λ(1405)K̄ , Λ(1520)K̄ , or ΣK ∗.
Thus the photoproduction dynamics is governed by a very
large number of parameters. The properties of Σ(1385) and
K ∗ are taken from the RPP [58].

The reactions studied at BNL are much lower in mass.
The only required intermediate states are Σ(1385)3/2+π0,
Λ(1405)π0, Λ(1520)π0, Σ(ππ)S−wave, and Λ(ππ)S−wave

involving 24 additional parameters.
The CLAS data on three-body final states are, of course,

more complicated to analyze; effects like three-body unitarity
are not considered in this analysis. Surprisingly, the results
hardly changed when these data were excluded. The bubble
chamber data from [45] had practically no impact on the fit;
the data were included for historical reasons.

For the Σ( 1
2
−
) partial wave, we use a two-pole parame-

terization. Both poles move far away from the physical region
and describe background processes, likely due to t and/or u-
channel exchange processes. We do not need poles in the
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Fig. 7 Selected differential cross sections for (from left to right)
K− p → K− p, K− p → K̄ 0n, Σ+π−, Σ0π0, and Σ−π+. The data on
K− p → K̄ N were taken between 1464 and 1548 MeV invariant mass
and reported in 25 bins from [46]. Fitted was the full range, shown here

are three bins. The data on Σπ covering the 1532 to 1700 MeV mass
range were reported in Ref. [47]. For this reaction, only the data shown
are included in the fit. The one-pole fit is given by the solid, the two-pole
fit by the dashed curve

Σ( 1
2
−
) amplitude in the region from the πΣ threshold to

1500 MeV.

4 Results for the isoscalar amplitude

To find the pole positions in the Λ( 1
2
−
) wave in the region

below 1500 MeV, we performed one-pole and two-pole
fits. In all solutions, we find one leading pole position of
the Λ(1405). Its position is rather stable. The pole of the
Λ(1520)3/2− is hardly affected when the number of poles
in the J P = 1/2− wave is changed.

4.1 One-pole solution

The one-pole fit describes the data convincingly. The pole
properties Λ(1405) and Λ(1520) are collected in Table 2.
The transition residues for the transition from the initial are
defined as

Res(K̄ N → Λ∗ → final) = gi g f

2Wpole

√
ρiρ f (21)

where Wpole represents the pole mass and ρi , ρ f are the
initial- and final-state phase spaces. The small phases are
due to the position of the pole in the complex plane. The four
D-matrix coupling constants are real and positive.

Finally, we performed a fit in which the product sign of
the D-matrix element for K̄ N → Λ(1405) → πΣ was
forced to stay negative. The χ2 of the fit for the data on
K− p → πΣ deteriorated from χ2 = 313 to χ2 = 563 for
200 data points. We find the latter fit to be unacceptable. In
our one-pole solution, Λ(1405) has an SU(3) structure that
is dominated by its singlet component.

4.2 Two-pole solution

The two-poles hypothesis fit gives a slightly better descrip-
tion but we did not find a solution with two pole positions
in the 1300–1450 MeV region. When a second pole was
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Fig. 8 The total cross sections for K− p induced reactions: K− p →
K− p, K− p → K̄ 0n, K− p → π0Λ, K− p → π+Σ−, K− p →
π0Σ0, K− p → π−Σ+ [48–51]. The single-pole Λ(1405) fit is given
as the red curve

Table 1 Experimental results for the quantities listed in Eq. (20) and
the fit result

Data Fit

ΔE − iΓ/2 283 ± 42-i( 271±55) eV 308±15-i(336±15) eV

Two-pole solution 292±15-i(312± 15) eV

γ 2.38±0.04 2.40±0.02

Two-pole solution 2.37± 0.02

Rn 0.189±0.015 0.209±0.008

Two-pole solution 0.200± 0.008

Rc 0.664±0.011 0.668±0.010

Two-pole solution 0.674±0.010

admitted in the fit, it moved into the non-physical region
below the πΣ threshold, and the pole can be considered as
a non-resonant background contribution; alternatively, the
pole moved to the K− p threshold with an anomalously small
hadronic width (few MeV). We do not find this solution phys-
ically meaningful. We searched for a local minimum in the
1340–1400 MeV mass range but none was found. Then we
forced the pole position to (1380 − i90) MeV [13]. The χ2

improved for some data, for other data it became worse. Over-
all, the χ2 improved for two-body reactions by 310 units,

and the likelihood for the fit to the CLAS data deteriorated
by slightly more than 3000, but this change is hardly visible
when data and fit are compared. When the data are restricted
to two-body reactions and the width of the low-mass pole is
fixed to 180 MeV, the mass scan shows a shallow minimum
for a low-mass resonance at (1387±3) MeV. In the two-pole
solution, mass and width of Λ(1405) did not change signif-
icantly but the residues were altered. The residues for the
hypothetical Λ(1380) and for Λ(1405) are given in Table 3.
The values cover the range when the Λ(1380) properties are
varied from 1350 to 1400 MeV and the width from 120 to
220 MeV.

5 Comparison with other work

Our pole positions for the Λ(1405) resonance in the one and
two-pole solutions are in good agreement with the position of
the high-mass pole of fits based on a chiral unitary coupled-
channel approach. Table 4 compares our results with those
obtained in Refs. [13,14,16]. Evidently, 1405 MeV is not
the correct mass when only modern analyses are used in the
comparison.

The authors of Ref. [21] have performed a comparative
analysis of the different approaches based on the chiral SU(3)
dynamics. The different approaches lead to rather different
predictions for the K− p and K−n S-wave elastic scatter-
ing amplitudes. In particular the extrapolation to subthresh-
old energies yields a wide spectrum of results. The ampli-
tudes are shown in Fig. 9 and compared to our K− p S-
wave elastic scattering amplitudes. Our amplitudes are well
within the range of amplitudes derived in models based on
the chiral SU(3) dynamics. The real part of our scattering
amplitude vanishes at about 1420 MeV, the imaginary part
reaches a maximum of about 2 fm. The best consistency is
achieved with the elastic scattering amplitudes derived in
Refs. [13], [14] (black dashed and blue dashed-dotted curves
in Fig. 9). The K−n → K−n scattering amplitudes scatter
considerably. This amplitude can be constrained by a mea-
surement of the energy shift and width of the 1S level of
kaonic deuterium [62,63].

Friedman and Gal have used the amplitudes shown in
Figs. 9 in the construction of K−-nucleus optical potentials
that fit kaonic atom strong-interaction data across the peri-
odic Table [64]. The optical potential was constrained by the
fraction of single-nucleon absorption. Only the K̄−N ampli-
tudes determined in Refs. [11,13] and the amplitudes derived
here were found to be consistent with the known absorption
fractions [64,65].

The πΣ → πΣ amplitude is, of course, not directly mea-
surable but can be extracted from the fits. In Fig. 10, top sub-
figures, it is compared to the amplitude derived in Ref. [19].
Even though the two amplitudes differ, they are in qualitative
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Table 2 Residues for
K̄N → Λ(1405) → K̄N, πΣ

and for Λ(1520) → K̄N, πΣ in
the one-pole solution

Pole position M,− i
2 Γ (1421 ± 3,−i(23 ± 3))MeV

Residues Magnitude Phase

2 · Res(K̄N → Λ(1405) → K̄N)/Γ 3.3 ± 0.3 −(28 ± 7)◦

2 · Res(K̄ N → Λ(1405) → πΣ)/Γ 2.1 ± 0.1 −(6 ± 3)◦

Pole position M,− i
2 Γ (1516.9 ± 0.5,−i(7.6 ± 0.5))MeV

Residues: Magnitude Phase

2 · Res(K̄N → Λ(1520) → K̄N)/Γ 0.45 ± 0.01 −(18 ± 3)◦

2 · Res(K̄ N → Λ(1520) → πΣ)/Γ 0.43 ± 0.02 −(15 ± 3)◦

Table 3 Residues for K̄N → Λ(1380) → K̄N, πΣ and for Λ(1405) → K̄N, πΣ in the two-pole solution. The lower-mass pole is fixed to
(1380 − i90) MeV

Pole position M,− i
2 Γ : (1380 − i90)MeV

Residues Magnitude Phase

2 · Res(K̄N → Λ(1380) → K̄N)/Γ 2.20 ± 0.15 −(70 ± 10)◦

2 · Res(πΣ → Λ(1380) → πΣ)/Γ 0.95 ± 0.25 −(157 ± 9)◦

Pole position M,− i
2 Γ : (1423 ± 3,−i(20 ± 3))MeV

Residues Magnitude Phase

2 · Res(K̄N → Λ(1405) → K̄N)/Γ 2.3 ± 0.3 −(17 ± 11)◦

2 · Res(K̄N → Λ(1405) → πΣ)/Γ 2.15 ± 0.20 −(108 ± 12)◦

Table 4 Comparison of the
pole position of Λ(1405) with
the high-mass (narrow) pole
from fits based on a chiral
Lagrangian

Real part Imaginary part 2nd pole?

This work 1421 ± 3 23 ± 3 MeV No

[13] 1424 +7
−23 26 +3

−14 MeV Yes

[14], sol. 1 1417 +4
−4 24 +7

−4 MeV Yes

[14], sol. 2 1421 +3
−2 19 +8

−5 MeV Yes

[16], sol. 2 1434 +2
−2 10 +2

−1 MeV Yes

[16], sol. 4 1429 +8
−7 12 +2

−3 MeV Yes

[20] 1420+15
−21 27+18

−21 MeV Yes

[35] 1425 21 MeV No

agreement. A completely different picture is obtained for the
K− p → Σπ transition amplitude (see Fig. 10, bottom sub-
figures). While the imaginary part of the transition amplitude
at the resonance is negative in the fit of Ref. [19], it is pos-
itive in our fit. This has an important bearing for the SU(3)
structure of the Λ(1405) resonance.

In our one-pole solution, the signs of the K̄ N → Λ(1405)

→ πΣ and K̄ N → Λ(1520) → πΣ D-matrix coupling
constants are identical. This is an important finding: The
two particles, Λ(1405) and Λ(1520), seem to have the same
SU(3) structure. Under the assumption that Λ(1520) is an
SU(3) singlet, Λ(1405) is a singlet, too. The determination

of the sign required the inclusion of the K− p → πΣ data
in a mass region covering the Λ(1520) [47]. When these
data were not included, identical fits were obtained for both
relative signs. In analyses based on Effective Field Theo-
ries [10–20], Λ(1405) is described as mainly an SU(3) octet
state.

Surprisingly, the K̄ N → Λ(1405) → πΣ transition
amplitude changed the sign when a second pole was admit-
ted in our two-pole solution and is now well compatible with
the one found in Ref. [19]. Thus, the dominant SU(3) struc-
ture of Λ(1405) changes from singlet to octet when a second
low-mass isoscalar resonance is enforced in the fit.
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Fig. 9 K− p and K−n S-wave elastic scattering amplitude. The thick
black curves corresponds to our one-pole Λ solution, the long-dash–
triple-dotted curve is from [11], the black dashed curve from [13], the
green and the blue dashed-dotted curves from [14], the purple dashed
and the red dotted curves from [16]. See [21] for a model comparison
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Fig. 10 The πΣ → πΣ and K̄ N → πΣ isoscalar S-wave transition
amplitudes. The solid curve represents our one-pole, the dashed-dotted
curve our two-pole solution, the dashed curve is taken from Fig. 5 in
Ref. [19]

6 Discussion and summary

We have performed a partial wave analysis of low-energy
data on K− p and Σπ S-wave interactions. Analyses based
on unitarized chiral perturbation theory [7–18] find two Λ∗
resonances with J P = 1/2− in the region below 1500 MeV.
Within our approach—that neglects constraints from the
symmetry-breaking pattern of low-energy QCD—we have
found two solutions that both describe reasonably well the
full data set on low-energy K− p induced interactions and the
CLAS data on the low-mass range of the three πΣ charge
states produced in the reactions γ p → K+(πΣ). One solu-
tion is fully compatible with a fit with one single resonance,
Λ(1405), and background terms. The background consists of
two or three poles below the Σπ threshold: two Σ poles and
either no or one single Λ pole. The pole of the Λ(1405) is
found at Mpole = (1421 ± 3,−i(23 ± 3))MeV. The data on
K− p → Σπ suggest that the SU(3) structure of Λ(1405) is a
mainly SU(3)-singlet resonance. This solution is fully com-
patible with quark-model predictions. Obviously, the data
on K− p → πΣ are important for the interpretation of the
Λ(1405) resonance. So far, the data are included only in our
analysis.

We also found a second solution that offers two isoscalar
poles to the fit. When mass and width are left free, unphysical
solutions evolve. But by imposing mass and width of the low-
mass pole to be consistent with those from Refs. [12,13], a
solution is obtained that still describes the data reasonably
well. If the width is fixed, the scan for the mass provides
a minimum provided the data are restricted to the two-body
reactions. In this case, even the SU(3) structure is compatible
with the findings from Refs. [12,13]. We note that the fit
requires large imaginary parts for the transition amplitudes.

In the two-pole solution, there exists one resonance more
than the quark model predicts. The natural candidate for an
additional resonance would be a Λ(1380). However, there
is the difficulty that in the two-pole fit, the well-established
Λ(1405) becomes a mainly octet SU(3) state while the quark
model predicts a SU(3) singlet state. We may need to consider
Λ(1405) to be the intruder, the state that does not match to any
quark model state. Alternatively, the Λ(1380) is the intruder;
due to its large width, it overlaps with the Λ(1405) and could
change its SU(3) structure to become an SU(3) octet state.

At present, it is difficult to judge which solution is right.
Technically, the one-pole solution is from a fit where all
parameters are the consequence of a free fit. This is the rea-
son why we consider this as our preferred fit. However, we
cannot rule out the possibility that constraints from chiral
unitarity might lead to a convergent result for a lower–mass
resonance as well.
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