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Abstract In this article I summarize recent progress in the
effective field theory approach to low energy nuclear systems,
with a focus on the power counting issue. In the pionless
sector, where the power counting is quite well understood
at the nucleon–nucleon (NN) level, I discuss some recent
developments toward few- and many-body calculations. In
the pionful sector, I focus on the actively debated issue of
power counting in the NN sector and some recent develop-
ments toward a model-independent NN interaction. Finally,
the scenario that the power counting might depend on the
number of particles is discussed.

1 Introduction

The pursuit towards a truly model-independent description
of low-energy (< 1 GeV) nuclear systems have been carried
out through Effective field theory (EFT) for several decades.
In this approach, one first builds the inter-nucleon interaction
through a Lagrangian which captures important symmetries
of QCD at low energy, and then carries out ab-initio calcu-
lations based on the resulting interaction to predict nuclear
properties.

The main idea of EFT is to build a theory which works
within the momentum scale of interest without knowing or
assuming physics in other places. Therefore, a prerequi-
site is that physics at the scale of interest can be separated
from unimportant details1—which is normally the ultravi-
olet physics. If this is the case, then one has at least two
momentum scales in the theory, i.e., the high-energy scale
Mhi which characterizes our ignorance of ultraviolet physics,
and the low-energy scale Mlo which characterizes the physics

1 Here we define unimportant as both physics that has been integrated-
out by applying regulators and physics (Feynman diagrams) dropped
beyond the applicability of that order.

a e-mail: chiehjen@chalmers.se (corresponding author)

of interest. Ideally, after renormalization it is desirable to
arrange physical observables order by order in an expansion
of Mlo

Mhi
. In the case where one adopts a cutoff Λ in the regula-

tor, an observableO evaluated up to order n can be expressed
as [1]:

On(Mlo;Λ; Mhi) =
n∑

i

(
Mlo

Mhi

)i

Fi (Mlo; Mhi)

+ Cn(Λ; Mlo, Mhi)

(
Mlo

Mhi

)n+1

, (1)

where Fi is a function which includes physics at order i,
so that the first term in the right-hand side of Eq. (1) can
be improved order by order by calculating loops. Note that
there is no Λ-dependence in Fi , as it is of higher-order after
renormalization. The residue C is a function of Λ, Mlo and
Mhi and represents higher order effects which has not been
evaluated. Although the exact form is unknown, the size of
C should be of natural size for Mlo < Mhi and Λ > Mhi.
The latter condition also ensures that there is no further cut
in the relevant part of physics (k = 0 ∼ Mhi), so that if
the renormalization is performed correctly, C depends on
negative power of Λ. To arrange relevant terms (from the
Lagrangian) and to generate On at each other as close as
possible as described in Eq. (1) requires power counting.

In nuclear systems, the low-energy scale Mlo usually con-
tains the center of mass (c.m.) momentum of the nucleon
pcm or some other typical momentum scale ptyp such as
the pion mass mπ , i.e., pcm, ptyp ⊂ Mlo. The breakdown
scale Mhi depends on the degrees of freedom included in
the theory. For pionless EFT, where the theory includes only
protons and neutrons as degrees of freedom, the breakdown
scale Mhi ∼ 140 MeV since effects of pion-exchange are not
included. For pionful EFT, where the theory includes nucle-
ons and pions as degrees of freedom, the estimated break-
down scale ranges from Mhi = 600−1000 MeV depending
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on whether one counts the first excitation beyond pions – the
σ or f0(600) – as the breakdown scale or just adopts the value
4π fπ ∼ 1000 MeV from chiral perturbation theory.2 When
properly organized, EFT should be able to provide reliable
predictions for processes where the momentum pcm involved
is within the breakdown scale.

To properly organize an EFT, in most of the cases, renor-
malization is necessary as physics which has been integrated
out is absorbed and encoded in the low energy constants
(LECs) associated with contact terms. It is then of impor-
tance to check whether the results after renormalization sat-
isfy the renormalization group (RG) requirement.3 Note that
one should not mix the scale Mhi with the cutoff Λ. The
expansion in Eq. (1) is valid as long as Mlo << Mhi regard-
less of value of Λ.

In pionless EFT, where the pionful degrees of freedom
has been integrated out, RG and the power counting can be
checked analytically in the nucleon–nucleon (NN) sector [2–
10]. For three-particle systems, the power counting is also
well-studied [11–28]. One surprising feature is that a three-
body force is required already at leading order (LO) to pre-
vent the triton from Thomas collapsing [29–32]. Moreover, a
recent study [33] suggested that, at least for the bosonic sys-
tems, a four-body force is required at next-to leading order
(NLO).

The investigation of RG and power counting is more
involved in the pionful sector. An analytical solution for the
NN-amplitude is already impossible and all studies must be
carried out numerically. Due to this difficulty, a common
approach is to apply power counting at the potential level
based on Weinberg’s prescription (WPC) [34,35] and then
iterate the potential which is truncated at a certain order in
the Schrodinger or Lippmann–Schwinger equations, in order
to obtain the observables. This non-perturbative treatment,
though practical in ab-initio calculations, does not satisfy
the RG requirement [36–39]. As a result, whether RG needs
to be satisfied in the pionful case is still in an ongoing debate.
Refs. [40–43] argued that adopting a cutoff higher than a cer-
tain value (which normally ranges from 450 to 600 MeV) will
cause the “peratization” of an EFT and generate meaningless
results.4 On the other hand, efforts toward building the inter-
action which satisfies the same criteria as in the pionless case
or any other quantum field theories have been carried out and
resulted in three versions of alternative power counting [47–
54] . All of them treat subleading corrections perturbatively

2 fπ ∼ 93 MeV is the pion decay constant and 4π fπ is the suppression
comes from extra pion loop in an irreducible diagram.
3 In this work the word “RG-invariant” refers to cases where the result
converges with respect to Λ, i.e., the observable can only depend on
negative power of Λ after renormalization.
4 See Ref. [40] for the meaning of “peratization” in this context and
Refs. [44–46] for a recent debate of the above issue.

and are able to generate RG-invariant and reasonable NN
amplitudes with respect to those obtained from WPC.

The rest of this article is organized as follows. Section 2
provides a simple overview regarding power counting. Sec-
tion 3 reviews power counting in pionless EFT. Section 4
deals with power counting in pionful EFT. Finally, a sum-
mary of current situation regarding power counting in EFT
is given in Sect. 5.

2 What is power counting? How to validate it?

One main ingredient of EFT is the power counting, which
tells us how to generate the final observable order-by-order
from a given Lagrangian. Since the EFT expansion is to be
arranged on the final observable as listed in Eq. (1), power
counting should be applied directly to the observable instead
of some intermediate quantities such as the potential – though
estimations of those quantities based on naive dimensional
analysis (NDA) [55] often provides a first useful guide in
truncating the infinite series. This means power counting is
system-dependent. Factors such as the energy scale, number
of particles, whether there are bound states or not in the sys-
tems need to enter the power counting. Applying one power
counting which works fine in one system to another could
produce completely wrong result if a factor which is origi-
nally unimportant becomes important in the new system.

One way to check power counting is to perform a trial
and error procedure as follows. First, one assumes a power
counting based on naive dimensional analysis (NDA) [55] or
other insights and uses it to calculate the observables order by
order. Then, one checks whether the observable at each order
actually matches the assumed power counting. For observ-
ables which can be expressed as a function of momentum,
a simple check can be performed by utilizing the residue-
cutoff-dependence as described in Ref. [1]. In this approach,
one generates observables at two different cutoffs (Λ1, Λ2)
and subtracts the two results with each other. From Eq. (1)
one reaches:

On(pcm, ptyp; Λ1) − On(pcm, ptyp; Λ2)

On(pcm, ptyp;Λ1)
=

(
pcm, ptyp

Mhi

)n+1

Cn(Λ1; pcm, ptyp, Mhi) − Cn(Λ2; pcm, ptyp, Mhi)

On(Λ1; pcm, ptyp, Mhi)
. (2)

The slope of a double-logarithmic plot against ln(pcm), i.e.,

ln

(On(pcm, ptyp;Λ1) − On(pcm, ptyp;Λ2)

On(pcm, ptyp;Λ1)

)

∼ (n + 1) ln

(
pcm, ptyp

Mhi

)
(3)
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corresponds to the power n + 1. The above procedure has
been carried out in the neutron-deuteron scattering process
to determine the power counting in the pionless case [1],
where it is demonstrated that useful information regarding
power counting of the three-body force can be extracted.

Before the above method was proposed, Lepage [56] pro-
posed a similar check by directly examining the difference
between results up to certain order and the data as a func-
tion of the c.m. energy Ecm. However, information extracted
in this way – the so-called Lepage plot – is not as clean as
Eq. (3). Different observables adopted in the renormaliza-
tion could generate sizable difference not just in the residue

Cn , but in
∑n

i

(
Mlo
Mhi

)i Fi (Mlo; Mhi) also. Therefore, a direct

subtraction of theoretical result from experimental data could
create sizable uncertainty on the final extracted slope, unless
all LECs at different order are fixed in a very particular way
to minimize this uncertainty.5

The above two methods require the extraction of power
counting to be performed at cutoffs large enough so that(
Mlo
Mhi

)
>

(
Mlo
Λ

)
, otherwise effects from the cutoff in the un-

converged results could enter and contaminate the extracted
value. Thus, a prerequisite is that RG needed to be satis-
fied in the first place. Meanwhile, one cannot rule out the
possibility that under a limited window of cutoff, a non-RG-
invariant theory could generate the same results as those gen-
erated from the correct EFT. To check power counting under
Λ < Mhi, some methods are proposed [57,58]. The simplest
check [57] is to examine whether the correction at each order

divided by the LO , e.g., Oi (p)
OLO(p) , scales as

(
p,mπ

Mhi

)i
. How-

ever, one needs to assume a numerical value of the breakdown
scale Mhi. This simple check can also be plagued by effects

from fitting strategies and terms proportional to
(
Mlo
Λ

)i
. A

more advanced method given in Refs. [58–64] utilizes the
order-by-order convergence of observable predictions from
a given EFT, fit to data, as a diagnostic tool for EFT power-
counting. If the order-by-order observables show clear issues
in the statistical diagnostics, it is a sign that the EFT is not
converging as expected for a given observable.

3 Power counting in pionless EFT

3.1 NN level

The Lagrangian of pionless EFT reads [2]

LNN = N †(i∂0 +
−→∇ 2

2MN
+ · · · )N

5 Ref. [56] fixes all LECs at very low energies.

− 1

2
C0(N

†NN †N ) − 1

8
(C2 + C ′

2)

[N †(
−→∇ − ←−∇ )N · N †(

−→∇ − ←−∇ )

N − N †NN †(
−→∇ − ←−∇ )2N ]

+ 1

4
(C2 − C ′

2)N
†N

−→∇ 2(N †N ) + · · · , (4)

where MN is the nucleon mass, N is the nucleon field and
C (′)

2n ’s are LECs. The above Lagrangian results an interaction
in form of

v(p, p′) = C0 + C2(p
2 + p′2) + 2C ′

2
−→p · −→p ′ + · · · , (5)

where p(′) is the c.m. momentum of the nucleon. Note that,
unlike the case in QED or QCD, the effective Lagrangian in
Eq. (4) contains infinitely many terms and cannot be solved
exactly. In fact, the fully reliable function of it is to pro-
vide vertices and propagators under certain symmetries. The
derivative expansion serves as a motivation for the power
counting, but in a less reliable sense, as the LECs are to
be utilized to describe observables and their relative impor-
tance is system-dependent. Beforehand the power counting
is unknown. To illustrate the idea, two scenarios of the power
counting are given below as examples.

The first scenario is the simplest case, where every LECs
with 2n derivative are suppressed by M2n

hi after renormaliza-
tion, i.e.,

C (′)R
2n ∼ 4π

MNM
2n+1
hi

, (6)

where the superscript R denotes the value after renormaliza-
tion. Note that a non-relativistic propagator G0 scales like
MN Q

4π
, with Q the typical c.m. momentum of the nucleon [2].

Thus, C (′)R
0 G0 ∼ Q

Mhi
and C (′)R

0 G0C
(′)R
0 are suppressed by

Q
Mhi

with respect to C (′)R
0 . The resulting scattering amplitude

can then be obtained order by order perturbatively. However,
in this EFT, no bound state is allowed as bound states require
at least part of the interaction to be treated non-perturbatively.

It has been shown [4] that to describe bound states, rear-
rangement of the series is necessary. In this second scenario
one needs

C (′)R
2n ∼ 4π

MNN n+1(Mhi)n
, (7)

where N << Mhi is a low energy scale which can be linked
to the existence of bound states. Now, C (′)R

2n G0 ∼ Q
N ∼ 1,

which means any further iterations of C (′)R
2n is of the same

order as C (′)R
2n . This results in an EFT where the LO ampli-

tudes are obtained non-perturbatively from the LO poten-
tial C (′)R

0 . Starting from NLO, C (′)R
2n are included perturba-

tively in the so-called distorted-wave-Born-approximation
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(DWBA). This scenario is the standard power counting of
pionless EFT.

Note that one can either use dimensional regularization
or regulators in the loop calculations. Due to the simplicity
of the interaction, analytical solution of the loops exists and
the final on-shell LO T-matrix can be expressed by a resum-
mation of a geometric series. Higher-order corrections enter
through perturbation theory and all the renormalized LECs
can be related to parameters in the effective range expansion.
After renormalization, RG has been checked explicitly and
is found to be well-behaved [4].

3.2 Few-body level

A surprising result is found when one adopts the two-body
interaction from pionless EFT – which is well-organized
in the NN sector – to calculate the three-particle system.
One observes the so-called Thomas-collapsing effect [29] in
numerical calculations. By analyzing the interaction between
the dimer (formed by the first two particles) and the third par-
ticle, it can be shown analytically that the resulting amplitude
does not meet the RG requirement [3,11,65]. A simple intu-
itive argument is that, the number of pairs (P2) of two-body
interactions that appear in an A-body system is:

P2 = A(A − 1)

2
, (8)

while the corresponding appearance of the kinetic term is
A − 1 (one of the kinetic terms goes into the total c.m. of
the system). Thus, for A ≥ 3, the NNN system will collapse
when Λ → ∞ if the interaction – which is renormalized to
produce the NN bound state – is purely attractive.6 The only
solution without destroying the two-body power counting is
to adopt a repulsive three-body force at LO in the many-body
calculations. Once this is done, the number of three-particle-
subsets in the A > 4 systems – A(A−1)(A−2)/6 – is always
larger than the number of two-body pairs (A(A− 1)/2). It is
then quite likely that no higher-body force will be needed at
LO in order to have stable results, as repulsive interactions do
not require extra boundary condition in order to reach RG-
invariance. Indeed, calculations suggest that a RG-invariant
description for systems up to A = 16 is achieved [26] at LO
and NLO, though the 16O is found to be not stable against
breakup into four 4He.

Once the LO amplitude is calculated, subleading cor-
rections enter perturbatively. Power counting of three-body
forces at higher order and partial-waves are well-studied
within few-body systems in Ref. [18]. It is shown that, in the
strong force sector, the next three-body force (the one with

6 The interaction pairs consist of v12, v23 and v13 in a three-particle
system but are only accompanied by two kinetic terms. The extra pair
of the purely attractive interaction causes the system to collapse.

the lowest momentum-dependence) enters at NNLO.7 More-
over, Ref. [33] shows that a four-body force is needed already
at NLO in order to have RG-invariant systems for more than
four particles. This surprising feature stems from the absence
of long-range interactions, which affects the A-body wave-
functions near the origin. For bosonic system this results in
a conjecture [33] that an A-body force will be needed at
NA−3LO.

It was demonstrated in Ref. [25] that the nuclear system
might be approached from the unitarity limit. The NN sys-
tem has scattering lengths much larger than the range of
the interaction. For example, the neutron-proton scattering
length anp = −23.7(5.4) fm in the 1S0(

3S1 −3 D1) channel,
is much larger than the range ∼ 1/mπ = 1 − 2 fm. At the
unitarity limit, the scattering length a → ∞ and therefore the
two-body system is scale invariant. The remaining parame-
ter that enters at LO is the three-body force. This scheme is
very attractive as it suggests that, within its range of validity,
only one parameter is enough to describe basic properties of
many-body systems. Carrying out this idea to an extreme, it is
shown [66–70] that the equation of state of pure neutron mat-
ter can be approached from the unitarity limit, where the LO
is governed by one single parameter – the Bertsch parameter
[71].

3.3 Do we understand power counting in pionless EFT?

Up to this point, it is clear that the power counting in pionless
EFT has been understood fully at least up to the few-body
level. I list two open-questions as follows:

– Whether the conjecture that A-body forces will be needed
at NA−3LO for bosonic system can be proven, and what
is its impact in fermionic systems?

– What is the applicability of pionless EFT? At which
nuclei it stops to work.

Answering the above question would rely mainly on numer-
ical calculations.

4 Power counting in pionful EFT

Pions have played the central role and is regarded as the
most important building block of the NN interaction since
1930’s [72]. The Lagrangian including nucleons and pions
as degrees of freedom was constructed in the 70’s and the
resulting chiral perturbation theory [73–76] has been uti-

7 When Coulomb is included non-perturbatively, there are evidences
that a three-body force with new isospin structure is needed at NLO [21].
The issue regarding how Coulomb can be included is further studied in
Ref. [24].
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lized to describe the ππ and πN processes quite success-
fully. The first attempt to construct a pionful EFT in the NN
sector as advocated by Weinberg [34] was carried out by
van Kolck et al. almost three decades ago [77,78]. Since
then, numerous works have been accomplished to extend the
so-called Weinberg counting (WPC) up to very high order
[79–83]. Indeed, when utilized correctly, EFT with explicit
pions would be much more powerful than the pionless EFT
due to the increase of Mhi. Unfortunately, a direct implemen-
tation of chiral potential based on WPC generates severe RG
problems. The power counting of pionful EFT becomes a
topic which is still debated intensively as will be discussed
in the next section.

4.1 NN level

The chiral Lagrangian is consists of Lππ , LπN and LNN

part. LNN has exactly the same form as Eq. (4), and

Lππ = 1

2
(∂μπ∂μπ − m2

ππ2) + · · · , (9)

LπN = gA
2 fπ

N †(
−→
S · τ · −→∇ π) + · · · , (10)

where π is the pion field,
−→
S and τ are the spin and isospin

operators, gA ∼ 1.27 is the axial coupling constant and
fπ ∼ 93 MeV is the pion decay constant. Note that LπN

in Eq. (10) is obtained by the heavy-baryon non-relativistic
reduction (HBChPT) [84–86]. A non-relativistic reduction is
necessary since the mass of nucleon MN � Mhi and there-
fore needed to be separated from the 4-momentum to allow
the power counting. Various methods exist to perform the
non-relativistic reduction [87–90], and already at this level
controversies appear as to be discussed later.

Let us continue with the conventional approach (WPC)
first, which is to follow the heavy-baryon formalism and cal-
culate the irreducible pion-exchange diagrams order by order.
At the end, one obtains the so-called chiral potential up to a
certain order. Then, due to the existence of bound states, WPC
prescribes a full non-perturbative treatment. That is, one iter-
ates the chiral potential to all orders under an ultraviolet cut-
off Λ in the Lippmann–Schwinger or Schrödinger equation
to obtain the NN amplitude. Note that the potential contains
irreducible long-range (pion-exchange) diagrams truncated
at a certain order with contact terms corresponding to the
divergence of those diagrams.

Within a certain range of Λ (typically ∼ 400−800 MeV),
it is possible to adjust the LECs in WPC up to NNLO (N3LO
or higher)8 to obtain reasonable (excellent) fit to the NN
scattering data [80,82,83,91–96].

Note that the mass difference between Δ(1232) excita-
tion and nucleon is smaller than 300 MeV. If Δ(1232) is not

8 Here the order is labeled according to the potential under WPC.

included explicitly in the loop calculations (e.g., in two-pion-
exchange diagrams), one is in the risk of having a radius of
convergence smaller than the estimated Mhi (∼ 600 MeV).
Therefore, in principle one should include the Δ in the EFT
to recover its full power. Since its first evaluation in Ref. [77],
Delta-full potential has been refined up to N3LO [97,98] and
applied within WPC to several calculations [99–101]. Refer-
ence [102] indicates that a better description of nuclear data,
in particular, the saturation point can be achieved with the
Delta-ful potential.

Despite the phenomenological success in terms of describ-
ing data, two problems appear in WPC already at LO.
First, as pointed out in Refs. [103–105], once the one-pion-
exchange potential (OPEP) is iterated non-perturbatively
there is no way to properly renormalize the divergence caused
by varying the pion mass. This issue motivates the so-call
KSW counting, which treats the pion-exchange perturba-
tively [103–105]. However, it was shown later that this count-
ing suffers from convergence problem, in particular at the
spin-triplet channels [107].9 The second problem, as pointed
out in Ref. [36], states that even without considering the chi-
ral extrapolation problem,10 WPC lacks of necessary contact
terms (in singular and attractive higher partial-waves (l ≥ 1))
to meet the RG requirement. Later it was pointed out that the
same problem (the lacks of RG) exists at every order of WPC
[37–39], due to a Wigner-bound like effect [108,109].

As a matter of fact, WPC fails to satisfy the RG require-
ment and is therefore subjected to the danger of becoming a
model. However, this conclusion is in conflict with the tra-
ditional approach of nuclear physics, which absorbs physics
into parameters in an effective potential and then solves the
amplitudes non-perturbatively. In this spirit, “no” EFT poten-
tial with more than one LEC (per partial-wave)11 can satisfy
the RG requirement, due to the occurrence of a Wigner-bound
like effect. Therefore, a general attitude is to limit Λ < Mhi

and assume that the power counting organized at potential
level will survive through a “moderate” iterations to the final
observables. Ref. [40] further argued that adopting a cut-
off Λ > Mhi will cause the “peratization” of the resulting
amplitudes. This idea is illustrated in Ref. [41] via a pionless
example as follows. Consider the scenario that the first two
terms in Eq. (5) needed to be iterated to all order. To label
the number of iterations of V, one can insert a parameter h̄ in
the Lippmann–Schwinger equation, i.e.,

T = V + h̄ VGT, (11)

9 Note that a recent work [106] shows that the problem of KSW only
persists in the 3S1 −3D1 and 3P0 channels by performing higher-order
calculations.
10 I.e., problems involving varying the pion mass.
11 Under the condition that LECs are expressed in power of momentum
as listed in Eq. (5).
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so that VGV ∼ h̄, VGVGV ∼ h̄2, ..., etc. Then the 1S0

amplitude can be expressed as [10]

TNLO(q)

= c2
[
h̄ c2

(
I3q2 − I5

) − 2q2
] − c

h̄ I
(
q2

) [
c2

(
h̄ c2

(
I5 − I3q2

) + 2q2
) + c

] − (h̄ I3c2 − 1) 2
,

(12)

where, under cutoff Λ,

In = −m
∫

d3k

(2 π)3 kn−3 θ(Λ − k) = − m Λn

2 n π2 ,

I (p2) = m
∫

d3k

(2 π)3

1

p2 − k2 + i 0+ θ(Λ − k)

= − i p mN

4π
− m

2 π2

[
Λ + p

2
ln

1 − p
Λ

1 + p
Λ

]

= − i p m

4π
− m Λ

2 π2 + m p2

2 π2Λ
+ O

(
1

Λ2

)
. (13)

Reference [41] then claims that renormalization is only
achieved when the divergence of each diagram in the infi-
nite series are removed by their corresponding counter terms.
In order to achieve that, one needs to promote infinitely
many counter terms with higher derivatives to renormalize
TNLO(q). Reference [41] then shows that, by doing this, the
resulting amplitude satisfies “perturbatively renormalizable”
condition12 and is free of the Wigner-bound problem, while
the renormalization performed in Ref. [10] does not. Thus,
one should either performs the renormalization as done in
Refs. [41,110–112] or keep the cutoff low to avoid “perati-
zation”.

However, in an EFT one should not take any a priori
assumption to assume that a particular treatment of an inter-
action (in this case, a non-perturbative treatment of c + c2)
will result in an amplitude satisfying the EFT power counting.
It could be that an incompleted higher-order effect is gener-
ated due to the iteration, and one should either expand and
truncate the result properly or change the interaction itself
and then perform the renormalization. In the above exam-
ple, it is clearly shown [3] that the resulting amplitude (Eq.
(12)) should be expanded up to q2, and with c2 enters per-
turbatively through the distorted-wave-Born-approximation
(DWBA).13 Then, one performs renormalization of the two
lowest order terms (q0 and q2 terms) to the effective range
expansion. All other effects are of higher-order. If a proposed

12 I.e., after renormalization, there is an one-to-one correspondence
between the expanded (in h̄) resummed series (Eq. (12)) and the per-
turbative diagrams.
13 See, e.g., Ref. [110] for alternative opinion.

power counting is wrong, forcing a removal of divergences in
each individual diagram (by introducing additional contact
terms not prescribed before) will do nothing good but just
hide the problem – which originally might be easily detected
by a simple RG-check. The problem will still be revealed
finally by a Lepage-plot-like analysis. In this case, Eq. (7)
shows that the renormalized cR2n is of the same order of (cR2 )n ,
but is not included in Eq. (12). Therefore, before expan-
sion, Eq. (12) contains incompleted higher-order effects and
the resulting amplitude is wrong anyway regardless how the
renormalization is done.

Note that when pions are presented, forcing the same
removal of divergences in all diagrams will introduce incom-
pleted higher-order effects, as a function formed by all
higher-order contact terms is introduced to absorb the diver-
gences. This can destroy or improve the agreement of the
resulting amplitude with respect to the prescribed power
counting, but in an uncontrollable way. If, at a certain order,
the short-range physics supposed to enter cannot be repre-
sented sufficiently by a simple combination of contact terms,
one could enrich the structure of contact terms by introduc-
ing a field re-definition to incorporate auxiliary fields such as
the dibaryon or others, so that the power counting of both the
long- and short-range physics remains in a tractable manner.

On top of “perturbatively renormalizable”, Refs. [110,
113] advocate an alternative procedure [114] to introduce
additional terms14 into the relativistic Lagrangian and obtain
the propagator and pion-exchange potential in an alterna-
tive form. As a result, the divergences of the iterated dia-
grams are greatly reduced. Then, the interaction is treated
non-perturbatively with the “perturbatively renormalizable”
scheme applied to the resulting T-matrix.

However, as mentioned before, due to the large nucleon
mass in the four-momentum one cannot discriminate the
importance between propagators or vertices generated by
the higher- and lower-derivative terms in the Lagrangian.
For individual diagrams, it was demonstrated [114] that one
can perform calculations directly in the relativistic form
and then apply appropriate expansion later to obtain results
which match HBChPT up to the relevant order.15 Mean-
while, before a proper expansion, each diagram contains
incompleted higher-order contributions due to the relativistic
treatment. Thus, on top of the potential problem of forcing
the “perturbatively renormalizable” condition on the non-
perturbative treatment, additional error could be generated.
In particular, the pion-exchange part of OPEP obtained in
this way behaves as

14 Symmetry-preserving higher-derivative terms are introduced in the
effective Lagrangian of baryon chiral perturbation theory.
15 See also Refs. [115–121] for further studies following this direc-
tion and the comparison of results between HBChPT and the covariant
framework.
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Vπ (p → ∞, p′ → ∞) ∼ 1

pp′ (14)

in the 3P0 channel. Thus, in contrast to the usual non-
relativistic OPEP, the above potential is non-singular and
therefore does not require a contact term to achieve RG-
invariance. Promoting a contact term to LO in the non-
perturbative treatment will destroy the RG [37], unless extra
care is taken to further subtract the divergences. This is
demonstrated in the “non-perturbatively renormalized” ver-
sus “subtractively renormalized” phase shifts in Fig. 4 of Ref.
[113].

Power counting with resulting amplitudes converge with
respect to cutoff (but not necessary satisfy “perturbatively
renormalizable” condition) exists in three versions [47,50,
52]. Though differ in some aspects, all of them treat sub-
leading interaction perturbatively. The LO interaction con-
sists of OPEP with appropriate contact terms (to ensure RG-
invariance) and is treated non-perturbatively. At this order, a
promotion of contact terms (with respect to the LO WPC) is
required for those singular and attractive channels to ensure
that the boundary condition is fixed [36]. Recent studies also
suggested that all l ≥ 1 partial-waves except 3P0 might
enter perturbatively due to the effect of the centrifugal barrier
[122,123]. Once a promotion at the LO is required, all higher-
order contact terms which enter perturbatively are promoted
at the same time, due to a peculiar structure in the distorted
wave near the origin. Note that the entrance of additional
scale Mlo analog to N << Mhi in Eq. (7) is presented in the
new power counting. For example, for singular and attrac-
tive P-waves where contact terms need to be promoted, the

amplitudes scale as
(pcm,ptyp)

3

M3
lo

,
(pcm,ptyp)

5

M3
loM

2
hi

and
(pcm,ptyp)

6

M3
loM

3
hi

at

LO, NNLO and N3LO according to the power counting pro-
posed in Ref. [52].

Finally, special treatments might be necessary for the
1S0 channel as there is a large discrepancy between the
LO phase shifts obtained through WPC, KSW, or modified
power counting [36,47,50,52] and the Nijmegen analysis
[124]. Studies [125–127] suggested that adopting the auxil-
iary dibaryon field together with OPEP could provide signif-
icant improvement to the LO amplitude. This improvement
could become crucial in many-body calculations as will be
addressed in the next section.

In summary, despite the phenomenological success of
WPC and many studies toward the improvement, the power
counting in pionful sector is still much less understood with
respect to the pionless case. Nevertheless, a general frame-
work toward a RG-invariant power counting has been laid
out. Since RG-invariance (as defined previously in footnote
3) is just the minimum requirement of an EFT [36], a detailed
analysis of power counting utilizing Eq. (3) is required and
is on-going [128].

4.2 Beyond NN level

WPC has been applied widely to nuclear structure calcula-
tions in the few- and many-body sector. It has been shown
that together with three-body forces and a more restricted
Λ (∼ 400–500 MeV), binding energies and radii of nuclei
can be reasonably reproduced [129–141]. To get the most out
of WPC, it is shown that one could perform a general fit of
LECs to a wider range of nuclear properties to achieve a bet-
ter description of many-body systems [95,142]. It is shown
that an even better description of nuclear data can be achieved
with the Delta-full potential [102].

However, not all observables can be well-described by
WPC. In the few-body level, there exists the so-called Ay

puzzle, i.e., the nucleon vector analyzing power in elas-
tic deuteron-nucleon scattering below 30-MeV laboratory
energy is not reproduced by WPC and other phenomeno-
logical potentials [143–149]. In the intermediate mass nuclei,
there exists systematic overbinding [150] and a “radius prob-
lem” [151]. Note that the sources of the above problems are
still unclear at current stage, and might not be directly related
to the problem of power counting. Moreover, several inter-
actions inspired by Chiral EFT are able to describe radii and
binding energies from light to heavy nuclei better, see Ref.
[152] for a recent review of this issue.

On the other hand, there are only a handful calculations
based on power counting other than WPC. RG-invariant
results for A = 3 systems are obtained at LO [36] and up to
NLO [153] based on one version of the RG-invariant power
counting [52]. In a recent work [154], the binding energies
of 3H, 3He and 4He are calculated according to the power
counting proposed in Ref. [52]. The results as a function of
Λ are presented in Fig. 1. As one can see, reasonable and RG-
invariant binding energies can be obtained by including just
up to NLO contributions in the new power counting scheme.
However, the same interaction fails to produce an 16O more
bound than four α particles. Thus, although the power count-
ing seems to work fine for A ≤ 4 systems, the A = 16 pole
structure is not correctly reproduced. Since subleading inter-
actions enter perturbatively in the new power counting, it is
not clear whether the wrong pole structure can be corrected
in a perturbative way. A promotion of three-body force to LO
for heavier nuclei is likely to be the solution.

4.3 An A-dependent scenario for the higher-body forces

Now I discuss the possible scenario regarding the promotion
of higher-body forces. So far, the power counting of a higher-
body force is decided mainly based on either the RG-analysis
or NDA. After the power counting is verified up to a certain
order based on few-body calculations (say, up to A-particle
systems), a common expectation is that higher-body forces
which are not required in smaller systems will not appear
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Fig. 1 Binding energy of 3H, 3He and 4He at LO (black-circle-line)
and up to NLO (black solid-line) versus cutoff. For 4He, trustworthy
results can only be obtained up to 800 MeV due to computational limit

Table 1 Number of double and triplet in an A-particle system

A Number of doublet Number of triplet
A(A−1)

2
A(A−1)(A−2)

6

3 3 1

4 6 4

5 10 10

6 15 20

in the calculations of heavier systems. This expectation can,
however, be wrong. One naive estimation of the importance
of higher-body force can be done by simply counting the
number of pairs for an N-body interaction. Table 1 lists
the occurrence of the two- and three-body force in an A-
body system. As one can see, the number of triplets grow as
∼ A3/6 for larger A and exceeds the number of doublets
∼ A2/2 after A > 5. Thus, if the relative strength of
the triplet versus doublet is not suppressed by more than
3/(A− 2), both of them would need to be included in the A-
particle system calculation. This means, as the increase of A,
many-body forces will eventually needed to be promoted.16

5 Summary

The EFT approach to low energy nuclear physics allows one
to build inter-nucleon interactions based on the symmetries of
QCD at low energy. When the power counting is fully under-

16 Pauli principle could weaken (kill) the above effect for some of the
long- (short-) range higher-body forces, but there are strong evidence
from studies of nuclear matter equation of state that it is necessary to
adopt either a three-body or a density-dependent two-body term already
at LO in order to describe the empirical data [155–159].

stood, the interaction can be considered as the low energy
expansion of QCD. In this regard, at least up to few-body
level, the power counting is well understood in the pion-
less sector. The remaining open questions concern mainly
the power counting of many-body forces and the range of
applicability in the nuclear structure aspect are to be studied
numerically. On the other hand, despite extensively studies,
the power counting in pionful EFT remains less understood.
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